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ABSTRACT Ocular activity is a significant source of artifacts in the elec-
troencephalogram (EEG). Regression upon the electrooculogram (EOG) is
commonly used to correct the EEG. It is known, however, that this ap-
proach also removes high-frequency cerebral activity from the EEG. To
counter this effect, we used Bayesian Adaptive Regression Splines (BARS)
(DiMatteo (2001); DiMatteo, Genovese, and Kass (2001)) to adaptively
filter the EOG of high-frequency activity before using the EOG for cor-
rection. In a preliminary simulation study, this approach reduced spectral
error rates in higher frequency bands.

1 Introduction

The electroencephalogram (EEG) is an inexpensive, non-invasive method of
measuring cerebral activity. Numerous scalp electrodes are used to record
the low voltage electrical signals produced by neural populations. As a
signal, the EEG is noisy and is contaminated by artifacts, potentials of non-
cerebral origin. Ocular activity is a significant source of artifacts(Fisch(1991)).
To help identify ocular artifacts, the electrooculogram (EOG) may be used.
It uses electrodes placed in specific locations about the eyes to measure oc-
ular activity (see Figure 1). As discussed in the section that follows, it is
important to be able to filter (smooth) the EOG without distorting the
signal. Filtering is extremely delicate because of the abrupt changes that
appear simultaneously in the EOG and EEG (see Figure 2).
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FIGURE 1. An example of EEG and EOG data. 21 channels of EEG and 2 EOG
channels are displayed. The numerous spikes seen in some channels (most predom-
inantly in F7,F8 F3,F4,Af3,and Af4) were caused by the blinking of the subject.
Observe that the spikes also appear in the vertical EOG channel (VEOG).
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This paper is a case study of Bayesian adaptive regression splines (BARS)
(DiMatteo(2001), DiMatteo et al.(2001)), a new Bayesian method of fitting
free-knot splines. In this application, BARS is successful at estimating the
inhomogeneously smooth underlying ocular artifact. More details and dis-
cussion, oriented toward psychophysiologists, can be found in Wallstrom
et al.(2001).

Section 2 provides background on the removal of ocular artifacts. In
Section 3, we describe how regression is used to correct the EEG. In Section
4, we briefly discuss BARS. Sections 5 and 6 describe a simulation study
of the effectiveness of BARS in this application. A discussion follows in
Section 7.

2 Background on Ocular Artifact Removal

A variety of methods have been proposed for the handling of ocular arti-
facts (for a review see Croft and Barry(2000)). One common approach is
artifact rejection. Manual ocular artifact rejection requires an individual to
visually scan through the EEG data in search of artifacts. Sections of the
data that are contaminated by artifacts are simply removed and not used in
the analysis. There are several drawbacks to using artifact rejection. First,
it can be very laborious and time consuming. Second, artifact rejection
often results in a large loss in the amount of data available for analysis.
Third, interesting changes in the pattern of EEG activity may occur simul-
taneously with eye movements, especially in event-related potential (ERP)
and event-related dysynchronization (ERD) investigations. The first draw-
back can be addressed by using an automatic rejection method based on
rejecting epochs where a voltage threshold is exceeded in the electrooculo-
gram (EOG) or EEG channels. It is clear that the threshold controls the
tradeoff between excessive rejection of artifact-free epochs and the false
acceptance of epochs containing artifacts. Hence, the automatic rejection
approach may save considerable resources, but at the expense of excessive
data loss, failure to remove significant ocular artifacts, or both. Further-
more, even if the automatic method rejects perfectly, the second and third
drawbacks to rejection still stand.

The alternative approach is to correct for ocular artifacts within some
epochs, and reject epochs deemed incorrigible. Numerous methods for cor-
rection have been proposed. Some of these methods may be easily auto-
mated while others require considerable manual guidance. One large class
of methods that can be easily automated is based on regressing out the
EOG from the EEG. Both time domain (McCallum and Walter(1968),
Hillyard and Galambos(1970), Quilter et al.(1977), Gratton et al.(1983))
and frequency domain (Whitton et al.(1978), Woestenburg et al.(1983),
Gasser et al.(1985)) approaches have been used, although the benefit of
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using frequency domain regression for ocular artifact correction has yet to
be established (Brunia et al.(1989), Kenemans et al.(1991)). Other artifact
correction methods are based on various multivariate methods such as prin-
cipal components analysis(Lins et al.(1993b) and Lagerlund et al.(1997))
and independent components analysis(Jung et al.(2000)). In this paper we
focus on the use of regression in the time domain.

One concern often raised regarding the use of regression for correction is
the inability to account for bidirectional contamination. If ocular potentials
can contaminate recordings by the EEG leads, then cerebral potentials can
also contaminate recordings by the EOG leads. Therefore, regressing out
the EOG from the EEG may not only remove ocular artifacts but may also
remove interesting cerebral activity. Lins et al.(1993b) discuss the use of
EQG filtering to partially combat this problem. Specifically, one may con-
sider that the EOG is used twice in the process: once when the regression
coeflicients are calculated, and a second time when the weighted EOG is
subtracted from the EEG. Lins et al.(1993b) stress that contamination of
the EOG by cerebral potentials affects both uses of the EOG. They suggest
that filtering the EOG prior to calculation of the coefficients addresses the
contamination concern in the first instance. However, they use the unfil-
tered EOG in the second instance so, as they point out, the contamination
concern remains. Intuitively, this concern could be overcome by the use of
the filtered EOG in both instances. The problem is that the method of
filtering is now of paramount importance. In order for regression using the
filtered EOG to be effective for artifact correction the filtered EOG must
not distort the ocular artifact. For example, a moving average filter may
distort not only the shape of the artifact, but also the temporal charac-
teristics of the artifact. Both features of the artifact must be retained in
order for regression to be successful removing the artifact from the EEG.
In this paper we use Bayesian adaptive regression splines to filter the EOG
as they are able to remove high frequency activity while not distorting the
essential features of the artifact.

3 Artifact Correction via Regression

It has been noted (Corby and Kopell(1972), Gratton et al.(1983), Lins
et al.(1993a)), that the strength of the contribution of ocular activity to
the EEG can depend on the type of artifact present. This difference in the
regression coefficients is due to the artifacts being generated by different
sources. Since the regression approach is not spatial, regression is unable
to account for multiple artifacts with distinct generators. Therefore very
short epochs should be used so that, at least approximately, only one type
of artifact, or one combination of artifacts, is present throughout the epoch.
Within an epoch, each channel of EEG and EOG is centered to have zero-
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mean before regression is used.

The following linear model is used as an approximation to the relation-
ship between the m channels of observed EOG, the observed EEG and the
true unobserved EEG, where by ‘true’ EEG, we mean the signal that would
have been recorded in the absence of ocular artifacts.

OBS;( Z a;; F(EOG;)(t) + EEG;(t),

7j=1

where OBS;(t) denotes the observed EEG recording from lead i at time
t, EOG; denotes the observed recording from the jth EOG channel, and
EEG;(t) denotes the true unobserved EEG from lead i at time ¢. In the
above equation, F(-) denotes a filter.

Multiple regression may be used to estimate the values of a;;. The esti-
mated true EEG is then formed according to

m

EEG;(t) = OBS;( Z F(EOG;)(t).

In our implementation, the correction procedures were applied to 1 sec-
ond epochs (512 sample points) with 50% overlap throughout the realiza-
tion. The overlap of epochs allows the corrected epochs to be combined
into a single continuous corrected realization (see Appendix).

The first correction procedure uses the raw, unfiltered EOG channels in
the regression. We refer to this correction procedure by REG-RAW. For
the second correction procedure, which we refer to by REG-ADAPT, we
adaptively filter the EOG realizations prior to correcting via regression.
Details on the adaptive filter are given next.

4 Bayesian Adaptive Regression Splines

We employ Bayesian adaptive regression splines (BARS) (DiMatteo(2001),DiMatteo
et al.(2001)) to adaptively filter the EOG. BARS smooths a scatterplot

using splines with an unknown number of knots and knot locations. In this
application, we used a model of the following form.

Y|ka§7/870 ~ Ny (BB,O'2I) (1)
Blk, &0~ Nipm (0,02n (BTB)_I)
(o) o« ot
&k~ Uniform
kA~ Poisson(A)
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Here, Y is the observed EOG, k is the number of knots, £ is the vec-
tor of knot locations and B is the mth order B-spline basis matrix. The
above prior on f is called the unit-information prior by Kass and Wasser-
man(1995).

(a) Original EEG and EOG
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FIGURE 2. (a) A single channel of EEG and EOG are shown. (b) The unfil-
tered EOG with two smooths. The dashed line is a spline fit with knots fixed
at 0.95,1,1.25,1.3 and 1.5, indicated in the plot with short vertical lines. These
knot locations allow the spline to capture the general trend of the artifact, but
important features of the artifact that are clearly present in the EEG have been
lost. The bold line is the filtered EOG using BARS. It can be seen that the es-
sential features of the artifact have been transferred to the BARS-filtered EOG
unadulterated while the high frequency activity has been filtered out.

Reversible-jump Markov chain Monte Carlo (Green(1995)) is used to
sample from the marginal posterior distribution of (k,&). There are three
features of BARS that are worth pointing out. First, in the model above, an-
alytical integration permits sampling from the marginal posterior of (k,&).
With more general models, an approximation of a likelihood ratio by Kass
and Wasserman(1995) facilitates sampling from the marginal posterior of
(k,&) when the unit-information prior is used. Second, the posterior sim-
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Consequences of the Choice of Filter
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FIGURE 3. The consequences of the choice of filter. Top: The original EEG,
the corrected EEG based on the fixed-knot spline shown in Figure 2, and the
corrected EEG based on the free-knot spline fit using BARS. While neither is
able to account for the large downward spike, the BARS fit is more successful at
removing the artifact. Bottom: The spectra for the two corrections. The choice
of filter has a large impact through 15 Hz.

ulation employs the locality heuristic suggested by Zhou and Shen(1998),
by which new knots tend to be inserted near other knots. Third, credible
statements may be easily generated from the posterior simulation.

In a simulation study (DiMatteo et al.(2001)) BARS outperformed the
adaptive regression spline methods of Zhou and Shen(1998) and of Denison
et al.(1998). Also, Zhou and Shen(1998) showed that their method (SARS)
was superior to the wavelet method of Donoho and Johnstone(1995).

In the artifact correction context, knots should tend to be placed around
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FIGURE 4. (a): Each pre-source channel originates from a different, randomly se-
lected subject. The EEG pre-sources were randomly selected 3s epochs taken from
randomly selected EEG channels. The EOG pre-sources were randomly selected
3s epochs taken from the corresponding EOG channels. (b): Each EEG source
was derived from the corresponding EEG pre-source by applying an artifact cor-
rection procedure (REG-RAW). Each EOG source was derived from the corres-
ponding EOG pre-source by applying the free-knot spline adaptive filter. (c): The
simulated EEG/EOG was obtained by multiplying the EEG/EOG sources by a
random weight matrix. (d) To simulate the EEG and EOG that would have been
observed in the absence of artifacts, the EEG/EOG sources were multiplied by
the same weight matrix, modified by replacing the EEG source coefficients with
zeroes. (e) The corrected EEG was obtained by applying an artifact correction
procedure to the simulated EEG/EOG. This corrected EEG was then compared
to the EEG/EOG simulated without artifacts given in (d).

large amplitude artifacts, and few knots should be required in artifact-
free regions. This adaptive quality permits filtering of the EOG without
distortion of the shape and temporal features of the artifacts (see Figures 2
and 3). We chose to use second-order splines (m = 2) because the artifacts
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often appear in the EOG (and particularly in the horizontal EOG channel)
as sharp jumps, which are more easily fit using splines of lower order.

5 Simulation Method

In order to investigate the effect of the adaptive filter, we simulated 20
3-second epochs of EEG and EOG data. This section describes the simu-
lation method used. It is based on real EEG and EOG data collected in an
ongoing study of childhood-onset depression (Miller et al.(2000)).The real
data consist of 60 second recordings of baseline EEG and EOG for 12 adult
subjects under an eyes-open condition. Half of the subjects had a history of
childhood-onset depression, and half had no history of major psychopathol-
ogy. The EEG was collected from scalp electrodes positioned according to
the expanded International 10-20 System. All sites were recorded using the
vertex (Cz) reference. Two channels of EOG were used. The vertical EOG
was recorded using two electrodes placed above and below the right eye.
The horizontal EOG was recorded using two electrodes placed on the outer
canthi. The sampling rate was 512 Hz.

The simulation process is diagrammed in Figure 4. For each epoch we
began by simulating 10 independent potential sources, 8 cerebral, one hor-
izontal ocular, and one vertical ocular. We then created a random mixing
matrix to enable the construction of the observed and true EEG and EOG
channels.

To simulate a 3 second realization of a cerebral source, we began by
selecting a random 3 second segment of a randomly selected observed EEG
channel for a randomly selected subject. We call this the pre-source EEG.
We then simulated the EEG source by removing significant ocular artifacts
from the pre-source via regression upon the unfiltered EOG (REG-RAW).

To simulate the two ocular sources, we formed pre-source EOG by se-
lecting random 3 second segments of the observed EOG from randomly
selected subjects. The EOG sources were then obtained by filtering the
pre-source EOG using free knot splines. The ten subjects from which the
EEG and EOG pre-sources were taken were selected randomly, without
replacement, from among the 12 subjects in the available set of data. Since
each channel of data was derived from a different subject, the ten channels
are truly independent.

Note that, aside from the artifact removal, we have used independent
segments of observed EEG as cerebral sources. While there is no guarantee
that the true cerebral sources resemble the potentials recorded on the scalp,
this use of the observed EEG helps ensure that the simulated scalp EEG
resemble real EEG.

The observed EEG and EOG data are simulated by multiplying the sim-
ulated sources by a random weight matrix. The simulated observed chan-
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nels are therefore linear combinations of the simulated cerebral and ocular
sources. The EEG coefficient vectors are formed by normalizing vectors of
independent standard normal random variates. The EOG coefficient vectors
require additional care. Since each EOG is primarily a measure of ocular
potentials, it is important that the two ocular sources are significant con-
tributors to the observed EOG channels, respectively. This suggests heavily
weighting the contribution from the corresponding ocular source. On the
other hand, the observed EOG should contain a similar amount of noise as
the observed EEG, suggesting that there should still be considerable non-
ocular contributions. We therefore set the coefficient of the corresponding
ocular source to be 1. The remaining coefficients are formed from indepen-
dent standard normal random variates, scaled so that the squared norm of
the remaining coefficients is 0.9. Therefore, for both EOG and EEG, the
expected squared coefficient of a cerebral source is 0.1.

To evaluate the performance of the correction procedures, we need to cre-
ate the true EEG that correspond to the simulated observed EEG. This can
be accomplished by multiplying the simulated sources by the weight matrix
formed above with the ocular source coefficients replaced with zeroes.

6 Simulation Results

To evaluate the artifact correction procedures we investigated errors in both
the time and frequency domains. In the time domain, for each channel, we
aligned the overlapping corrected 1 second epochs into a 3 second corrected
realization. We then calculated the mean squared error between the true
EEG and the corrected EEG. In the frequency domain, for each channel
we estimate power density (in dB) for four frequency bands, delta (1.5 Hz
to 3.5 Hz), theta (3.5 Hz to 7.5 Hz), alpha (7.5 Hz to 12.5 Hz) and beta
(12.5 Hz to 19.5 Hz). Specifically, the EEG was average referenced and
power was estimated using a Hanning window taper on 1 second epochs
with 50% overlap. For each epoch and frequency band, power density was
formed by averaging the power estimates for frequencies within the band.
Average power density was then computed by averaging the power density
over all overlapping epochs and converting to decibels. For each correction
method, we computed power density errors for each channel and frequency
band.

The time and frequency domain errors are summarized in Table 1.1. The
first row of the table gives the mean square root of the mean squared error
for the two correction methods. The remaining rows give the mean abso-
lute error for power density expressed in decibels. The errors that result
when no correction or rejection method is applied are also summarized.
Two observations should be made. First, if we compare the mean errors
from no correction to correction without filtering we see that, in the higher
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REG- REG- NO-
ADAPT RAW CORR
Time Domain (uv) | 3.73 (0.14) 4.38 (0.16) 9.72 (0.97)
Delta Band (dB) | 1.48 (0.10) 1.52 (0.11) 5.02 (0.53)
Theta Band (dB) | 1.14 (0.08) 1.21 (0.09) 3.35 (0.37)
Alpha Band (dB) | 1.14 (0.11) 1.54 (0.14) 0.89 (0.14)
Beta Band (dB) | 0.60 (0.05) 1.12 (0.09) 0.65 (0.09)

TABLE 1. Table of mean correction errors by method. Standard errors are given
in parentheses. Each row displays the mean error for the two correction methods
(REG-ADAPT and REG-RAW) and for no correction. The first row uses a time
domain measure of error, the square root of the mean squared error. The second
through fifth rows measure mean absolute error in terms of power within the
delta (1.5 Hz to 3.5 Hz), theta (3.5 Hz to 7.5 Hz), alpha (7.5 Hz to 12.5 Hz) and
beta (12.5 Hz to 19.5 Hz) bands respectively.

frequency bands (alpha and beta), correction without filtering is detrimen-
tal. Second, if we compare correction without filtering to correction with
adaptive filtering, we see that there is improvement in the time domain
and in the higher frequency bands. In the lower bands (delta and theta)
the adaptive filtering had little effect, as expected.

7 Discussion

This study concerns the use of Bayesian adaptive regression splines to im-
prove ocular artifact correction in the EEG. We argue that careful filtering
of the EOG prior to correction should reduce bidirectional contamination
between the EEG and the EOG. BARS is particularly well suited to this
task since the underlying artifact is not homogeneously smooth. BARS is
able to fit an inhomogeneously smooth function to the data by placing more
knots in regions with less smoothness and fewer knots in regions with more
smoothness. By doing so, it is able to remove the high frequency cerebral
activity from the EOG while not distorting the essential characteristics of
the artifact. The simulation study suggests that the use of BARS does re-
duce error rates in the higher frequency bands. Other methods of adaptive
smoothing, such as wavelets, may also be successful in this context.

The biggest drawback to the use of BARS as an adaptive smoother is
the computation time. We like BARS for the following reasons:



364 Wallstrom et al.

o It works well. In the simulation study of DiMatteo et al.(2001), BARS
outperformed the free-knot spline methods of Zhou and Shen(1998)
and of Denison et al.(1998).

e It generalizes easily. The model (4.1) could be easily replaced by a
more general model, such as a generalized linear model.

e The posterior simulation permits the easy generation of credible curves.
Inferences on functions of (k,&, ), such as the curve mode, can be
made by including an additional step in the posterior simulation.

We direct the reader to DiMatteo et al.(2001) for further details and dis-
cussion of BARS. Wallstrom et al.(2001) contains a more in-depth discus-
sion of the application to EEG artifact correction, geared for psychophysi-
ologists.
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Appendix: Reconciling Overlapping Signals

A consequence of using a method that operates on small overlapping por-
tions of an epoch is a need to reconcile the corrected portions at the end.
This appendix describes the procedure we used. To simplify the discus-
sion, for now suppose that there are two signals defined on overlapping
epochs where each signal was formed by applying a correction method to
the observed EEG channel. Let S;(t) denote the first signal, defined for
to < t < ta, and S»(t) denote the second signal, defined for ¢; < t < 3.
We are interested in reconciling S;(t) and Sa(t) for t; < t < ta. As each
of the correction methods discussed herein amount to subtracting a linear
combination of the EEG and possibly filtered EOG channels, the difference
between S; and S, in the overlap region is also a linear combination of the
EEG and possibly filtered EOG channels. While the EEG and EOG are
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centered prior to correction on each epoch, the channels need not have zero
mean on the overlap portion of the epoch. It follows that in the overlap
region, S7 and Sz are not mutually centered. Therefore the reconciliation
procedure that we use contains two steps.

(i) Vertically shift S, so that Sy and Sy have the same center in the overlap
region.

(ii) Form a single signal S such that in the overlap region S is a weighted
average of S1 and Ss.

For step (i), we simply define S3(t) = S2(t) — ma2 + my, where m; and
msy are the respective means of S; and S, in the overlap region. For step
(ii), let w(z) be a continuous weight function defined for 0 < z < 1 such
that w(0) = 0 and w(1) = 1, and define

Sl(t)7 to <t§t1
-4 50 -n (1))« 50w (i), 6 <150
S3(t). ta <t <t3

The weight function is continuous with w(0) = 0 and w(1) = 1 to ensure
that discontinuities are not introduced into S. We used w(z) = z as a
simple and obvious choice.

More generally, suppose we want to reconcile signals Si,...,S, where
S;(t) is defined for ¢;_1 < ¢t < ¢;41 and tg < ¢1 < --- < tp41. Then for
Jj=1,...,nlet l; denote the mean of S; over the interval (¢;_1,t;] and let
h; denote the mean of S; over the interval (t;,t;41]. Define S} (t) = Si(t)
and, for j = 2,...,n define S}(t) = S;(t) — >.7_,(li — hi_1). Finally, the
resulting signal is given by

Sik(t)a to<t<t

" t—t; * t—t;
Sty ={ 55 [1 —w (tj+1*tj)] + 5w (tHl*ti) T ijl<.t. .Srfj——i_ll’

S’;’kl,(t)7 tn <t S tn—i—l




