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APPENDIX A: MORE ON THE GENERAL SPIKE AND SLAB PRIOR

A.1. Special cases. Our general spike and slab prior in Equation 2.3 admits
common models as special cases and several other special cases not explored in
the literature. Assume that πij = 1 for all (i, j) unless specified otherwise. Then:

1. If G is a point-mass at v = 1, p(ω) in Equation 2.4 is the Gaussian distribu-
tion with mean m and variance 1/λ2, which produces ridge-type regulariza-
tion (Hoerl and Kennard, 1970).

2. If V ∼ G is such that V 2 ∼ Γ(1, 1), then p(ω) ∝ exp
{
−
√

2λ|ω −m|
}

is
the Laplace distribution with location parameter m, which produces lasso-
type regularization when m = 0 (Tibshirani, 1996; Yuan and Lin, 2007;
Friedman, Hastie, and Tibshirani, 2008; Rothman et al., 2008; Ravikumar et
al., 2011; Mazumder and Hastie, 2012; Wang, 2012; Vinci et al., 2018a).

3. If V is as in 2, and the matrix M = [mij ] in Equation 2.4 satisfies −M =
B � 0 with prior density h(B) ∝ exp{−ξtr(B)}I(B � 0), then we obtain
the latent variable graphical model (Chandrasekaran et al., 2012; Yuan, 2012;
Giraud and Tsybakov, 2012), which assumes Ω = Sparse − LowRank,
where the component LowRank quantifies the effect of unobserved variables
(e.g. unrecorded neurons) of the network on the observed ones (see also Sec-
tion 5 and end of Appendix C.1). To be specific, let Σ be the covariance ma-
trix of d+q variables, with q < d, and let Ψ = Σ−1 be sparse. Thus, the con-
ditional dependence between pairs of the first d variables given all variables
is encoded by the submatrix Ψd. We have that Σ−1

d = Ψd − ΨdqΨ
−1
q Ψqd,

where the second component has rank ≤ q < d (i.e. low-rank). Hence, the
decomposition Σ−1

d = Sparse− LowRank.
4. If V 2 = (Z − 1)/(2bZ) with Z distributed as Γ(1/2, a2/4b) and truncated

at Z > 1, then p(ω) ∝ exp{−a|ω| − bω2} (Lemma 4, Appendix B), which
produces the elastic net (Zou and Hastie, 2005). Note that a → 0+ yields
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the Gaussian prior with variance (2b)−1, and b→ 0+ the Laplace prior with
variance 2/a2. See Figure 9.

5. If V is as in 2, and we let π ∈ (0, 1), then we obtain the spike-and-slab
regularization (Banerjee and Ghosal, 2015; Wang, 2015).

6. A generalization of case 2 is given by V = Uγ , where γ > 0 and U ∼
Γ(α, β), or equivalently V ∼ GenΓ(a = β−γ , b = αγ−1, c = γ−1) with
p.d.f.

(A.1) gij(v) =
ca−b

Γ
(
b
c

)vb−1e−( va)
c

Case 2 corresponds to γ = 1/2, α = 1, β = 1. If β = (Γ(α+ 2γ)/Γ(α))
1
2γ ,

then E[V 2] = 1, and in Figure 9 we show the resulting Gaussian mixture for
α = 1 and γ ∈ (0, 1.5]: a larger γ increases the concentration of p(ω) in
Equation 2.4 about the mean m.

7. If V 2 ∼ InvΓ(ν/2, ν/2), then p(ω) is student-t with ν degrees of freedom
(Gelman et al., 2004).

8. If G is a Stable distribution, then p(ω) ∝ exp
{
−|ω|b

}
for b ∈ [1, 2] (West,

1987).
9. If V ∼ Cauchy+(0, 1) (half-Cauchy), then p(ω) is the horseshoe distribu-

tion.

A.2. Utility of the general prior. To investigate the benefit of using the gen-
eral prior on the estimation Ω, we simulated data (sample size n = 500; 20 repeats)
from a 50-dimensional Gaussian distributionN(0,Ω−1) whose partial correlations
varied with an auxiliary quantity W ∼ Unif(0, 5), as depicted in Figure 10A. That
is, partial correlations decrease withW on average, they concentrate further around
their means as W increases, and they equal zero when W ∈ (2, 3).

We estimated the graphs using the following prior configurations:

- Model “g”: f(w) = 0, g(w) step function, and η(w) = 1;
- Model “(f, g)”: f(w) and g(w) step functions, and η(w) = 1;
- Model “(g, η)”: f(w) constant, and g(w) and η(w) step functions;
- Model “(f, g, η)”: f(w), g(w), and η(w) step functions,

where the functions f , g, and η (Equations 2.5, 2.6, and 2.7) were taken to be
step functions with five steps at the empirical quantiles of W . The models that fit
a non-constant f should perform best because the average partial correlation de-
creases withW . We fitted these models, taking the Gaussian mixture component in
Equation 2.3 to be either Gaussian, Laplace, Elastic net (a =

√
2 and b = 1/2, spe-

cial case 4, Appendix A.1), or Generalized Gamma mixtures (Equation A.1, with
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FIG 9. Examples of Gaussian scale mixtures with mean m = 0. Top: mixing densities. Bottom:
resulting mixture densities. The red density in the Generalized-Gamma case is the Laplace density.

α = 1, γ = 1, and β = (Γ(α + 2γ)/Γ(α))
1
2γ ); see Figure 9. Figure 10A shows

example posterior means of f, g, and η for these models, obtained by using a Gaus-
sian prior p.d.f. component in Equation 2.3, and Figure 10B shows the ROC curves
of unsigned posterior (p, δ) graphs with AUC and rescaled VUS (Section 3.5) in
parenthesis. All Gaussian mixtures (Gaussian, Laplace, elastic net, and generalized
Gamma) produced AUC and VUS within ±0.03 of the Gaussian prior case, so we
show only curves for the latter for clarity. We plan to compare the properties of the
different Gaussian mixtures more fully in the future. We also fitted two models that
do not incorporate auxiliary information:

- Model “Bglasso” (Bayesian glasso): f(w) = 0, g(w) constant, and η(w) =
1;

- Model “Sp-Sl” (spike-and-slab): f(w) = 0, g(w) constant, and η(w) con-
stant.

All estimators that used auxiliary information outperformed the others, with more
precise signed edge detection (higher VUS) in the models that fitted f , as we ex-
pected.
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FIG 10. (A) Top: partial correlations of the ground truth model. Bottom: posterior means of f, g, η
(in columns) of models that use auxiliary information (in rows); e.g. the first row is model “g" with
f(w) = 0, g(w) a step function, and η(w) = 1. (B) ROC curves of the fitted models with average
AUC and rescaled VUS in parenthesis.

APPENDIX B: LEMMAS

LEMMA 1. Let

p(ω) =

∫ ∞
0

λ

v
φ

(
λ

v
(ω −m)

)
dG(v),

where φ is the p.d.f. of N(0, 1) and V ∼ G is a positive random variable. Then,
p(ω) exists if and only if E[V −1] <∞, with E[ω] = m and Var(ω) = E[V 2]/λ2.

PROOF. For λ > 0 and ∀ω ∈ R

p(ω) ≤ p(m)

=
λ√
2π

∫ ∞
0

v−1 dG(v)

=
λ√
2π

E[V −1]

Finally note that ω D
= m+ ZV/λ, where Z ∼ N(0, 1), so that

E[ω] = m+ E {E [ZV/λ | V ]}
= m+ E {E [Z | V ]V/λ}
= m
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and

Var(ω) = E [Var (ZV/λ | V )] + Var (E [ZV/λ | V ])

= E
[
V 2/λ2

]
+ Var (E [Z | V ]V/λ)

= E[V 2]/λ2

LEMMA 2. In Equations 3.6 and 3.7, 1 < A(θ,W, Y, a) < ∞ and 1 <
B(θ,W, Y, V, a) <∞.

PROOF. We have

B(θ,W, Y, V, a)−1 =

∫
Ω�0

∏
i≤j

τijφ (τij(ωij − Yijmij)) dΩ

<

∫
S

∏
i≤j

τijφ (τij(ωij − Yijmij)) dΩ

=
∏
i<j

∫
R
τijφ (τij(ωij − Yijmij)) dωij

×
d∏
i=1

∫
R+

τiiφ (τii(ωii −mii)) dωii

≤ 1

where S = {Ω ∈ Rd×d : ωij = ωji, ωii > 0} is the set of symmetric matrices
with positive diagonals. Thus, B(θ,W, Y, V, a) > 1. The positive definite cone
{Ω ∈ Rd×d : Ω � 0} ⊂ S is a non-empty convex subset of Rd×d, and therefore
the integral over this set is strictly positive, i.e.B(θ,W, Y, V, a) <∞. Finally, note
that

A(θ,W, Y, a)−1 =

∫
Rd(d+1)/2
+

B(θ,W, Y, V, a)−1
∏
i≤j

gij(vij)dv

= EV [B(θ,W, Y, V, a)−1]

where v = {vij}i≤j and V ∼
∏
i≤j gij(vij). Therefore 1 < A(θ,W, Y, a) < ∞,

∀a > 0.

LEMMA 3. Equation 3.4 is satisfied by Equation 3.5.
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PROOF.∫
ha(Ω | θ,W, V ) ha(V | θ,W, Y ) ha(θ |W ) dV

=
∏
i≤j

{
Yij

∫ ∞
0

λij

v φ
(
λij

v (ωij −mij)
)
gij(v) dv + (1− Yij)a−1φ

(
a−1ωij

)}
×I(Ω � 0) h∗(θ |W )

where Yii = 1 for all i, and

lim
a→0+

a−1φ
(
a−1ωij

)
= δ(ωij).

Taking the expectation with respect to Y ∼ h(Y | θ,W ) in Equation 3.8 completes
the proof.

LEMMA 4. Elastic net. We have

exp{−a|x| − bx2} ∝ E
[
V −1φ

(
V −1x

)]
,

where V has p.d.f.

(B.1) p(v) = C−1v(1− 2bv2)−3/2 exp
{
− a2/4b

1−2bv2

}
I(0 < v < (2b)−1/2)

with C =
√
π

2a
√
b
[1− erf(a/(2

√
b))] and erf(x) = 2√

π

∫ x
0 e
−t2dt.

PROOF.

exp{−a|x| − bx2} ∝ exp{−a|x|} exp{−bx2}

∝ E
[

1√
U
φ
(

x√
U

)]
exp{−bx2}

where U ∼ Γ(1, a2/2). Thus

exp{−a|x| − bx2} ∝ E
[

1√
U

exp
{
− x2

2U − bx
2
}]

∝ E
[

1√
U

exp
{
− x2

2U/(1+2bU)

}]
∝ E

[√
U/(1+2bU)√

U
1√

U/(1+2bU)
exp

{
− x2

2U/(1+2bU)

}]
∝ E

[
(1 + 2bU)−1/2 1√

U/(1+2bU)
φ

(
x√

U/(1+2bU)

)]
∝ E

[
1
V φ
(
x
V

)]
,
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where V =
√

Z−1
2bZ with Z ∼ Γ1(1/2, a2/4b), and V has distribution in Equa-

tion B.1.

LEMMA 5. Consider Equations 3.18, 3.20, 3.21, 3.23, 3.24, and 3.26. We have
FDP ≤ FDP∗, which implies FDR ≤ FDR∗ and FDRΠ ≤ FDR∗Π.

PROOF.

FDP∗ ≥

∑
i<j

{
I(Êij > 0)I(Eij(δ) = 0) + I(Êij < 0)I(Eij(δ) = 0)

}
∑

i<j |Êij |

=

∑
i<j I(Êij 6= 0)I(Eij(δ) = 0)∑

i<j |Êij |
= FDP

Applying monotonicity of expectations completes the proof.

LEMMA 6. Let f : Rd×{0, 1} → R, and let (X,Y ) ∈ Rd×{0, 1} have joint
distribution P . Then

f(x, y) = yf(x, 1) + (1− y)f(x, 0)

and
E[f(X,Y )] = P (Y = 1)E[f(X, 1)] + P (Y = 0)E[f(X, 0)]

APPENDIX C: ALGORITHMS

Assume V 2
ii ∼ Γ(1, 1/2) for all i = 1, ..., d, and integrate (V11, ..., Vdd) out of

Equation 3.3. Further assume mii ≤ 0, ∀i = 1, ..., d; see comments in Section 3.1.

C.1. GGM estimation: Full Bayes. In this section we describe the Gibbs
sampling of (µ,Ω, V, Y, θ) | Xn,W (Equation 3.3) with step functions f, g, and
η (Equation 3.10).

C.1.1. V | rest. The conditional distribution of Vij | rest is

(C.1) ha(Vij | rest) ∝

{
gij(Vij), if Yij = 0

gij(Vij)
λij
Vij
φ
(
λij
Vij

(ωij −mij)
)
, if Yij = 1
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If it is easy to sample from gij , then the following rejection sampling algorithm can
always be implemented for the case Yij = 1:

(C.2)


1. Draw Ṽ ∼ gij
2. Draw Ũ ∼ Uniform(0, 1)

3. If f(Ṽ )/f(v∗) > Ũ, then keep Ṽ , otherwise repeat 1− 2.

where v∗ = λij |ωij−mij | is the maximum point of f(v) =
λij
v φ

(
λij
v (ωij −mij)

)
so that f(Ṽ )/f(v∗) ≤ 1.

However, there exist some special cases where the conditional distribution of
Vij | rest belongs to a known family of distributions allowing for a faster sampling.

Special case: Laplace prior. Assume V 2
ij = U where U ∼ Γ(1, 1). Then

p(u | rest) ∝ u−1/2 exp

{
−
λ2
ij

2u
(ωij −mij)

2 − u

}
Now let z = u−1 ⇒ du = z−2dz so that

p(z | rest) ∝
(

1

z3

) 1
2

exp

{
−a(z − b)2

2b2z

}
,

where a = 2 and b =
√

2(λij |ωij−mij |)−1. Therefore, Vij | rest
D
= Z−1/2, where

Z ∼ InvGaussian(
√

2(λij |ωij −mij |)−1, 2).

C.1.2. Y | rest. We have

P (Yij = 1 | rest) = πij
λij
Vij
φ
(
λij
Vij

(ωij −mij)
)
/D,

where D = πij
λij
Vij
φ
(
λij
Vij

(ωij −mij)
)

+ (1− πij)a−1φ
(
a−1ωij

)
.

C.1.3. µ | rest. For simplicity we assume h(µ) ∝ 1, so that µ | rest ∼
N(X̄n,Ω

−1/n).

C.1.4. Ω | rest. The assumption mii ≤ 0 implies |ωii − νii| = ωii − νii.
Thus, distribution of Ω | rest is given by

ha(Ω | rest) ∝ (det Ω)
n
2 exp {−tr(SΩ)/2}

×
∏
i<j

τije
−
τ2ij
2

(ωij−νij)2 ×
d∏
i=1

τiie
−τiiωii × I(Ω � 0)
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where S =
∑n

r=1(Xr − µ)(Xr − µ)′, τij = Yijλij/Vij + (1 − Yij)/a for i < j
and τii = λii for i = 1, ..., d, and νij = Yijmij . We sample Ω | rest column-by-
column guaranteeing its positive definiteness at each iteration (Wang, 2012; Vinci
et al., 2018a). Partition the precision matrix as

Ω =

[
Ω11 ω12

ω′12 ω22

]
where ω22 is a scalar, and partition the matrices S, N = [νij ] and T = [τij ]
similarly. By applying the Schur complement decomposition we obtain det(Ω) =
det(Ω11)(ω22 − ω′12Ω−1

11 ω12), where det(Ω11) > 0 and (ω22 − ω′12Ω−1
11 ω12) > 0

whenever Ω � 0. Further define the diagonal matrix

DT = diag(τ2
1d, ..., τ

2
(i−1)d, τ

2
(i+1)d, ..., τ

2
dd).

The conditional distribution of ω12, ω22 | rest is given by

h(ω12, ω22 | rest)

∝ (ω22 − ω′12Ω−1
11 ω12)

n
2 × I(ω22 − ω′12Ω−1

11 ω12 > 0)

× exp

{
−1

2

[
ω′12DT ω12 + 2(s′12 − ν ′12DT )ω12 + (s22 + 2τ22)ω22

]}
Let ψ = ω12 and ζ = ω22 − ω′12Ω−1

11 ω12. The joint distribution of (ψ, ζ) | rest is

h(ψ, ζ | rest)

∝ ζ
n
2 exp

{
−1

2

[
ψ′DT ψ + 2(s′12 −m′12DT )ψ + (s22 + 2τ22)(ζ + ψ′Ω−1

11 ψ)
]}

×I(ζ > 0)

∝ ζ
n
2 exp

{
−s22 + 2τ22

2
ζ

}
I(ζ > 0)× exp

{
−1

2
(ψ − µ̃)′Σ̃−1(ψ − µ̃)

}

that is (ζ, ψ) | rest ∼ Γ
(
n
2 + 1, s22+2τ22

2

)
N
(
µ̃, Σ̃

)
, where Σ̃ = (DT + (s22 +

2τ22)Ω−1
11 )−1 and µ̃ = −Σ̃[s′12 − ν ′12DT ]. Therefore, we update Ω | rest as fol-

lows: for i = 1, ..., d,
1. Sample ζ ∼ Γ

(
n
2 + 1, Sii+2λii

2

)
and ψ ∼ N

(
µ̃, Σ̃

)
,

where Σ̃ = (DT + (Sii + 2λii)Ω
−1
−i−i)

−1, µ̃ = −Σ̃[S′−ii −N ′−iiDT ],
and DT = diag(τ2

1i, ..., τ
2
(i−1)i, τ

2
(i+1)i, ..., τ

2
di).

2. Set Ω−ii = Ω′i−i := ψ and Ωii := ζ + ψ′Ω−1
−i−iψ.
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C.1.5. θ | rest. Assume Equation 3.10 so that θ = {α,m, λ, γ, β, χ}, and in
Equation 3.1 assume

h∗(θ |W ) ∝
d∏
i=1

αr−1
i e−sα

2
i /2 ×

Kg∏
k=1

βr
′−1
k e−s

′β2
k ×

Kη∏
k=1

χ−0.5
k (1− χk)−0.5

×λr′′−1
ii e−s

′′λii × h(m, γ | α,W ),

where h(m, γ | α,W ) has support such that mii ≤ 0, for all i = 1, ..., d, as
in Appendix C.1.4, and r, r′, r′′, s, s′, s′′ are hyperparameters. Thus, starting from
Equation 3.5 we obtain

ha(θ | rest) ∝ ha(Ω, θ, Y, V, |W )

∝ h∗(θ |W )×
∏

ij:Yij=1

αiαj

Kg∑
k=1

βkIBk(Wij)

V −1
ij

×
∏

ij:Yij=1

φ

αiαj
Kg∑
k=1

βkIBk(Wij)

V −1
ij

(
ωij −

∑Kf
k=1 γkIAk(Wij)

αiαj

)
×
∏
i<j

Kη∑
k=1

χkICk(Wij)

Yij 1−
Kη∑
k=1

χkICk(Wij)

1−Yij

×
d∏
i=1

λiie
−λiiωii

For notational convenience, let gij = g(Wij), fij = f(Wij), and ηij = η(Wij).
We obtain the following conditional distributions:

1.

(C.3) h(αi | rest) ∝ αAi−1
i e−

Bi
2 (αi−Ci)2I(αi > 0)h(m, γ | α,W )

where

Ai = r +
∑
j 6=i

Yij , Bi = s+
∑
j 6=i

YijV
−2
ij α2

jω
2
ijg

2
ij ,

and

Ci = B−1
i

∑
j 6=i

YijV
−2
ij αjωijg

2
ijfij

If h(m, γ | α,W ) does not depend on α, we use rejection sampling to sam-
ple αi | rest with proposal distribution αi ∼ N(Ci +D/Bi, B

−1
i ) truncated

at αi > 0 and acceptance rule γ(x;Ai, D)/maxw γ(w,Ai, D) > U , where
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U ∼ Uniform(0, 1), D > 0 is a parameter chosen to minimize the dis-
tance between the Gaussian mean Ci +Di/Bi and the mode of the Gamma
p.d.f. γ(x;Ai, D) = Γ(Ai)

−1DAixAi−1e−Dx, ultimately increasing the ac-
ceptance probability.

2.

(C.4) h(λii | rest) ∝ λr′′ii e−(s′′+ωii)λii

that is, λii | rest ∼ Γ(r′′ + 1, s′′ + ωii).
3.

(C.5) h(βk | rest) ∝ βA−1
k e−Bβ

2
kI(βk > 0)

where
A = r′′ +

∑
i<j

IBk(Wij)Yij

and
B = s′′ +

∑
i<j

IBk(Wij)YijV
−2
ij (αiαjωij − fij)2 /2,

that is β2
k | rest ∼ Γ(A/2, B).

4.

h(γk | rest) ∝ exp
(
−ζk(γk − ξk)2/2

)
h(m, γ | α,W )(C.6)

where
ζk =

∑
i<j

IAk(Wij)Yijg
2
ijV
−2
ij

and
ξk = ζ−1

k β2
k

∑
i<j

IAk(Wij)YijV
−2
ij αiαjωij

5.

(C.7) χk | rest ∼ Beta(0.5 + Sk, 0.5 +Nk − Sk)

where
Sk =

∑
i<j

ICk(Wij)Yij

and
Nk =

∑
i<j

ICk(Wij)

6.

(C.8) h(m | rest) ∝ h(m, γ | α,W )
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Special cases.

• If h(m, γ | α,W ) ∝
∏d
i=1 δ(mii)

∏Kf
k=1 φ(bk(γk − ak)), λii ≡ α2

i , r
′′ = 1,

and s′′ = 0, thenAi,Bi, andCi in Equation C.3 are replaced by Ãi = Ai+2,
B̃i = Bi + 2ωii, and C̃i = B̃−1

i BiCi, respectively, and Equation C.4 is not
implemented; γk | rest ∼ N((ξkζk + akbk)/(ζk + bk), (ζk + bk)

−1), where
ak = 0 may be a standard choice; this is the configuration used in our data
analyses.
• If h(m, γ | α,W ) ∝ exp{κ

∑d
i=1mii}I(−M � 0), where we specify

mij ≡ (αiαj)
−1
∑Kf

k=1 γkIAk(Wij) for i 6= j, then we obtain a covariate
dependent Bayesian sparse-low rank model.

C.2. GGM estimation: Empirical Bayes. We want to maximize

h(θ | Xn,W ) =

∫ ∫ ∫ ∑
Y ∈Y

ha(µ,Ω, θ, Y, V | Xn,W ) dV dµ dΩ

with respect to θ, where ha(µ,Ω, θ, Y, V | Xn,W ) is defined in Equation 3.3. We
use the following EM algorithm (Dempster, 1977).

E-STEP. Given the current estimate θold, we compute the expectation

(C.9) E
[
log ha(µ,Ω, θ, Y, V | Xn,W ) | Xn,W, θold

]
with respect to (µ,Ω, Y, V ) | Xn,W, θold and θ fixed. By applying Lemma 6 and
simple algebra, we obtain that maximizing Equation C.9 with respect to θ is equiv-
alent to maximize the function

Q(θ | θold) =
∑
i<j

Dij

{
log(αiαjg(Wij))− α2

iα
2
jg(Wij)

2Aij
}

(C.10)

+
∑
i<j

Dij

{
−g(Wij)

2f(Wij)
2Bij + αiαjg(Wij)

2f(Wij)Cij
}

+
∑
i<j

{
Dij log

(
η(Wij)

1−η(Wij)

)
+ log (1− η(Wij))

}

+
d∑
i=1

{log λii − λiiEi}+ log h∗(θ |W ),

where

Aij = E
[
ω2
ij

2V 2
ij
| Xn,W, θold

]
, Bij = E

[
1

2V 2
ij
| Xn,W, θold

]
,
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Cij = E
[
ωij
V 2
ij
| Xn,W, θold

]
, Dij = E

[
Yij | Xn,W, θold

]
,

and Ei = E
[
ωii | Xn,W, θold

]
, which we approximate with the Gibbs sampler.

M-STEP. The function Q(θ | θold) in Equation C.10 can be maximized by
circularly optimizing it with respect to each component of θ, that is maximizing
the following functions:

(C.11) Qg(g) =
∑
i<j

Dij

{
log g(Wij)− g(Wij)

2Zij
}

+ log h∗(θ |W )

where Zij = α2
iα

2
jAij + f(Wij)

2Bij − αiαjf(Wij)Cij ;

(C.12) Qf (f) = −
∑
i<j

Rij(Tij − f(Wij))
2 + log h∗(θ |W )

where Rij = Dijg(Wij)
2Bij and Tij =

αiαjCij
2Bij

;

(C.13)
Qη(η) =

∑
i<j

{
Dij log

(
η(Wij)

1−η(Wij)

)
+ log(1− η(Wij))

}
+ log h∗(θ |W ),

(C.14) Qm(m) = log h∗(θ |W )

(C.15) Qλ(λ) =
d∑
i=1

{log λii − λiiEii}+ log h∗(θ |W )

Qα(α) =
∑
i<j

Dij

{
log(αiαj)− α2

iα
2
jg(Wij)

2Aij + αiαjg(Wij)
2f(Wij)Cij

}
+ log h∗(θ |W )(C.16)

However, if we further assume λii ≡ α2
i , ∀i, then the optimization of Equa-

tions C.15 and C.16 is replaced by the maximization of

Q∗α(α) =
∑
i<j

Dij

{
log(αiαj)− α2

iα
2
jg(Wij)

2Aij + αiαjg(Wij)
2f(Wij)Cij

}
+

d∑
i=1

{
2 logαi − α2

iEi
}

+ log h∗(θ |W )(C.17)
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The functions f , g, and η can all be fitted either as parametric or nonparametric
regressions: Equation C.11 is a Gamma regression problem, Equation C.12 is a
weighted least squares regression, and Equation C.13 is a logistic regression with
proportions. If h∗(θ |W ) does not depend on α, then the maximum point of Equa-

tion C.17 can be obtained by iteratively updating αi := (bi+
√
b2i + 4aici)(2ai)

−1

for i = 1, ..., d, where

ai = 2Ei + 2
∑
j 6=i

Dijα
2
jg(Wij)

2Aij , bi =
∑
j 6=i

Dijαjg(Wij)
2f(Wij)Cij ,

and ci = 2 +
∑

j 6=iDij .

C.3. Poisson-lognormal estimation. The p.m.f. of a d-variate Poisson-lognormal
random vector Z(r) = (Z

(r)
1 , ..., Z

(r)
d ) in Equation 2.1 with parameter (µ,Ω) is

given by

pθ(z) =

∫
Rd
p(z | x)φ(x | µ,Ω)dx

where

p(z | x) = exp

{
d∑
i=1

(xizi − exi)

}
/

d∏
i=1

zi!

and

φ(x | µ,Ω) =
√

det(Ω)/2π exp

{
−1

2
(x− µ)′Ω(x− µ)

}
.

Given n samples of count vectors Zn = {Z(1), ..., Z(n)}, let p(Zn | Xn) =∏n
r=1 p(Z

(r) | X(r)). We use the Gibbs sampler in Algorithm 1 to sample from
the full joint posterior distribution
(C.18)

h(µ,Ω, θ, Y, V,Xn, | Zn,W ) ∝ ha(Ω, θ, Y, V |W )L(µ,Ω;Xn)p(Zn | Xn)

where ha(Ω, θ, Y, V | W ) is defined in Equation 3.5. We use method of moments
estimates as starting values (Vinci et al., 2016). An Empirical Bayes approach is
also possible (Algorithm 3).

To sample Xir | rest in step 1 of Algorithm 1, we use the rejection sampling
scheme in Algorithm 2 to drawRir = eXir | rest whose distribution can be written
as

(C.19) p(Rir | rest) ∝ γ(Rir;K + 1, 1)× LN(Rir; ν + (Zir −K)ω−1
ii , ω

−1
ii ),

for anyK ≥ 0. The parameterK is chosen to make the expectations of the compo-
nents Gamma (γ(x; a, b) = Γ(a)−1baxa−1e−bx) and log-normal (LN(x; a, b) =
e−(log x−a)2/(2b)/(x

√
b2π)) in Equation C.19 close together, substantially increas-

ing the acceptance probability.
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Algorithm 1 Poisson-lognormal - Full Bayes
Input: Data Zn, starting values of µ,Ω,Xn, and θ.
For b = 1, ..., B :

1. Xir | rest ∼ p(x) ∝ exp {Zirx− ex} exp
{
−ωii

2
(x− ν)2

}
,

where ν = µi −
∑
j 6=i(Xjr − µj)ωij/ωii, for i = 1, ..., d, and r = 1, ..., n via Algorithm 2.

2. Update θ, Y, V, µ, and Ω, given Xn according to Appendix C.1.
3. Set µ(b) = µ, Ω(b) = Ω, X(b)

n = Xn, and θ(b) = θ.
Output: Sequences {µ(1),Ω(1),X(1)

n , θ(1)}, ..., {µ(B),Ω(B),X(B)
n , θ(B)}.

Algorithm 2 Rejection sampling for step 1 of Algorithm 1
Input: ν, Zir, ωii.
1. K∗ = arg min

K≥0

∣∣exp{ν + (Zir −K)ω−1
ii + 0.5ω−1

ii } − (K + 1)
∣∣.

2. R̃ ∼ logN(ν + (Zir −K∗)ω−1
ii , ω

−1
ii )

3. U ∼ Uniform(0, 1)

4. If γ(R̃;K∗ + 1, 1)/γ(K∗;K∗ + 1, 1) > U , then R̃ is retained, otherwise repeat steps 2–3.
Output: X̃ir = log R̃.

C.4. Computational time. The Full Bayes algorithm (3500 iterations includ-
ing 1000 burn-in period) for Gaussian data takes about 1.5 and 13 minutes for
d = 50 and d = 100, respectively; correspondingly, the Empirical Bayes algo-
rithm takes about 10 and 60 minutes to run 30 EM iterations to achieve conver-
gence. For Poisson-lognormal data times have to be multiplied by about a factor of
1.5. The Empirical Bayes algorithm could be made more efficient by using some
alternate faster approximation of the expectations in Equation C.10 in place of the
Gibbs sampler. Computations were implemented using the programming language
R, CPU Quad-core 2.6 GHz Intel Core i7, and RAM 16 GB 2133 MHz DDR4.

APPENDIX D: MODEL EDA AND DIAGNOSTICS

D.1. Empirical data analysis. Figure 5 shows the functions f , g, and η fitted
to the data in condition (ϑ, ζ) = (135, 1) – fitted models in the other conditions
were similar: f and η are close to 0 and 1, respectively, but g increases with W ,
which means that the partial correlations were penalized more for neurons that are
further apart. These findings are consistent with the plot of sample partial correla-
tions of square-rooted spike counts, ρ̃ij , versus W in Figure 11: although this plot
is very variable and the ρ̃ij are not estimates of the log firing rate partial correla-
tions, the values appear centered at zero and their spread seems to decrease with
W . This is confirmed by the regression of ρ̃ij on W , which is not significantly
different than the zero constant, and by the Gamma regression of ρ̃2

ij on W , which
has a significantly negative slope (p < 2×10−16). Because the ρ̃ij are variable and
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Algorithm 3 Poisson-lognormal - Empirical Bayes
Input: Data Zn, starting values of µ,Ω,Xn, and θ.

1. E-STEP: ApproximateQ(θ | θold) in Equation C.10 by Gibbs sampler based on steps 1-2
of Algorithm 1 but with θ fixed equal to θold.

2. M-STEP: MaximizeQ(θ | θold) based on Equations C.11-C.17.
3. Iterate 1-2 until convergence.

Output: Estimate of θ.

thus do not equal zero even if πij = 0, the plot does not help determine if η, which
modulates the true proportion of zero entries in Ω, varies with W .

Testing independence between V4 and PFC. For each experimental condition, we
tested whether the square-rooted spike count partial correlations between V4 and
PFC neurons were all zero, which is equivalent to testing whether their covariances
are all equal to zero thanks to properties of block matrix inversion. We used the zero
mean Gaussian Kullback-Leibler divergence (Cover and Thomas, 2012) as the test
statistic:

(D.1) KL(Σ̂0‖Σ̂) =
1

2
{tr(Σ̂−1Σ̂0)− d+ log det Σ̂− log det Σ̂0}

where Σ̂ is the sample covariance matrix of square-rooted spike counts and Σ̂0 = Σ̂
but with all covariances between pairs of V4-PFC neurons set to zero. We approx-
imated the null distribution of KL by bootstrapping trials for each neural area in-
dependently. The null hypothesis was rejected in all four conditions (p < 0.001),
suggesting that V4 and PFC are not independent. This conclusion was confirmed
by parametric bootstrap and asymptotic likelihood ratio test under the assumption
that the square-rooted spike counts are Gaussian.

D.2. Model checking. In Figure 12 we compare the parametric (PLN) esti-
mates of the spike-count means, variances, and correlations with their empirical
counterparts. The good agreement between sample and model estimated quantities
suggests an adequate model fit.
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FIG 11. Empirical data analysis: square root spike count sample partial correlation vs inter-neuron
distance in one experimental condition. Values appear centered at zero and their spread seems to
decrease with W , which suggests that f ≈ 0 and g increases with W .
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FIG 12. Diagnostics. The PLN model fit implied spike count (SC) means in (A), variances in (B),
and spike count correlations (SCC) in (C) agree with their empirical counterparts, suggesting an
adequate model fit.
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D.3. Results for Section 4.1.

SAM
attend in attend out

135◦ only 66 129
45◦ only 114 207

intersection 36 80
graph similarity 17% 19%

Glasso
attend in attend out

2255 1966
2309 2678
2010 2665
31% 36%

Aglasso
attend in attend out

1822 2058
2066 2134
1137 1586
23% 27%

TABLE 2
Same as Table 1 but using sample partial correlations, Glasso, and Aglasso.
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FIG 13. Same analyses of Figure 7, but using sample covariances (top left), Glasso (top right),
Aglasso (bottom left), and factor analysis (bottom right).
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