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Wang W, Sudre GP, Xu Y, Kass RE, Collinger JL, Degenhart AD,
Bagic AI, Weber DJ. Decoding and cortical source localization for intended
movement direction with MEG. J Neurophysiol 104: 2451–2461, 2010. First
published August 25, 2010; doi:10.1152/jn.00239.2010. Magnetoencepha-
lography (MEG) enables a noninvasive interface with the brain that is
potentially capable of providing movement-related information simi-
lar to that obtained using more invasive neural recording techniques.
Previous studies have shown that movement direction can be decoded
from multichannel MEG signals recorded in humans performing wrist
movements. We studied whether this information can be extracted
without overt movement of the subject, because the targeted users of
brain-controlled interface (BCI) technology are those with severe
motor disabilities. The objectives of this study were twofold: 1) to
decode intended movement direction from MEG signals recorded
during the planning period before movement onset and during imag-
ined movement and 2) to localize cortical sources modulated by
intended movement direction. Ten able-bodied subjects performed
both overt and imagined wrist movement while their cortical activities
were recorded using a whole head MEG system. The intended
movement direction was decoded using linear discriminant analysis
and a Bayesian classifier. Minimum current estimation (MCE) in
combination with a bootstrapping procedure enabled source-space
statistical analysis, which showed that the contralateral motor cortical
area was significantly modulated by intended movement direction,
and this modulation was the strongest �100 ms before the onset of
overt movement. These results suggest that it is possible to study
cortical representation of specific movement information using MEG,
and such studies may aid in presurgical localization of optimal sites
for implanting electrodes for BCI systems.

I N T R O D U C T I O N

Technologies for augmentative communication and mobility
are needed to replace motor functions lost after damages to the
CNS, such as those caused by stroke, spinal cord injury, and
amyotrophic lateral sclerosis (ALS). Unfortunately, these mo-
tor impairments limit the user’s ability to use many currently
available (i.e., muscle-based) communication aids or mobility
devices. This creates a need for brain-controlled interfaces
(BCIs) that express motor commands via neural signals re-
corded directly from the brain (Hochberg et al. 2006). Previous
studies have shown that various hand movement parameters
can be decoded from the activities of motor cortical neurons
(Georgopoulos et al. 1986; Moran and Schwartz 1999; Panin-
ski et al. 2004; Wang et al. 2007), enabling real-time brain

control of computer cursors and robotic arms (Serruya et al.
2002; Taylor et al. 2002; Velliste et al. 2008; Wessberg et al.
2000). Recent human studies showed that a significant amount
of movement-related information can also be extracted from
macroscopic recordings obtained from the brain surface with
electrocorticography (ECoG) (Ball et al. 2009; Crone et al.
1998; Leuthardt et al. 2004; Pistohl et al. 2008). Recent studies
showed that subjects are able to gain accurate control of cursor
movements using ECoG signals (Leuthardt et al. 2004; Schalk
et al. 2008), making ECoG a promising alternative to penetrat-
ing microelectrode arrays for BCI applications.

Noninvasive methods for measuring brain activity, such as
EEG and magnetoencephalography (MEG) have also been
used for BCI applications (Mellinger et al. 2007; Wolpaw and
McFarland 2004). MEG studies can support the development
and implementation of implantable BCI systems by providing
presurgical localization of cortical sources for movement in-
formation and user training on BCI control. MEG is well suited
for these tasks, because, putatively, the spatial and temporal
characteristics of MEG may be comparable to ECoG, espe-
cially after MEG signals are mapped appropriately from the
sensor space (MEG sensor signals) to the source space (cortical
surface activity) (Dalal et al. 2008; Gharib et al. 1995; Kor-
venoja et al. 2006). Several groups showed that hand move-
ment can be decoded from MEG signals during figure drawing
(Georgopoulos et al. 2005) and center-out (Waldert et al. 2008)
movements. Furthermore, a recent study showed that the speed
(fast vs. slow) of imagined wrist movement can be extracted
from EEG recorded in individuals with ALS (Gu et al. 2010).
In a recent real-time MEG-BCI study, individuals with severe
upper extremity paralysis caused by stroke were enabled to
control a hand orthosis by modulating their sensorimotor
rhythm with imagined hand movement (Buch et al. 2008). This
study further examines human cortical activities as recorded
with MEG during overt and imagined movements to investi-
gate whether intended movement direction can be decoded in
the absence of overt movement, because the candidates for BCI
technology are individuals with severe motor impairments. In
addition to sensor-space analysis, this study also performs
statistical analysis on cortical sources found using a minimum
current estimation (MCE) source localization algorithm in
combination with bootstrapping to identify cortical areas that
encode significant information about intended movement di-
rection in individual subjects. The capability of MEG to
localize noninvasively the cortical areas most strongly modu-
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lated by intended movement direction may enable presurgical
user training and source mapping of the whole brain, with the
goal of finding optimal electrode implantation sites.

M E T H O D S

Participants

All procedures were approved by the Institutional Review Board at
the University of Pittsburgh, and all experiments were performed in
accordance with the approved protocol. This study recruited 10
able-bodied subjects, 7 men and 3 women, with no previous history of
nervous system diseases. Their ages ranged from 25 to 45 yr old. All
subjects gave informed consent before participating in this study.

Experiment setup

A nonmagnetic back-projection screen was placed in front of the
subjects to present visual feedback during behavioral tasks. A 306-
channel whole head MEG system (Elekta Neuromag, Helsinki, Fin-
land) was used to record brain activity. This system has 102 sensor
triplets, with each triplet containing one magnetometer, one longitu-
dinal gradiometer, and one latitudinal gradiometer. Muscle activity
(EMG) of wrist flexor and extensor muscles (flexor carpi radialis and
extensor carpi radialis) was recorded in all sessions. Electrooculog-
raphy (EOG) was recorded with electrodes placed above, below, and
lateral to the eyes. EOG captured horizontal and vertical eyes move-
ments, as well as eye blinks. All MEG, EMG, and EOG signals were
band-pass filtered between 0.1 and 300 Hz and sampled at 1,000 Hz.
Additionally, four head position indicator (HPI) coils were placed on
the subject’s scalp to record head position relative to the MEG helmet
at the beginning of each session. These coils, along with three cardinal
points (nasal, left, and right preauricular), were digitized and used for
head movement compensation, co-registration with structural MRI
data, and spatial filtering. Subjects performed wrist movements while
holding a MEG-compatible joystick (Current Designs, Philadelphia,
PA). BCI2000, a general purpose BCI software package (Schalk et al.
2004) running on a high-performance personal computer, was used to
control the experiment paradigm and track joystick movement. The
BCI2000 software also sent digital output to the MEG system through
the parallel port to synchronously mark the occurrence of various
behavioral events (e.g., target onset) in the MEG data.

Experiment protocol

Subjects performed a two-dimensional (2-D) center-out task using
wrist movement in four directions (radial deviation, ulnar deviation,
flexion, and extension) following the corresponding visual target (up,
down, left, and right). Wrist movement was chosen to minimize
contamination of recorded MEG signals by arm and shoulder muscle
activities, and subjects were instructed to make movement solely with
the wrist, keeping the shoulder and arm at rest. During the overt
movement task, subjects controlled a 2-D cursor using the wrist to
perform the center-out task. Visual feedback of the cursor was
provided continuously. Movement to the left/right targets required
�40° of wrist flexion/extension, whereas the up/down targets required
�25° of radial/ulnar deviation. A total of 120 successful repetitions
(i.e., cursor hit the target) were made for each target. To minimize eye
movements, subjects were instructed to fixate their eyes on a cross-
hair in the center of the screen throughout each trial. The time course
of a typical trial is shown in Fig. 1. Each trial started after the subject
held the cursor at the center target for a random holding time (1–2 s),
which triggered the appearance of one of the four peripheral targets.
To complete a trial successfully, the subject needed to move the cursor
to the target and hold for a random holding period (0.5–1.5 s). If the
subject did not hit the target within 1 s, the trial was aborted. For five
subjects (subjects S6–S10), a delay period was inserted between target

onset and the go-cue. At the end of the center-hold period, one of the
peripheral targets appeared, but the center target did not disappear.
The subject was instructed to move only after the center target
disappeared (go-cue), which happened within 0.5–1.5 s after the
presentation of a peripheral target.

During the imagined movement task, subjects were asked to imag-
ine performing the center-out movement using the wrist. When a
peripheral target was presented, after a simulated reaction time (0.5–1 s),
the cursor started moving with constant speed toward the target. To
keep subjects engaged in the imagined movement task, catch trials
were inserted. During a catch trial, the cursor stopped moving before
it reached the target. The subject needed to press a button to inform
the experimenter that a catch trial was recognized. EMGs of wrist
flexor and extensor muscles were recorded at all time to ensure that
subjects did not generate covert muscle activity during imagined
movement sessions (see Supplemental Fig. S1 for further details on
the EMG analysis).1 Blocks of 20 successful repetitions (i.e., cursor
hit the target and no EMG activity for wrist was recorded, catch trials
excluded) per target were used, with a few minutes of rest between
blocks when necessary. Blocks of overt and imagined movements
were intercalated.

During a separate visit, a standard head structural MRI scan using
magnetization-prepared 180° radio-frequency pulses and rapid gradi-
ent-echo (MP RAGE) protocol (Brant-Zawadzki et al. 1992) was
performed for each subject for co-registration with MEG data and
source localization.

Data preprocessing

Data analysis was performed on successful trials only. First, spatial
filtering was performed on the raw MEG data using the signal space

1 The online version of this article contains supplemental data.
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FIG. 1. The center-out task with accompanying speed profile during overt
wrist movement. The subject controls the 2-dimensional (2-D) cursor position
using wrist movements. The cursor needs to go to the center and stay there for
a hold period until the peripheral target appears. Then the cursor moves to the
target and stays there for another hold period to complete the trial successfully.
The target changes color when hit by the cursor and disappears when the
holding period has finished. There was a 1-s interval between trials. The
bottom trace shows the speed profile of the cursor from a representative trial,
and the dotted lines delimit the premovement/planning period within which a
time window was identified and used for decoding the intended movement
direction for overt movement trials.
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separation (SSS) method (Taulu et al. 2005). Briefly, the SSS algo-
rithm decomposes MEG signals recorded from all sensors into lin-
early independent internal and external terms. Internal terms corre-
spond to sources inside the MEG helmet and external terms to sources
outside the helmet. The SSS algorithm is able to spatially filter MEG
data so that only signals coming from sources inside the MEG helmet
are preserved and signals coming from sources outside the MEG
helmet are suppressed. In addition, the SSS algorithm also corrects for
head movement between multiple experiment sessions and minimizes
effects of sensor noise. Second, trials with eye movement or eye
blinks were rejected. A threshold of 150 mV was applied to each
repetition, and whenever the peak-to-peak amplitude of the signal of
either EOG channel (i.e., horizontal or vertical) crossed this threshold,
the repetition was rejected from further analysis. We further excluded
data from subjects whose EOG was significantly correlated with target
direction, i.e., EOG contains information about intended movement
direction, to ensure that any directional modulation of MEG signals
identified by this study was not caused by eye movement (see
Supplemental Materials for detailed discussion). Third, for each trial,
a Gaussian kernel of 25 ms in width (�) was used to smooth MEG
signals (Fig. 2). Finally, all MEG data for overt movement were
aligned to movement onset (time point when cursor speed 1st ex-
ceeded 10% of peak velocity), and data for imagined movement were
aligned to target onset. MEG data were analyzed in both the sensor
space using MEG sensor signals and the source space using cortical
activity obtained from the source localization algorithm. Please note
that, although additional features in MEG signals, such as amplitudes
of different frequency bands, also convey movement-related informa-
tion, this study focused on the time-domain MEG signals. This is
similar to the study performed by Georgopoulos et al. (2005) and is
motivated by previous MEG and ECoG studies. Those studies have
shown that the time-domain signal, especially the low-frequency
component (LFC), also called local motor potential (LMP), carries a
significant amount of information about hand movement direction

(Ball et al. 2009; Pistohl et al. 2008; Schalk et al. 2007; Waldert et al.
2008).

Sensor-space decoding analysis

Intended movement direction was decoded from MEG signals
recorded from 87 sensors located above the sensorimotor area (Fig. 3,
inset). The decoding analysis included three main steps: 1) identifi-
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FIG. 2. Effects of signal smoothing (A) and mag-
netoencephalography (MEG) signal modulation by
movement directions (B and C) for 1 MEG sensor
(gradiometer) above the contralateral sensorimotor
area. Data were collected from subject S1. A: raw
MEG trace (solid gray line) overlaid by its smoothed
version (dashed black line) during a single overt
trial. Time 0 represents movement onset. B: each
trace represents the average of smoothed signals of
all repetitions for each movement direction for 1
subject. Data were aligned to movement onset (time
0, vertical dashed line). The vertical solid line indi-
cates average target onset time. The 4 traces were
normalized to the maximum of absolute amplitude.
There is a clear downward deflection of MEG sig-
nals �100–200 ms before movement onset. The
amplitude of this downward deflection varies across
different movement directions. Furthermore, the
gray area indicates the average time window used
for sensor-space decoding analysis (time of interest)
across all subjects. C: same as B, except that the data
were from imagined movement and aligned to target
onset (time 0, vertical solid line). The vertical
dashed line indicates average movement onset time.
Position of this MEG sensor is shown in the inset,
and the gray area represents the whole head helmet.
F, front, L, left, R, right.
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FIG. 3. Modulation of MEG responses examined in 2-D space using the
first 2 components of linear discriminant analysis (LDA). The LDA analysis
projects activities of all MEG sensors above the sensorimotor area (sensor
positions shown in the inset) into a low-dimensional space, where modulation
of MEG responses by intended movement direction can be easily visualized.
The figure shows a 2-D projection of single-trial MEG responses averaged
over �200 to 0 ms relative to movement onset (subject S1). They clearly form
4 distinct clusters corresponding to 4 different intended movement directions.
The green plus signs, black squares, blue circles, and red triangles represent
single-trial MEG responses for movement in the up, down, left, and right
directions, respectively.
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cation of the time window (i.e., time of interest) during which MEG
signals contained the most significant information on intended move-
ment direction using multivariate ANOVA (MANOVA); 2) dimen-
sion reduction and data transformation using linear discriminant
analysis (LDA) that maximizes linear discrimination among different
movement directions; and 3) prediction of intended movement direc-
tion using a Bayesian classifier.

SENSOR-SPACE MANOVA. MANOVA (Johnson and Wichern 1992)
is a multivariate extension to ANOVA. Although ANOVA character-
izes the difference among groups based on measurement from a single
dependent variable (here, 1 MEG sensor), MANOVA examines dif-
ferences among groups given multiple dependent variables (e.g.,
multiple MEG sensors). MANOVA was used in this study to quantify
the difference among different intended movement directions (groups)
by considering recordings from all MEG sensors above the sensori-
motor area (dependent variables). In ANOVA based on a single sensor
at each time point, we would have a two-way array of sensor values
across conditions and across trials within conditions. For our
MANOVA, at each time point, we had an analogous two-way array of
vectors (a 3-way data array) with each vector containing the signal
values at different sensor locations. To obtain the F statistic in
MANOVA, it is necessary to calculate the inverse covariance matrix
of the sensor signals. The covariance matrices in this case were 87 �
87 and were singular (noninvertible). Principal component analysis
(PCA) was used to project the data onto a lower-dimensional space so
that the resulting covariance matrix would be invertible. Before
computing the principal components, we standardized the signals at
each sensor location to have mean 0 and variance 1. MANOVA
analysis was repeated across time using 10-ms intervals. For each
10-ms interval, MANOVA analysis was performed on MEG signals
recorded during that interval to calculate the corresponding F statistic,
which indicates the significance of MEG signal modulation by in-
tended movement direction. The MANOVA F statistic was plotted as
a function of time.

Next, the time window (or time of interest) that contains the most
significant information regarding intended movement direction was
identified based on the temporal profile of MANOVA F statistic. The
center of this time window was defined as the time point with the
highest F statistic, and the width was kept constant at 200 ms.
Additionally, to ensure that the decoding analysis was performed on
MEG data not accompanied by overt movement, we limited our
search for the time window with strongest directional tuning to the
premovement period between target onset and movement onset for
overt movement trials. If the length of the time window exceeded
movement onset, the excess data were ignored. However, for imag-
ined movement, the search for the time window was not limited to
premovement period, because there was no overt movement. Figure 2,
B and C, shows the time window identified by this step (averaged
across all subjects).

DIMENSION REDUCTION USING LDA. LDA finds a linear projection
of the data that maximizes the variability between groups (i.e.,
movement directions) relative to that within groups (within direc-
tions). For this analysis, MEG signals in each sensor were averaged
over the time window identified by the MANOVA analysis, yielding
a single time-averaged value for each trial. The time-averaged data
were fed into the LDA analysis to project the high-dimensional sensor
data into a low-dimensional space (3-D space) that represents MEG
signal features with the best linear discrimination among the intended
movement directions. Similar to MANOVA, LDA requires the inver-
sion of a within-class scatter matrix (or covariance matrix) that would
be singular if the dimension of input variables exceeds the number of
trials available. To ensure full-rankness, we projected the within and
between class matrices to a lower-dimensional space via PCA before
the LDA. Hence, for each trial, the time-averaged MEG signals
recorded from all 87 sensors above the sensorimotor area were
reduced to a three-element vector by LDA (3 is the maximal dimen-

sion given by LDA, because there are 4 different groups or movement
directions; see Supplemental Materials for details). For convenience
of discussion, we call this three-element vector the MEG response. In
addition to facilitating the decoding analysis, the LDA procedure
allows the high-dimensional multisensor MEG data to be viewed in
2-D or 3-D space to visualize modulation of MEG signals by intended
movement direction.

DECODING USING A BAYESIAN CLASSIFIER. The posterior probabil-
ities for different movement directions given the MEG response from
a single trial were calculated using a Bayesian classifier. Given that
LDA in the last step outputs MEG responses in 3-D space, the
Bayesian classifier assumes a 3-D Gaussian distribution for MEG
responses for a specific movement direction. The decoded movement
direction was set to the direction with the highest posterior probabil-
ity. Leave-one-out cross-validation method was used to estimate
decoding accuracy. More specifically, for every iteration of the cross-
validation, a new decoding window was found based on the
MANOVA only using the training data, and this decoding window
was used to test the remaining repetition.

CHARACTERIZING TEMPORAL DYNAMICS OF DECODING ACCURACY. To
further characterize the temporal evolution of decoding accuracy over
the course of an overt or imagined wrist movement, instead of using
MEG responses within time windows determined by MANOVA, for
this analysis, decoding accuracy was calculated with MEG responses
within every 10-ms interval and plotted as a function of time.

Localization of active cortical sources

This study localized cortical areas modulated during the behavioral
tasks using the minimum current estimates (MCE) algorithm (Uutela
et al. 1999) provided by Elekta Neuromag MCE software after
co-registering MEG data with structural MRI images for each subject.
MCE estimates the best current distribution on the cortical surface (or
produces a source image) based on the measured MEG sensor data by
constraining the sum of the absolute values of source currents over the
cortical surface (Uutela et al. 1999). The MCE software uses a
standard brain surface mesh with 853 triangle patches representing
853 cortical areas in a source image, and it returns electrical current
values for each of those surface patches. For each movement direc-
tion, MEG signals were averaged over all repetitions and fed into the
MCE algorithm to estimate active cortical sources within the time
window used for sensor-space decoding analysis.

Localization of cortical sources modulated by intended
movement direction

In addition to localizing cortical areas that are active during wrist
movement, it is more informative to identify cortical areas that
actually encode significant information regarding movement direc-
tion, i.e., areas showing differential activities for different movement
directions. In the last section, MEG data were averaged across all
repetitions for each movement direction and fed into the MCE
algorithm to obtain one source image for each movement direction. It
is not possible to perform statistical hypothesis tests based on this
information alone. To overcome this limitation, we applied a boot-
strap procedure (Efron 1979) on the sensor data before source local-
ization and generated multiple variations of source images, which
allowed statistical testing to be performed in the source space. This
procedure was similar to that described by an earlier study except that
they used the bootstrap mainly for estimating dipole locations (Darvas
et al. 2005). Specifically, for each movement direction, all repetitions
were sampled with replacement to create a new data set with the same
number of repetitions as the original set (some of the individual
repetitions being repeated so that the new random sample was distinct
from the original data). This new data set constituted one bootstrap
sample. Each bootstrap sample was averaged and fed into the MCE
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algorithm to generate one estimate of cortical activity or one source
image. For each movement direction, the bootstrapping and MCE
procedures were repeated 50 times to create 50 bootstrap samples and
thus 50 estimates of cortical activity maps. Subsequent source-space
statistical analysis was based on these 200 (50 � 4) MCE images (a
small sample size was used to reduce computation time, although by
examining the samples, the nonzero source currents were found to
follow the normality requirement of hypothesis testing as described in
the Supplemental Materials).

LIKELIHOOD RATIO TEST. To examine cortical areas significantly
modulated by movement directions, we performed a likelihood ratio
test (Behseta et al. 2007) for each of 853 cortical sources (section 2.1
of Behseta et al. 2007). Although ANOVA is typically used for this
type of analysis, we used the likelihood ratio test because it does not
rely on the assumption of equal variances in MEG data across
experimental conditions (i.e., movement directions), thus maximizing
our power to identify individual cortical sources that are modulated by
movement direction. We performed the likelihood ratio test for each
cortical area based on its source currents within the time window used
for sensor-space decoding analysis. The null hypothesis was that there
would be no difference in the source current under different move-
ment directions. We obtained a �2 test statistic for each source. We
further displayed these test statistics on the 3-D cortical surface by
mapping the �2 value to each corresponding cortical area. We were
thus able to directly visualize regions that have significant modulation.

SOURCE-SPACE MANOVA. The temporal dynamics of cortical repre-
sentation of movement direction was further examined in the source
space using a MANOVA analysis similar to the sensor-space
MANOVA. The only difference is that the source-space MANOVA
tests the difference among different movement directions (groups) by
considering activities of all cortical sources (dependent variables)
instead of MEG sensors. Because the number of cortical sources (853)
far exceeded the number of repetitions obtained from bootstrapping
(200 repetitions in total, 50 repetitions per movement direction), PCA
was applied to the cortical source activity data to reduce the data
dimension while preserving 99% of the variance in cortical activity
data. Supplemental Fig. S4 shows the number of principal compo-
nents needed to preserve 99% of the variance in cortical activity. The
output from PCA was fed into the MANOVA test. As in the sensor-
space MANOVA analysis, the source-space MANOVA F statistic
was plotted as a function of time to examine the temporal dynamics of
cortical representation of intended movement direction.

R E S U L T S

Characterizing the sensor-space MEG signals

MEG recordings and structural MRI images were collected
from 10 subjects. Each subject made 120 movements per
direction for both overt and imagined center-out tasks. After
data rejection using EOG, on average, for each subject, 96 �
29 (SD) repetitions per movement direction were further ana-
lyzed in this study. Additionally, one subject (subject S10) was
excluded from the data analysis because this subject’s eye
movement was significantly correlated with target direction.
After data alignment based on movement/target onset, each
overt movement trial contains MEG signals from 1 s before
movement onset to 0.5 s after movement onset, and each
imagined movement trial contains MEG signals from 0.5 s
before target onset to 1 s after target onset (Fig. 2). MEG
signals were smoothed using a 25-ms-wide Gaussian kernel,
and the effect of signal smoothing on a typical trial in the overt
movement task is shown in Fig. 2. Also shown are the temporal
dynamics and modulation by intended movement direction for

MEG signals recorded from a single MEG sensor above the
sensorimotor area. For overt movement trials, MEG signals
remain flat until �100–200 ms before movement onset. A
prominent negative peak appeared right before movement
onset, and the amplitude of this peak varied depending on
intended movement direction. A similar negative peak also
appeared for the imagined movement task �200–300 ms after
target onset. This negative deflection in cortical signals was
also observed in previous EEG and MEG studies, and it has
been suggested that this waveform is related to the readiness
potential, which might be modulated by movement direction
(Brunia et al. 2000; Kornhuber and Deecke 1965; Waldert et al.
2008).

Sensor-space decoding analysis

The sensor-space MANOVA analysis was used to identify
the time window (or time of interest) during which MEG
signals encoded the most significant information for decoding
intended movement direction. This search for the decoding
time window was restricted to the premovement interval, as
explained in METHODS. The gray areas in Fig. 2, B and C, show
the average time windows identified by the sensor-space
MANOVA test for overt and imagined movements across all
subjects. For each trial, LDA was used to transform MEG
signals recorded from all 87 sensors above the sensorimotor
areas to a three-element vector, the MEG response, which best
summarizes or depicts modulation of MEG signals by move-
ment direction. Figure 3 shows the MEG responses in 2-D
space in a time window from 200 to 0 ms before the onset of
overt movement. The MEG responses clearly clustered into
four different groups, corresponding to four different move-
ment directions. This figure shows that sensorimotor cortical
activity captured simultaneously by multiple MEG sensors
was modulated by intended movement direction and that a
classifier can be used to decode intended movement direc-
tion from MEG responses. Furthermore, within each cluster,
MEG responses tended to be normally distributed. Hence, a
multivariate Gaussian distribution was used to model MEG
responses for decoding analysis with a Bayesian classifier.
Table 1 shows the results for single-trial decoding using
leave-one-out cross validation for all the subjects. The
chance level is 25%. For overt movement, the intended
movement direction was predicted with an average accuracy
of 67% using MEG data within a short time window before
movement onset. Similarly, an average decoding accuracy

TABLE 1. Summary of single-trial decoding accuracies (%) across
all 9 subjects for overt and imagined movements

S1 S2 S3 S4 S5 S6 S7 S8 S9

Overt 88.6 69.0 72.4 77.8 57.9 57.0 51.3 82.2 56.6
Imagined 95.0 69.9 71.9 45.8 62.5 39.6 73.7 44.3 45.2

Subjects S1–S5 performed the nondelayed center-out task, and subjects
S6–S9 performed the delayed center-out task. MEG sensors above the senso-
rimotor area were used. The time window for decoding analysis was deter-
mined based on the sensor-space MANOVA analysis. MEG signals within that
time window were averaged. Intended movement direction was decoded using
a Bayesian classifier with leave-one-out cross validation. The chance level is
25%. The average decoding accuracies across all subjects are 67 and 62.5% for
overt and imagined movement, respectively. MEG, magnetoencephalography;
MANOVA, multivariate ANOVA.
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of 62.5% was achieved using sensorimotor cortical activity
recorded with MEG when subjects simply imagined wrist
movement without any overt movement or muscle contrac-
tion.

While Table 1 shows the decoding analysis results using
specific time windows that center on the moments when MEG
signals were the most discriminative for intended movement
direction, it is desirable to see how decoding accuracy actually
evolved over the course of an overt or imagined movement and
compare temporal dynamics of decoding accuracy between the
nondelayed and delayed tasks. For the overt nondelayed task
(Fig. 4A), the decoding accuracy started near the chance level,
and it increased substantially before movement onset, suggest-
ing that a significant amount of information regarding the
intended movement was represented in sensorimotor cortical
activity well before actual movement was initiated, as de-
scribed in previous animal studies using single-neuron record-
ings (Moran and Schwartz 1999; Santhanam et al. 2006; Wang
et al. 2007). Similarly, for the imagined nondelayed task, the
decoding accuracy increased above the chance level shortly
after target onset, and it stayed above the chance level through-
out the movement. For the delayed tasks, although their de-
coding accuracies rose above the chance level after target
onset, they increased more gradually over time compared with
the nondelayed tasks. For both overt and imagined movements,
the decoding accuracy for delayed movement is typically lower
than for nondelayed movement. This is accompanied by the
absence of fast increase in decoding accuracy, as seen in Fig.
4, C and D. As more time is allowed for motor planning during
the delay period, neuronal processing of information about
intended movement may be spread over a longer period. This
potentially leads to weakened macroscopic MEG signals, mak-

ing it harder to detect population activities related to intended
movement.

Source-space analysis

Decoding analysis showed that a significant amount of
information can be extracted from MEG sensor signals to
predict intended movement direction in the absence of overt
movement. From a pure engineering perspective, this result, to
a certain degree, is sufficient for developing an MEG-based
BCI system. However, from a neuroscience perspective, it is
worth further investigating and understanding where are the
actual cortical sources that lead to modulated MEG sensor
signals and make it possible to decode intended movement
direction from MEG sensor signals. Figure 5 shows the source
localization results obtained from the standard MCE algorithm,
which inversely maps whole head MEG recordings from 306
channels to the cortical surface of a standard brain with 853
cortical sources (surface patches). The color of each patch
represents the intensity of cortical source activity during the
time window used for decoding analysis in the sensor space
(overt movement: t � �200 to 0 ms, relative to movement
onset; imagined movement: t � 300–420 ms, relative to target
onset). For overt movement, the contralateral (left) motor
cortical area was strongly activated during wrist movement,
accompanied by weaker activity in ipsilateral motor area. In
addition, both the visual and prefrontal cortical areas were also
activated, because the task is visuomotor in nature. More
interestingly, a very similar cortical activation pattern was
observed for the imagined movement as well, with a clear
motor cortical activation, although to a lesser extent. This
suggests that imagining wrist movement actually engages cor-
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FIG. 4. Temporal dynamics of decoding accuracy during
center-out movement. Decoding accuracies were calculated
every 10 ms using MEG data within that 10-ms interval.
A: overt nondelayed. B: imagined nondelayed. C: overt delayed.
D: imagined delayed. For each plot, the thin gray lines represent
decoding accuracies for individual subjects, and the thick black
line represent the decoding accuracy averaged over all subjects.
Time 0 corresponds to movement onset for overt movement and
target onset for imagined movement. For movement with delay
(C and D), average delay periods were marked with double-
arrow lines.
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tical areas and processes very similar to those used by overt
wrist movement and is consistent with previous findings of
motor cortical activation during motor imagery (Crammond
1997; Porro et al. 1996; Sabbah et al. 1995; Stephan et al.
1995).

While Fig. 5 shows cortical areas that were active during
overt and imagined wrist movements, it does not tell us what
information is being represented in each cortical area and
which cortical area is actually encoding intended movement
direction. Through a combination of bootstrapping and MCE,
we obtained multiple estimates of cortical activity maps for
each movement direction, allowing statistical analysis that
answers both questions together. Cortical activity within the
time window used for decoding analysis in the sensor space
were examined to further localize cortical areas that encode
significant information on intended movement direction. A
likelihood ratio test was performed for each cortical source.
The resulting �2 statistics from all cortical sources were
mapped to a 3-D cortical surface plot. Each surface patch
represents 1 of the 853 cortical sources, and the color of each
surface patch represents its �2 statistic (Fig. 6). The modulation
is bilateral, with stronger modulation for the contralateral (left)
hemisphere. The contralateral motor cortex showed the stron-
gest modulation by intended movement direction for both overt
and imagined wrist movement. The visual cortices also showed
a certain degree of modulation, but weaker than the motor
cortical area. Interestingly, the left superior temporal lobe and
the left inferior frontal gyrus, part of which overlaps the
Broca’s area, also showed strong modulation by intended
movement direction during the overt movement task.

While Fig. 6 shows the modulation of cortical activity within
specific time windows used for decoding analysis, this study
further examined temporal dynamics of cortical activities rep-
resenting intended movement direction using the source-space
MANOVA analysis, as shown in Fig. 7 (results for similar
analysis in sensor space are provided in Supplemental Fig. S2).
Different from single-source analysis using tests like ANOVA
or the likelihood ratio test used in Fig. 6, a MANOVA test is
able to better depict the overall modulation of all cortical
sources by intended movement direction, i.e., the “population

response.” Figure 7, A and B, shows the temporal evolution of
source-space MANOVA F statistic. F statistic indicates
strength of cortical activity modulation by movement direction.
For overt wrist movement, the F statistic shows a very prom-
inent peak �100–150 ms before movement onset, similar to
firing rate patterns of many motor cortical neurons observed in
previous nonhuman primate studies. This interval also agrees
with the neural delay between motor cortical representation of
movement and its actual expression reported by those animal
studies (Moran and Schwartz 1999; Wang et al. 2007). Simi-
larly, for imagined wrist movement, the F statistic peaks �400
ms after target onset and before the start of computer-con-
trolled cursor movement (the cursor starts moving after a
simulated reaction time that varies from 0.5 to 1 s). In sum-
mary, the source-space statistical analysis suggests that the

FIG. 5. Localization of active cortical areas for overt (A and C) and
imagined (B and D) movements. Minimum current estimation (MCE) was used
to localize active cortical sources during the time period used for decoding
analysis in subject S1. Data were averaged over all repetitions for leftward
movement. A and C: cortical activity from �200 to 0 ms relative to the onset
of overt movement. B and D: cortical activity from 300 to 420 ms relative to
target onset for imagined movement. The contralateral motor cortical area
shows strong activation. In addition, there is a certain degree of visual and
ipsilateral motor cortical activity.

FIG. 6. Localization of cortical sources modulated by intended movement
direction. Combination of MCE with bootstrapping created multiple estimates
of cortical activity for each movement direction, and a likelihood ratio test was
used to examine whether a cortical source (a triangular surface patch on brain
surface plots) was modulated by intended movement direction. Surface patch
color represents the significance of modulation, as measured by the �2 statistic
calculated within the time period used for decoding analysis in subject S1.
Hotter (red) color indicates stronger modulation. A and C: left/contra and
right/ipsilateral hemisphere activity during overt movement. B and D: left/
contra and right/ipsilateral hemisphere activity during imagined movement. P
values of 10�3 and 10�5 correspond to �2 statistics of 16.2 and 25.9,
respectively. The contralateral motor cortical area is significantly modulated by
intended movement direction. In addition, the visual cortical areas and the left
inferior frontal gyrus also show modulation.

FIG. 7. Temporal dynamics of cortical activity modulation by movement
direction. The source-space multivariate ANOVA (MANOVA) test was per-
formed in 10-ms intervals to characterize movement modulation of cortical
activity, and the resulting F statistics were plotted as a function of time for
overt (A) and imagined (B) movements. P value of 10�5 approximately
corresponds to an F statistic of 25.3. Thin gray lines represent the F statistics
for individual subjects (nondelay task), and the thick black lines represent the
average over all subjects. Cortical activity becomes highly modulated right
before movement onset for overt movement and 300–400 ms after target onset
for imagined movement.
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modulation seen in the sensor space is largely caused by
modulated activity in motor cortical areas. It also shows that
temporal dynamics of cortical activity representing intended
movement direction as recorded noninvasively using MEG in
humans agrees well with previous findings using microelec-
trodes implanted in the motor cortex of nonhuman primates.

D I S C U S S I O N

Encouraged by previous studies that decoded movement
direction from MEG recordings of brain activity in humans
performing overt movement (Georgopoulos et al. 2005;
Waldert et al. 2008), this study was designed to further our
understanding in using MEG to study cortical representation of
intended movement and its application in BCI. This study has
several features. First, the classic center-out task was used,
allowing direct comparison between cortical activities recorded
noninvasively in humans using MEG with neuronal activities
recorded invasively in nonhuman primates using microelec-
trodes. The behavioral paradigm also made it possible to
directly compare cortical activities between overt and imagined
movements. Second, statistical techniques used in this study
facilitated data analysis in visualizing and understanding MEG
data, which typically have a high number of dimensions but a
low signal-to-noise ratio. Third, this study showed the feasi-
bility of decoding intended movement direction from MEG
signals without any overt movement from subjects. Last, this
study applied source localization techniques to inversely map
MEG sensor signals to cortical activity, and source-space
statistical analysis quantitatively identified cortical sources that
encode significant information about intended movement di-
rection.

MCE with bootstrapping for source-space statistical analysis

Source localization algorithms, such as MCE, map whole
head MEG recordings to cortical activity. However, given the
low signal-to-noise ratio of MEG recordings, to get a robust
estimate of cortical activity, the general practice is to use
averaged MEG data instead of single-trial data for source
localization, which makes it difficult to perform statistical
analysis in the source space. This study introduced the MCE
with bootstrapping technique that enables statistical analysis in
the source space (Fig. 6). Furthermore, this technique itself is
not bound to MCE, and it is applicable to any source localiza-
tion algorithm. A similar technique was used to examine dipole
localization accuracy (Darvas et al. 2005).

Decoding intended movement direction from MEG signals
during motor planning and motor imagery

Considering that targeted users of BCI systems are individ-
uals with difficulties in generating overt limb movement, it is
desirable to show that movement information can be decoded
from cortical activity in the absence of overt movement. A
recent EEG study in individuals with ALS has shown that the
speed of imagined wrist movement can be decoded from EEG
signals (Gu et al. 2010). Using a real-time MEG-based BCI
system, Buch et al. (2008) enabled individuals with hand
paralysis to control the opening and closing of a hand orthosis
by modulating their sensorimotor rhythm with imagined hand
movement. Our study focused on the time domain signal of

MEG recording, which could be related to the lateralized
Bereitschaftspotential (LBP)/readiness potential and readiness
field (Deecke et al. 1982; Kornhuber and Deecke 1965; Ped-
ersen et al. 1998; Takahashi et al. 2004). It was suggested that
characteristics of LBP could be modulated by various move-
ment parameters (Birbaumer et al. 1990), and several groups
have shown that laterality of intended movement can be de-
coded reliably from LBP (Brunia and van den Bosch 1984;
Coles et al. 1990). This study further showed that intended
movement direction can also be decoded from MEG signals
during the planning period before movement and EMG onset
and during motor imagery using only MEG sensors above the
sensorimotor area. From a neural engineering perspective, this
study suggests that it may be possible for a user to operate an
MEG-based BCI system by imagining moving the cursor
toward the desired direction. From a neuroscience perspective,
decoding analysis performed in this study provides strong
evidence that intended movement direction is well represented
in cortical activity recorded noninvasively by MEG during
motor planning and motor imagery.

Modulation of neural activity providing information about
movement direction evolves over different time scales in the delay
and nondelay tasks (Fig. 4). Decoding accuracies in the delayed
task for both overt and imagined conditions show more gradual
changes and peak at lower values than those of the nondelay task.
This is possibly because of temporal dispersion of cortical
processes related to motor planning and motor execution dur-
ing the delayed task (Churchland et al. 2006; Crammond and
Kalaska 2000; Flanders et al. 1992; Ghez et al. 1997). This
temporal separation may spread movement-related information
over delay and movement time, reducing the amount of infor-
mation available for movement decoding at any instant of time.
On the contrary, cortical processes for motor planning and
execution might overlap in the nondelayed task, leading to
stronger cortical signals for decoding movement direction. The
difference in temporal profiles of decoding accuracies between
delayed and nondelayed tasks is certainly worth further exam-
ination in the future. Nevertheless, this study showed that
movement direction can be decoded in the absence of overt
movement in both delayed and nondelayed tasks.

Source-space analysis identifying cortical sources for MEG
signal modulation

This study further provides answers to what type of infor-
mation is being encoded by active cortical areas and when
movement-related information is best represented in cortical
activity. The contralateral (left) motor cortex clearly encodes
intended movement direction (Fig. 6; see Supplemental Fig. S3
for a side-by-side comparison between Figs. 5 and 6). Inter-
estingly, the left inferior frontal gyrus (LIFG) also exhibits a
certain degree of modulation by intended movement direction.
This area has been previously suggested to be part of the
human mirror-neuron system, which is critical for recognition
of movement intention (Rizzolatti and Craighero 2004).

F statistic in the source-space MANOVA reflects the degree
to which cortical activity differs across different movement
directions. The temporal profile of F statistic from source-
space MANOVA peaks right before movement onset, suggest-
ing that this is the moment when cortical activity varies the
most for different movement directions (Fig. 7). Previous
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nonhuman primate studies showed that firing rates of a typical
motor cortical neuron also varies the most for different move-
ment directions near movement onset. The firing rate reaches
its maximum and minimum around onset of movements in the
neuron’s preferred and antipreferred directions, respectively
(Crammond and Kalaska 2000; Moran and Schwartz 1999;
Wang et al. 2007). The temporal profile of source-space F
statistic in Fig. 7 shows that movement-related cortical activity
recorded with MEG shows a temporal pattern very similar to
that of motor cortical neuronal firing rates.

Future work and summary

Previous studies have shown that the time-domain signal,
especially the LFC, also called LMP, contains significant
information regarding movement direction (Ball et al. 2009;
Georgopoulos et al. 2005; Pistohl et al. 2008; Schalk et al.
2007; Waldert et al. 2008). The capability of this study to
decode intended movement direction from time-domain MEG
signals in the absence of overt movement further suggests that
LFC/LMP signals carry significant movement-related informa-
tion. It is worth studying whether other MEG signal features
are also modulated by intended movement direction, because
previous studies suggested that various frequency bands con-
tain significant movement-related information (Ball et al. 2009;
Cheyne et al. 2008; Crone et al. 1998; Heldman et al. 2006;
Jurkiewicz et al. 2006; Leuthardt et al. 2004). Future studies
can use frequency-domain source localization techniques to
further explore movement information embedded in various
frequency bands of MEG signals (Gross et al. 2001; Jensen and
Vanni 2002).

It will be interesting to directly apply source localization
algorithms on a single-trial basis, as done in several previous
studies (Gaetz and Cheyne 2003; Jerbi et al. 2007), and to
perform source-space decoding analysis. One question is
whether decoding accuracy will be improved if movement
direction is decoded in the source space rather than in the
sensor space. Arguably, in the source space, better feature
selection procedures may be performed based on both statisti-
cal analysis and prior knowledge on functions of various
cortical areas. This may help remove noise and artifacts in the
MEG data and lead to better decoding accuracy.

The capability to decode intended movement direction from
MEG signals may enable a noninvasive high-performance BCI
system based on MEG. Although debatable, several previous
studies have suggested that MEG and ECoG might share
similar spatial and temporal characteristics in terms of source
localization accuracy and capability to resolve cortical activity
represented by amplitudes of different frequency bands (Dalal
et al. 2008; Gharib et al. 1995; Korvenoja et al. 2006).
Although it seems clear that both MEG and ECoG signals
contain movement-related information, future studies should
examine the efficacy of MEG for potential BCI and rehabili-
tation applications. For example, although MEG itself is not
portable, it might serve as a powerful tool for presurgical
localization of cortical areas that are significantly modulated by
intended movement direction, and intracranial electrodes can
be implanted at those cortical sites.

It can be challenging to accurately localize the motor cortex
after cortical reorganization induced by cortical lesions (e.g.,
caused by stroke) or spinal cord injury (Cramer 2008; Kokotilo

et al. 2009). However, previous studies have shown that
individuals with stroke or spinal cord injuries can at least
partially activate their sensorimotor cortical areas with at-
tempted or imagined movement (Buch et al. 2008; Shoham et
al. 2001; Wang et al. 2010), and MEG may be indicative of
cortical areas whose activity can be modulated volitionally by
an individual for BCI control. Furthermore, even with intact
brain, given that the implanted electrode array will typically
cover a very small cortical area [e.g., 4 � 4 mm2 for the
intracortical microelectrode arrays (Hochberg et al. 2006) and
�15 � 15 mm2 for a minimally invasive custom-ECoG grid
that we have been studying (Wang et al. 2009)], it is still
desirable to accurately localize the targeted implantation site
(e.g., hand area of the motor cortex) before surgery. The goal
of this study is to develop the appropriate behavioral paradigms
and algorithms that will allow us to accurately identify the
cortical area that contains information about intended move-
ment direction given the potential variability in cortical orga-
nization across individuals. Future studies should be conducted
in individuals with motor impairments (i.e., targeted end users
of BCI), and the paradigms developed in this paper provide the
basis for those studies.

In addition, users can be trained noninvasively with an
MEG-based BCI system before undergoing surgery. This train-
ing can at least familiarize users with the BCI paradigm, and it
can potentially improve cortical activity modulation for BCI
control. Furthermore, by providing real-time feedback of cor-
tical activity, MEG-based BCI systems can serve as a rehabil-
itation tool for promoting cortical plasticity after stroke and
spinal cord injury, which is another area of great scientific and
clinical value (Birbaumer and Cohen 2007; Buch et al. 2008;
Wang et al. 2010). These functionalities demand real-time
acquisition, processing, and decoding of MEG signals, which
we are actively working on. We developed a new real-time
software package (rtMEG) for real-time MEG signal streaming
directly from the real-time digital signal processing (DSP)
units of our MEG system (//www.elekta.com/) with a minimal
delay (Sudre et al. 2010). This software is well integrated with
BCI2000, a general purpose software package for real-time
BCI research (Schalk et al. 2008). We also developed a novel
real-time MEG signal processing algorithm, robust SSS
(rSSS), for on-line MEG signal filtering and noise removal
(Guo et al. 2010).

In summary, this study showed that intended movement
direction can be decoded from human cortical activity recorded
noninvasively using MEG during motor planning and motor
imagery, and source space analysis showed that the contralat-
eral motor cortex has the strongest modulation by intended
movement direction. This modulation is the most significant
immediately before movement onset, with a temporal profile
similar to that of motor cortical neuronal activities observed in
previous nonhuman primate studies and also present during
imagined movement. This representation of intended move-
ment in human cortical activity can serve as a critical neural
substrate for brain-controlled interface applications.
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