
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/278731364

An Empirical Model for Reliable Spiking Activity

Article  in  Neural Computation · June 2015

DOI: 10.1162/NECO_a_00754 · Source: PubMed

CITATION

1
READS

144

5 authors, including:

Some of the authors of this publication are also working on these related projects:

OEN, an Ontology for Experimental Neurophysiology View project

The neurobehavioral basis of odor navigation View project

Wanjie Wang

University of Pennsylvania

7 PUBLICATIONS   69 CITATIONS   

SEE PROFILE

Shreejoy Tripathy

University of British Columbia - Vancouver

56 PUBLICATIONS   658 CITATIONS   

SEE PROFILE

Krishnan Padmanabhan

Salk Institute for Biological Studies

36 PUBLICATIONS   890 CITATIONS   

SEE PROFILE

Nathaniel Urban

University of Pittsburgh

98 PUBLICATIONS   4,227 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Wanjie Wang on 01 August 2015.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/278731364_An_Empirical_Model_for_Reliable_Spiking_Activity?enrichId=rgreq-4d766eb51b162b2e9f44b7f7e88d0dd1-XXX&enrichSource=Y292ZXJQYWdlOzI3ODczMTM2NDtBUzoyNTc1MDIzMjc2MDMyMDRAMTQzODQwNDc0Nzc1OA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/278731364_An_Empirical_Model_for_Reliable_Spiking_Activity?enrichId=rgreq-4d766eb51b162b2e9f44b7f7e88d0dd1-XXX&enrichSource=Y292ZXJQYWdlOzI3ODczMTM2NDtBUzoyNTc1MDIzMjc2MDMyMDRAMTQzODQwNDc0Nzc1OA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/OEN-an-Ontology-for-Experimental-Neurophysiology?enrichId=rgreq-4d766eb51b162b2e9f44b7f7e88d0dd1-XXX&enrichSource=Y292ZXJQYWdlOzI3ODczMTM2NDtBUzoyNTc1MDIzMjc2MDMyMDRAMTQzODQwNDc0Nzc1OA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/The-neurobehavioral-basis-of-odor-navigation?enrichId=rgreq-4d766eb51b162b2e9f44b7f7e88d0dd1-XXX&enrichSource=Y292ZXJQYWdlOzI3ODczMTM2NDtBUzoyNTc1MDIzMjc2MDMyMDRAMTQzODQwNDc0Nzc1OA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-4d766eb51b162b2e9f44b7f7e88d0dd1-XXX&enrichSource=Y292ZXJQYWdlOzI3ODczMTM2NDtBUzoyNTc1MDIzMjc2MDMyMDRAMTQzODQwNDc0Nzc1OA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wanjie_Wang?enrichId=rgreq-4d766eb51b162b2e9f44b7f7e88d0dd1-XXX&enrichSource=Y292ZXJQYWdlOzI3ODczMTM2NDtBUzoyNTc1MDIzMjc2MDMyMDRAMTQzODQwNDc0Nzc1OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wanjie_Wang?enrichId=rgreq-4d766eb51b162b2e9f44b7f7e88d0dd1-XXX&enrichSource=Y292ZXJQYWdlOzI3ODczMTM2NDtBUzoyNTc1MDIzMjc2MDMyMDRAMTQzODQwNDc0Nzc1OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Pennsylvania?enrichId=rgreq-4d766eb51b162b2e9f44b7f7e88d0dd1-XXX&enrichSource=Y292ZXJQYWdlOzI3ODczMTM2NDtBUzoyNTc1MDIzMjc2MDMyMDRAMTQzODQwNDc0Nzc1OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wanjie_Wang?enrichId=rgreq-4d766eb51b162b2e9f44b7f7e88d0dd1-XXX&enrichSource=Y292ZXJQYWdlOzI3ODczMTM2NDtBUzoyNTc1MDIzMjc2MDMyMDRAMTQzODQwNDc0Nzc1OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Shreejoy_Tripathy?enrichId=rgreq-4d766eb51b162b2e9f44b7f7e88d0dd1-XXX&enrichSource=Y292ZXJQYWdlOzI3ODczMTM2NDtBUzoyNTc1MDIzMjc2MDMyMDRAMTQzODQwNDc0Nzc1OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Shreejoy_Tripathy?enrichId=rgreq-4d766eb51b162b2e9f44b7f7e88d0dd1-XXX&enrichSource=Y292ZXJQYWdlOzI3ODczMTM2NDtBUzoyNTc1MDIzMjc2MDMyMDRAMTQzODQwNDc0Nzc1OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_British_Columbia-Vancouver?enrichId=rgreq-4d766eb51b162b2e9f44b7f7e88d0dd1-XXX&enrichSource=Y292ZXJQYWdlOzI3ODczMTM2NDtBUzoyNTc1MDIzMjc2MDMyMDRAMTQzODQwNDc0Nzc1OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Shreejoy_Tripathy?enrichId=rgreq-4d766eb51b162b2e9f44b7f7e88d0dd1-XXX&enrichSource=Y292ZXJQYWdlOzI3ODczMTM2NDtBUzoyNTc1MDIzMjc2MDMyMDRAMTQzODQwNDc0Nzc1OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Krishnan_Padmanabhan?enrichId=rgreq-4d766eb51b162b2e9f44b7f7e88d0dd1-XXX&enrichSource=Y292ZXJQYWdlOzI3ODczMTM2NDtBUzoyNTc1MDIzMjc2MDMyMDRAMTQzODQwNDc0Nzc1OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Krishnan_Padmanabhan?enrichId=rgreq-4d766eb51b162b2e9f44b7f7e88d0dd1-XXX&enrichSource=Y292ZXJQYWdlOzI3ODczMTM2NDtBUzoyNTc1MDIzMjc2MDMyMDRAMTQzODQwNDc0Nzc1OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Salk_Institute_for_Biological_Studies?enrichId=rgreq-4d766eb51b162b2e9f44b7f7e88d0dd1-XXX&enrichSource=Y292ZXJQYWdlOzI3ODczMTM2NDtBUzoyNTc1MDIzMjc2MDMyMDRAMTQzODQwNDc0Nzc1OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Krishnan_Padmanabhan?enrichId=rgreq-4d766eb51b162b2e9f44b7f7e88d0dd1-XXX&enrichSource=Y292ZXJQYWdlOzI3ODczMTM2NDtBUzoyNTc1MDIzMjc2MDMyMDRAMTQzODQwNDc0Nzc1OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nathaniel_Urban?enrichId=rgreq-4d766eb51b162b2e9f44b7f7e88d0dd1-XXX&enrichSource=Y292ZXJQYWdlOzI3ODczMTM2NDtBUzoyNTc1MDIzMjc2MDMyMDRAMTQzODQwNDc0Nzc1OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nathaniel_Urban?enrichId=rgreq-4d766eb51b162b2e9f44b7f7e88d0dd1-XXX&enrichSource=Y292ZXJQYWdlOzI3ODczMTM2NDtBUzoyNTc1MDIzMjc2MDMyMDRAMTQzODQwNDc0Nzc1OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Pittsburgh?enrichId=rgreq-4d766eb51b162b2e9f44b7f7e88d0dd1-XXX&enrichSource=Y292ZXJQYWdlOzI3ODczMTM2NDtBUzoyNTc1MDIzMjc2MDMyMDRAMTQzODQwNDc0Nzc1OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nathaniel_Urban?enrichId=rgreq-4d766eb51b162b2e9f44b7f7e88d0dd1-XXX&enrichSource=Y292ZXJQYWdlOzI3ODczMTM2NDtBUzoyNTc1MDIzMjc2MDMyMDRAMTQzODQwNDc0Nzc1OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wanjie_Wang?enrichId=rgreq-4d766eb51b162b2e9f44b7f7e88d0dd1-XXX&enrichSource=Y292ZXJQYWdlOzI3ODczMTM2NDtBUzoyNTc1MDIzMjc2MDMyMDRAMTQzODQwNDc0Nzc1OA%3D%3D&el=1_x_10&_esc=publicationCoverPdf


LETTER Communicated by Tatyana Sharpee

An Empirical Model for Reliable Spiking Activity

Wanjie Wang
wanjiew@upenn.edu
Department of Statistics, Carnegie Mellon University, Pittsburgh, PA 15213, U.S.A.

Shreejoy J. Tripathy
stripathy@chibi.ubc.ca
Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh,
PA 15213, U.S.A.

Krishnan Padmanabhan
krishnan@salk.edu
Department of Biology, Carnegie Mellon University, Pittsburgh, PA 15213, U.S.A.

Nathaniel N. Urban
nurban@cmu.edu
Center for the Neural Basis of Cognition and Department of Biology, Carnegie
Mellon University, Pittsburgh, PA 15213, U.S.A.

Robert E. Kass
kass@stat.cmu.edu
Department of Statistics, Machine Learning Department, and Center for the Neural
Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA 15213, U.S.A.

Understanding a neuron’s transfer function, which relates a neuron’s
inputs to its outputs, is essential for understanding the computational
role of single neurons. Recently, statistical models, based on point pro-
cesses and using generalized linear model (GLM) technology, have been
widely applied to predict dynamic neuronal transfer functions. However,
the standard version of these models fails to capture important features
of neural activity, such as responses to stimuli that elicit highly reli-
able trial-to-trial spiking. Here, we consider a generalization of the usual
GLM that incorporates nonlinearity by modeling reliable and nonreli-
able spikes as being generated by distinct stimulus features. We develop

W. W. is now at the Department of Biostatistics, University of Pennsylvania. S. T. is
now at the Center for High-Throughput Biology, University of British Columbia. K. P. is
now at the Crick Jacobs Center for Theoretical and Computational Biology, Salk Institute
for Biological Studies.

W. W. and S. T. contributed equally.

Neural Computation 27, 1609–1623 (2015) c© 2015 Massachusetts Institute of Technology
doi:10.1162/NECO_a_00754



1610 W. Wang et al.

and apply these models to spike trains from olfactory bulb mitral cells
recorded in vitro. We find that spike generation in these neurons is better
modeled when reliable and unreliable spikes are considered separately
and that this effect is most pronounced for neurons with a large number
of both reliable and unreliable spikes.

1 Introduction

Neuronal input-output functions relate membrane biophysical properties
to the specific computations each neuron performs (Koch, 1999; Izhikevich,
2010). Recently there has been interest in using statistical models to capture
and describe neuronal transfer functions (Kass & Ventura, 2001; Paninski,
2004; Badel et al., 2008). Despite the application of these models in numerous
contexts (Tripathy, Padmanabhan, Gerkin, & Urban, 2013; Mensi et al., 2012),
a feature of neural activity that these models often fail to capture is the
most temporally precise trial-to-trial reliable spiking (Butts et al., 2007;
Calabrese, Schumacher, Schneider, Paninski, & Woolley, 2011). Such reliable
spiking has been shown in a number of contexts and systems, including as
a general feature of neuronal membranes stimulated using somatic current
injection in vitro (Bryant & Segundo, 1976; Mainen & Sejnowski, 1995;
Padmanabhan & Urban, 2010), as well as resulting from multiple stages of
neuronal circuit processing in vivo (Butts et al., 2007; Kelly, Smith, Kass, &
Lee, 2010). Reliable spiking is thought important for computation as it has
been shown to be especially effective in driving downstream neural activity
(Tiesinga, Fellous, & Sejnowski, 2008; Giridhar, Doiron, & Urban, 2011).

Here, we extend previous approaches and develop statistical models de-
signed to better capture temporally precise and reliable spiking activity. We
apply these models to data collected from olfactory bulb mitral cells (MCs)
recorded in vitro (Padmanabhan & Urban, 2010; Tripathy et al., 2013), neu-
rons that display extensive electrophysiological heterogeneity and varying
degrees of spiking reliability (Padmanabhan & Urban, 2010, 2014; Angelo
et al., 2012).

2 Methods

We begin by considering each neuron’s spike train as a point process with
time-varying intensity function λi, as in Kass & Ventura (2001); (Paninski,
Pillow, & Simoncelli, 2004; Pillow et al., 2008; Doya, 2011; Kass, Eden, &
Brown, 2014). In discrete time, with time bins of width �t, the spike train
likelihood function is

p(y|x, θ ) = (�t)n
∏

i

λ
yi
i e−(�t)λi

yi!
,
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where yi is 1 if there is a spike in the ith time bin and 0 otherwise; n is the
number of spikes; xi represents any covariates that are assumed to drive
spiking, here the stimulus and spiking history prior to the ith time bin; and
the firing rate λi is suitably defined in terms of x. The simplest generalized
linear model (GLM) is

λi = exp(�k · �xi +�h · y[i−m:i−1] + b), (2.1)

where �k is the neuron’s stimulus filter; �h is the postspike or spike history
filter; b is the bias term; i indicates the ith time bin; and xi is the portion of
the stimulus considered potentially relevant to spiking probability in the
ith time bin. We extend this GLM by defining a nonlinear version, which we
call the current-thresholded model (CT model), in which the stimulus filter
is allowed to be different for stimuli that produce reliable and unreliable
spikes. These reliable-spike and unreliable-spike stimuli are found from two
preprocessing steps. First, the neuron’s trial-averaged peristimulus time
histogram (PSTH) is examined to determine a set of narrow segments, or
PSTH peaks, in which the spikes across trials are highly reliable, defined by
having more than 90% of trials containing a spike within this peak. Second,
the 20 ms of input stimulus prior to each peak is found, the positive-going
part of the mean of these (actually, a trimmed mean, see the appendix) is
computed as a template, and then all snippets of stimulus are defined as
either reliable-spike stimulus snippets or unreliable-spike stimulus snip-
pets, according to their correlation with this template. In the CT model, the
neuron’s firing rate λi is defined as

λi =
⎧⎨
⎩

exp((�krel · �xi,rel )
a +�h · y[i−m:i−1] + b1), reliable-spike stimulus

exp(�kunrel · �xi,unrel +�h · y[i−m:i−1] + b2), unreliable-spike stimulus
,

(2.2)

where �krel and �xi,rel denote the stimulus filter and the stimulus preceding
reliable spikes (respectively) and similarly for �kunrel and �xi,unrel , which de-
note the stimulus filter and stimulus preceding unreliable spikes. When
a = 1 (the default, unless otherwise specified), this is a switching model,
where two different stimulus filters are used based on classifying the pre-
ceding input stimulus (the stimulus) as either a reliable-spike stimulus or
an unreliable-spike stimulus. In both the simple GLM in equation 2.1 and
the CT model in equation 2.2, we define m = 60 and �xi as 50 ms of input
stimulus prior to the ith time bin, and use a time bin size �t = 1 ms. Details
are given in the appendix.
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3 Results

We used equations 2.1 and 2.2 to model the spiking activity of olfactory bulb
MCs recorded in vitro (see Figure 1A; see also Figure 2). As described in
Padmanabhan and Urban (2010) and Tripathy et al. (2013), MCs were stim-
ulated using somatic current injection of repeated trials of frozen noise plus
a DC bias while fast synaptic activity was blocked pharmacologically (n =
44 MCs, approximately 40 trials per neuron). The CT model, which treats
temporally reliable spikes (based on the trial-averaged PSTH) as occurring
due to a different stimulus waveform than temporally unreliable spikes
(see Figure 1B), was better able to account for dynamic MC activity than the
standard GLM model. We found this to be especially true for neurons with
epochs of highly precise spiking (see Figure 1A, inset). Specifically, based
on the PSTH error for reliable spikes (quantified as the sum of squared
errors in the spike timing of reliable PSTH peaks; see the appendix), we
found that on average, the CT model reduces the PSTH error relative to the
GLM model by 7.5%, but in some neurons, the error reduction was as high
as 37% of PSTH error (see Figure 1C). Applying a likelihood ratio test to
both the GLM and CT model, we found that the CT model was significantly
improved for nearly all neurons, as shown in Figure 3. (P-values for 40 of
44 were less than .05, and most were much smaller; 8 degrees of freedom
difference between the two models.)

Furthermore, by allowing the parameter a in equation 2.2 to vary, an
additional 16% reduction of the PSTH error was obtained for the CT model
on average (e.g., an additional 33% reduction of the PSTH error was found
for the neuron in Figure 1A, for a = 1.4). While introducing the parameter a
to the GLM also facilitates further model improvement (e.g., 23% improve-
ment for the neuron in Figure 1A), the CT model still outperformed the
GLM model.

Moreover, a nonlinear model incorporating an explicit additional inter-
action term between the stimulus and spike history filter (in lieu of the two-
filter CT model) showed no improvement over the standard GLM (mean
improvement = −11%), suggesting that temporally reliable spikes do not
occur due to the interaction of stimulus and spike-history-based effects (e.g.,
stimulus-specific bursting effects). Note that both the GLM and CT model
contain a linear postspike history term, which we previously found to be
essential in capturing membrane resonance-like properties of MCs (Tripa-
thy et al., 2013). For example, a spike-triggered covariance model is similar
to the CT model in that both incorporate two stimulus filters (Schwartz,
Pillow, Rust, & Simoncelli, 2006), but the STC model does not have a post-
spike history term. We found the STC model to be qualitatively less effective
for modeling the MC in Figure 1A than either the GLM or CT model (see
Figure 6 in the appendix), again highlighting the importance of capturing
spike history effects for these neurons.

We found that specific MCs were considerably better modeled using the
CT model over the GLM. Investigating these neurons, we found that the
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Figure 1: Comparison of generalized linear model (GLM) and current thresh-
olded model (CT model) in capturing dynamic mitral cell (MC) spiking activity.
(A) MC intrinsic properties are probed using filtered broadband frozen noise
(first row) injected into the soma. MC spike rasters (second row; black) and
PSTH (third row; black) for repeated stimulus presentations (n = 40 trials). Cor-
responding model-based rasters and PSTHs for GLM (green) and CT model
(red) show that the CT model better captures temporally precise MC spiking
activity. PSTH smoothed with gaussian with σ = 2 ms and are slightly offset
for visual clarity. The inset on the right indicates boxed segment on left. Data
shown here include only test data not used to train model parameters. (B) Model
stimulus filters for GLM (green) and CT model (unreliable stimulus filter, light
red; reliable stimulus filter, dark red) for a representative MC. t = 0 ms in-
dicates current time bin. (C) Relative improvement of CT model (with a = 1)
compared to GLM. Improvement is quantified by first calculating the sum of
squared errors between MC and model PSTHs and then calculating the ratio
between GLM and CT model SSE. Higher ratios indicate that the CT model is a
better model for MC activity than GLM. The x-axis indicates MC identity (n =
44 MCs). The circle indicates MC shown in panel A. (D) Analysis of MC features
compared to CT model improvement relative to GLM. The x-axis indicates neu-
ron trial-to-trial reliability, computed as the proportion of PSTH peaks defined
as reliable relative to all PSTH peaks. The MCs split into four categories based
on CT model improvement (with a = 1) relative to standard GLM model: no
improvement (white; ratio of SSE < 1.0), slight improvement (black; 1.0 ≤ ratio
of SSE < 1.05), some improvement (red; 1.05 ≤ ratio of SSE < 1.2), and large
improvement (green; ratio of SSE ≥ 1.2).
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Figure 2: Comparison of the spike-triggered covariance model to the CT model
and GLM for the example neuron highlighted in Figure 1A. (A) Rasters and
PSTHs comparing each model to MC spike trains. Note that STC rasters are a
much poorer model for MC activity relative to either the GLM and CT model.
(B) Stimulus filters for the STC model. The STC filter corresponds to the filter
with the largest eigenvalue. (C) Eigenvalues for STC eigenvectors. A single
STC eigenvector with the largest eigenvalue was chosen for the STC model,
in addition to the STA. (D) Density plot for stimulus snippet projection onto
STA and STC bases for all stimuli (raw stimuli) and only those preceding spikes
(spike-triggered stimuli). This 2D density plot was used for calculating the firing
rate nonlinearity.

neurons most improved were those with relatively low firing rates (10 to
35 Hz) and intermediate values of trial-to-trial reliability (see Figure 1D).
In other words, the CT model was most influential for neurons that dis-
played a number of both reliable spikes as well as unreliable spikes. One
biological explanation for this finding of differential explanatory benefits
of the CT model may the inherent biophysical heterogeneity among MCs
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Figure 3: Log-likelihood ratio p-values for testing CT versus GLM model, on a
scale of log10(p), for N = 44 mitral cells.

(Padmanabhan & Urban, 2010, 2014; Angelo & Margrie, 2011; Angelo et al.,
2012; Burton & Urban, 2014).

4 Discussion

The empirical approach we developed here is different in spirit and de-
tail from biophysical modeling based on intrinsic membrane responses
(Hodgkin & Huxley, 1952). Whereas Hodgkin-Huxley models are useful
and attractive for their direct comparison to neuronal membranes and ion
channels, point processes provide the natural probabilistic framework for
analyzing noisy neural spiking behavior.

An interesting shortcoming of the standard stimulus-response GLM in
equation 2.1 is its failure to adequately account for spike timing reliability.
We have shown that the nonlinear CT model in equation 2.2 can improve on
the standard GLM, specifically, when applied to spike trains elicited in vitro
during dynamic current injection. The CT model is conceptually similar to
linear models, which incorporate multiple stimulus filters, such as spike-
triggered covariance methods (STC) (Schwartz et al., 2006). However, the CT
model differs in that it dynamically switches between one of two stimulus
filters and, critically, allows for a spike history term that captures refractory
and burst firing, which governs much of the precise spiking timing of mitral
cells. Thus our approach extends earlier efforts to mitigate the influence of
spike history effects by separately analyzing spikes well isolated in time
from preceding spikes using a multi-filter approach (Agüera y Arcas &
Fairhall, 2003; Agüera y Arcas, Fairhall, & Bialek, 2003).

However, we do not intend to propose this model as either realistic or
empirically definitive. In the first place, additional nonlinearities are clearly
needed to capture more of the spike reliability. Second, the CT model does
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not appear to be obviously close to any biophysical or dynamical model.
Moreover, the specific methodology for fitting the CT model is admittedly
somewhat ad hoc, and it may be possible to define an alternative model
using parameters that can be fitted in a unified procedure.

An alternative to setting a hard threshold for reliable spiking would be
to take a conceptually similar approach to that in (Escola, Fontanini, Katz,
& Paninski, 2011) and use a hidden Markov model to determine whether
each epoch of MC spiking activity most corresponded to that of two states:
a reliable state or an unreliable state. However, since we were injecting
current directly into each MC’s soma, it seemed more natural to classify the
neuron’s effective state using the stimulus waveform directly.

While our focus here was to better model reliable MC spiking elicited
during somatic current injection, our approach could likely also be extended
to capture reliable spiking occurring during stimulation via naturalistic
sensory stimuli such as visual scenes or auditory stimuli (Butts et al., 2007;
Calabrese et al., 2011). However, we expect that as the dimensionality of
the stimulus increases, more data will be required to adequately parame-
terize each of the two stimulus filters used here. Our two-filter approach
could also be applied in conjunction with other approaches for modeling
reliable spiking, such as those that explicitly model the effects of threshold
nonlinearities of afferent presynaptic neurons (Butts, Weng, Jin, Alonso, &
Paninski, 2011).

Given these caveats, our intention with the CT model is to use it to
stimulate additional research. Perhaps a point process regression model,
based on GLM methodology but again incorporating nonlinearity, might be
based on ideas such as the adaptive timescale rate version of the exponential
LIF model of Ostojic and Brunel (2011). By working at the interface between
statistical and dynamical system modeling, it may be possible to gain further
insight into reliable spiking.

Appendix: Data Collection, Algorithm, and More Results

A.1 Experimental Methods and Data Collection. Whole cell patch
clamp recordings of mitral cells were obtained in vitro from mouse ol-
factory bulb slices using methods described previously (Padmanabhan &
Urban, 2010). Mitral cells were identified under infrared differential inter-
ference contrast optics on the basis of their laminar position in the olfactory
bulb and their morphology. All experiments were performed at 35◦C in
standard Ringer’s solution with excitatory (25 μM AP5 and 10 μM CNQX)
and inhibitory (10 μM bicuculline) synaptic activity blocked.

Current-clamp recordings were performed while injecting neurons with
a filtered white noise current stimulus. Noise traces were generated by
convolving a 2.5 s white noise current with an alpha function of the form
t ∗ exp(−t/τ ), where τ = 3 ms. We chose this spectral structure because it
generates reliable spiking in these neurons and corresponds to the timescale
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of fast synapses afferent to MCs (Galán, Ermentrout, & Urban, 2008). Each
neuron received one of a small number of stimuli generated using this
method (most neurons received one of three stimulus templates) and was
presented about 40 stimulus repeats. The amplitude (variance) of the noise
used was between 5% and 40% of the direct current (100–800 pA, σ = 20–80
pA) offset for each cell, with the majority of cells receiving 10% to 20% of the
DC offset. The variance of the noise was selected as previously described
(Galán et al., 2008), to induce reliable firing without large input fluctuations.
For all recordings, a 25 or 50 pA hyperpolarizing pulse was injected before
stimuli were delivered to measure input resistance and membrane time
constant, allowing us to track the stability of recordings over multiple trials.
As described in Tripathy et al. (2013) only neurons whose firing patterns
were stable across trials and fired a sufficient number of spikes in each trial
(more than 5 Hz) were used in this study. Upon stimulation, most neurons
usually underwent a brief nonspiking adaptation period (111 +/−14 ms)
which was assessed visually and excluded from the analysis.

A.2 Fitting Procedure. For each neuron, our procedure may be sum-
marized as follows:

1. Use the PSTH to identify reliable and unreliable peaks in the PSTH.
2. Define a reliable-spike current template as the longest positive part

to the end of the trimmed mean of the 20 ms snippets of current
preceding the reliable peaks, which is l ms.

3. Consider all l ms snippets of current and separate these into two cate-
gories: (1) those immediately preceding the reliable peaks and (2) all
others. Find the correlation of each snippet with the reliable-spike
current template and take its Fisher z transformation. This produces
two distributions of values—one for category 1 and one for category
2. Then use a Bayes classifier to determine a threshold for classifying
each current snippet as either a reliable-spike current or an unreliable-
spike current. Also, take the snippets that have high correlation but
small inner-product with current template as unreliable.

The PSTH was examined in step 1. First, we thresholded the PSTH and
considered only time points within the PSTH that contained a spike in at
least three trials (from among approximately 40 trials total). For conve-
nience, we define such PSTH time points as PSTH peaks. Second, for all the
PSTH peaks, we combined the neighboring peaks with time difference less
than 5 ms. This step is to make sure there is no temporal separation of one
PSTH big peak into multiple smaller peaks. Finally, for each PSTH peak,
we recorded the temporal range of the peak and calculated the percentage
of trials that spike in that range. If the percentage was bigger than 90% (e.g.,
36 of 40 trials) and the temporal range was smaller than 12 ms, we regarded
that peak as reliable. Otherwise we called it unreliable. When we report
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Figure 4: Reliable stimulus current templates shown for all of the mitral cells.
N = 44 mitral cells.

neuron reliability, it is defined as the proportion of reliable peaks among all
the peaks for the neuron.

Considering the set of 20 ms current snippets immediately preceding
these reliable PSTH peaks, in step 2, we computed the mean 20 ms snippet
(the mean across all these peaks). Because a positive current is required to
drive each neuron to spike, we take only the positive portion of this snippet.
We next computed the correlation of each snippet with the mean and ex-
cluded as outliers any snippets that have correlation greater than 1.5 times
standard deviations from the mean correlation. We then recomputed the
mean snippet to get the reliable-spike current template.

In Figure 4 we display the reliable-spike current templates computed for
each of the mitral cells. In Figure 5 we show how the reliable-spike current
template varies as a function of trials and peristimulus time used for model
fitting. It may be seen that the parameter fits for the reliable spike template
stabilized with a relatively small number of trials (n > 10 trials). Similarly,
for n > 10 trials, more than 90% of the reliable PSTH peaks are recovered
relative to when all trials are used to identify the reliable PSTH peaks. With
respect to stimulus time, the reliable spike template converges when at least
30% of the total stimulus is used for training data relative to the 70% used
previously (.75 s vs 1.75 s).

In step 3, we computed the correlation of each snippet with the reliable-
spike current template, applied the Fisher z transformation f (r) = log 1+r

1−r ,
and thereby obtained z-transformed correlations for the snippets within
each of two categories: (1) those immediately preceding the reliable peaks
(termed R2) and (2) all others (termed R1). We then applied a Bayes classifier
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Figure 6: Finding the threshold using distributions of R1 and R2. In this figure,
the solid black line is the fitted pdf of log((1 + R1)/(1 − R1)), and the solid pur-
ple line is the corresponding fitted pdf of log((1 + R2)/(1 − R2)). The threshold
can be taken at the intersection of the two fitted pdfs.

(Kass et al., 2014; Hastie, Tibshirani, & Friedman, 2011) to find the threshold,
as the intersection of the density functions for the correlations under both
cases, that best discriminated these transformed coefficients (see Figure 6).

Also, we computed the inner product of each snippet with reliable
current template, and take the snippets with inner product larger than
mean(Inner-products) − sd(Inner-products). This ensures that classified
reliable current snippets are those that have high correlation with the reli-
able current template and those that have large absolute current magnitude
that could inspire a spike.

After these steps, we finally have the classification of stimulus and can
define our two stimulus kernel k1 and k2 in the model. If time t was regarded
as a reliable-spike time, we used the convolution of k1 and 50 ms before t
in the stimulus term; if unreliable, we used the convolution of k2 and 50 ms
before t in the stimulus term. Model fitting proceeded by maximizing the
likelihood function, as usual. We used seven nonlinearly spaced spline
knots to fit�k and 6 knots to fit�h (Pillow et al., 2008; Tripathy et al., 2013). In
practice, we replace (�krel · �xi,rel )

a with sign(�krel · �xi,rel )|�krel · �xi,rel |a.

A.3 Assessing Model Goodness of Fit. We used the summation of
squared errors (SSE) as the goodness-of-fit measure for the models used
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here. Specifically, we used the difference between the PSTH for data and
simulated spike trains. With the initial 70% of original data (with respect
to peristimulus time, but including all trials) as training data, we fit each
model and found model parameters. With these fitted filters and given
stimuli, we next simulated 300 spike trains for each neuron. The simulated
spike trains were used as simulated data.

For each reliable peak from test data, we compared the mean spike
time of this peak and the simulated PSTH. The summation of the squared
difference between the mean time of both real and simulated PSTH peaks
is denoted as SSE for reliable spikes.

To define the likelihood ratio test to compare the GLM and CT models,
we use the first 50% of the stimulus and spike train data to train the reli-
able current template for the CT model and the last 50% data to fit both
models.

Acknowledgments

We thank G. LaRocca for technical support. This work was supported by
an NSF Graduate Research Fellowship and an R. K. Mellon Foundation
Fellowship (to S.J.T.), a Crick-Jacobs Junior Fellowship and NIMH K99
MH101634 (to K.P.), NIDCD grant R01 DC011184 (to N.N.U.), and NIMH
R01 MH064537 (to R.E.K). This research was funded in part by a grant
from the Pennsylvania Department of Health’s Commonwealth Universal
Research Enhancement Program.

References
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