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1 Introduction and Summary

The BRAIN (Brain Research through Advancing Innovative Neurotechnologies) Initiative aims to produce a so-
phisticated understanding of the link between brain and behavior and to uncover new ways to treat, prevent and
cure brain disorders.1 Success in meeting these multifaceted challenges will require scientific and technological
paradigms that incorporate novel statistical methods for data acquisition and analysis. Our purpose here is to
substantiate this proposition, and to identify implications for training.

Brain research relies on a wide variety of existing methods for collecting human and animal neural data, in-
cluding neuroimaging (radiography, fMRI, MEG, PET), electrophysiology from multiple electrodes (EEG, ECoG,
LFP, spike trains), calcium imaging, optical imaging, optogenetics, and anatomical methods (diffusion imaging,
electron microscopy, fluorescent microscopy). Each of these modalities produces data with its own set of sta-
tistical and analytical challenges. As neuroscientists improve these techniques and develop new ones, data
are being acquired at very large scales. For example, advances in multiple-electrode recording and two-photon
calcium imaging have led to an exponential growth in the size of neural populations that can be observed si-
multaneously, at single-cell resolution (2; 3; 52). Similarly, new anatomical methods have led to a rapid rise in
the size and the scale of data, and the resulting level of detail with which brain structure can be investigated
(17; 10; 32; 39). Furthermore, both new and existing technologies are often used together, and are increasingly
accompanied by rich characterizations of individuals and their behavior, ranging from genetic information to
sensor-based monitors of activity.
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California, Irvine; Liam Paninski, Columbia University; Russell T. Shinohara, University of Pennsylvania; Bin Yu, University of California,
Berkeley. Affiliations are for identification purposes only and do not imply an institution’s endorsement of this document.
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These advances have begun to produce exciting breakthroughs. But, to realize their potential, new analysis
and computational techniques are needed to optimize data acquisition, manage acquired data on the fly, screen
and segment the data, correct for artifacts, and align and register data across multiple time points, multiple
experiments, multiple subjects, or different laboratories. In addition, as the data-generation process becomes
more complex, and the data sets themselves get larger and more varied, it is crucial that reliability and scientific
relevance of results be assessed against the backdrop of natural variation and measurement noise. This is the
essential role of statistical analysis.

It is important to keep in mind the fundamental advantage of large and varied data sets: it is the ability to
pose questions at a much finer level of detail than would otherwise be available. For instance, it is becoming
possible to investigate the connectivity of neural networks, and the way connectivity changes across subjects
or behavioral circumstances. Rodents, non-human primates, and, under special circumstances, even humans,
can be monitored by many kinds of sensors, including video, while large numbers of neurons are recorded in rel-
evant brain regions. As the questions being asked become increasingly specialized to particular circumstances,
however, the number of possible configurations of outcomes grows rapidly. Major challenges in such Big Data
applications, therefore, come from the resulting complexity of the statistical models used to describe the vari-
ation in the data: they must capture key features of the data, while allowing relevant assessments concerning
scientific issues, and their implementation must be made efficient enough to run on available hardware and
software in manageable time. This leads to a host of statistical machine learning problems. Some of these are
computational, and algorithmic, while others are inferential. In many brain-related contexts, data scientists of
various backgrounds have made great progress in developing algorithms to mine data in order to produce snap-
shots of network structure. As promising as such quantitative summaries and visualizations appear, however,
they are useless without some notion of their reliability. Procedures are needed to conduct rigorous statistical
inference in conjunction with statistical machine learning algorithms, and attention must be paid to reproducibil-
ity of results across relevant populations. Furthermore, consideration of data analytic techniques can produce
new ways to design experiments or important improvements in recording technologies (34; 35; 47).

Part of this effort involves careful consideration of theoretical conceptions of brain function, phrased in the
language of mathematics. By merging ideas from statistics together with those from applied mathematics and
biophysics, productive new frameworks are likely to be spawned.

As the Interim Report of the NIH BRAIN initiative working group says,2

All signs point to a major increase in the quantity of neuronal recordings. . . . We will need new
tools to analyze these complex datasets, as well as new tools and algorithms for data acquisition
and interpretation. . . . Data analytic and theoretical problems are likely to emerge that we cannot
anticipate at the present time. Resources should be available for experts from essential disciplines
such as statistics, optimization, signal processing and machine learning. . . . To enable progress
in theory and data analysis, we must foster collaborations between experimentalists and scientists
from statistics, physics, mathematics, engineering, and computer science.

We elaborate briefly on these points below, considering major research areas and the need for more inten-
sive cross-disciplinary training.

2http://www.nih.gov/science/brain/
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2 Research

The methods of neuroscience involve behavioral studies, neuroimaging, electrophysiology, and anatomy, as
well as cellular and molecular methods. All are crucial to understanding brain function. The approaches that
have, so far, generated the most research in the mathematical sciences are neuroimaging and electrophysiol-
ogy.

Neuroimaging is widely applied, familiar to non-specialists through the popular press, and likely to remain
central to the BRAIN initiative. The field has gained enormously from statistical research. Over the past 20
years, for example, fMRI has become a standard methodology in cognitive neuroscience in large part due to a
massive communal effort to develop useful statistical procedures and software (8; 14; 25; 41; 51; 56). Earlier,
in tomography and nuclear medicine, mathematical scientists and statisticians played similar roles (30; 49; 50).
In electrophysiology, statistical methods have also been crucial in advancing the field, e.g., (12; 13; 45), and
see examples in (28). Historically, the key to progress has been insight in mathematics and statistics informed
by knowledge of the underlying biophysics.

Under the BRAIN initiative, new analytical issues arise not only from improved recording technologies, but
also from the availability of vast new repositories of data, some of which contain diverse data types, such as
the 1,000 functional connectome, NIH connectome, ADHD 200, and ABIDE (4; 21; 22; 40; 54; 55). A central
bottleneck is the need to combine different sets of data, often called data fusion. This includes combining data
from different human subjects. While computational neuroanatomy and shape analysis have been successful
in particular contexts (6; 26), essential anatomical distinctions between individuals make the problem of inter-
subject comparison difficult. New statistical insights are needed that can incorporate biologically-informed,
flexible templates in order to make effective use of these key data sources being driven by the BRAIN initiative
and related activities.

Fundamental issues also arise in electrophysiology. New methods are needed to extract information from
the large spatio-temporal data sets produced by calcium imaging, particularly in cases where many neuronal
processes overlap spatially. These would include efficient methods for de-noising, de-convolving, and de-
mixing of calcium-sensitive and voltage-sensitive movie data into estimates of single-neuronal (or sub-neuronal)
activity, along with measures of uncertainty about these estimates (46). Similar “spike-sorting” problems arise
in the context of large-scale electrical recordings from multielectrode arrays (15; 16).

These examples highlight the need for attention to statistical detail when attempts are made to tap into
the great new collections of data that are becoming available. Studies having the even grander ambition of
integrating knowledge across multiple levels of investigation by explicitly connecting cellular properties with
anatomical constraints, physiology, and/or behavior could be especially valuable, but they are likely to produce
varied data that introduce unfamiliar and potentially subtle complications. To be successful, research teams will
have to be interdisciplinary, including members with cutting-edge statistical expertise. Below we discuss a few
example problems where this kind of interdisciplinary approach promises to be especially fruitful.

2.1 Mapping and modeling of neuronal networks

One of the greatest challenges in neuroscience is to reconstruct and interpret dynamic connectivity of large,
complex neuronal networks. The ability to understand the way such networks evolve under varying experimental
and/or behavioral conditions would have a fundamental impact on understanding the functional organization of
the nervous system. Indeed, electrophysiological and neuroimaging studies are undergoing a paradigm shift
toward network-level hypotheses and analyses.
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It is important to distinguish anatomical from functional connectivity. Anatomical approaches aim to recon-
struct the physical connectivity of the network. This could include viral tracing (23) and volumetric electron
microscopy (i.e., slicing the brain very thin) and then tracking the axons and dendrites travelling from one cell
body to another, typically using a combination of computer vision techniques along with substantial hands-on
manpower. Recent genetic methods provide a complementary technique (57). Functional approaches aim to
identify the influence that each neuron in a network has upon the other neurons in the network by, for example,
stimulating one neuron while recording the strength of the synaptic response in another neuron, or by record-
ing from many neurons simultaneously and then inferring network weights statistically. The burgeoning field of
statistical network theory can potentially offer many useful tools and ideas for estimating and interpreting these
neuronal networks.

Crucial problems involve assessment of uncertainty due to incomplete observation of the network as well as
biological variation (across specimens or subjects). Again, proper experimental design can have an important
impact (29). Statistical work should also involve the combination of different types of experimental data from
two or more of these approaches, perhaps at different spatial scales: for example, information from functional
recordings can constrain and guide efforts in anatomical reconstructions (5; 11; 53). An additional, major
outstanding problem is that there does not exist a comprehensive statistical methodology for relating dynamic
networks to experimental conditions, features of behavior, or characteristics of subjects. This should be a focus
of research attention as BRAIN-related network data start to accrue.

2.2 Finding lower-dimensional dynamic structure

In the case of electrophysiology, analysis of networks of co-varying neurons aims to illuminate the remark-
able computational abilities of the nervous system. A starting point is to acknowledge that neural responses
are not independent degrees of freedom, but rather they are noisy observations of a scientifically meaning-
ful hidden system of lower dimension. This system often has interesting spatiotemporal structure across that
low-dimensional space. Accordingly, questions of neural population response dimensionality, time-series anal-
ysis, and dynamical systems are now critical to the neuroscience community. Basic methods of this sort have
been fruitfully applied to population recordings in studies of the motor system (19), decision making (36), work-
ing memory (48), visual attention (20), the auditory system (33), the olfactory system (37), rule learning (24),
speech (7), and more. These studies only represent a beginning. As a specific example, recent studies
(19) have demonstrated the presence of non-trivial low-dimensional dynamics, but most key questions remain
unanswered. Does a given brain area switch between different classes of dynamics? Given that many of these
critical transitions have no externally observable behavior (e.g., decision making or attention) and can occur at
arbitrary times even in well controlled experiments, how can these transitions be detected from neural popula-
tion responses alone? New analytical tools will be needed to reveal the intrinsic dimensionality within covarying
multidimensional patterns across a neuronal network that evolves across time.

Related issues arise in neuroimaging, where the physiological process underlying the measurements is
expected to have lower-dimensional structure that produces large numbers of time-varying signals. In the
case of EEG or MEG, thousands of brain-source time series are generated across millions of time points. In
fMRI there are hundreds of thousands of brain sources across hundreds of time points. Furthermore, studies
involve multiple subjects whose brain anatomy and function varies in subtle ways. Analyses must take account
of both slowly-evolving mean effects and more rapidly-evolving variance and covariance effects, with the latter
typically analyzed via frequency decompositions. In the frequency domain it is, in principle, possible to use well-
established methods of dimension reduction by assuming the signals to be stationary linear processes. This
requires segmentation of time into short blocks during which the signals are time-invariant, and methods exist
for this purpose (43). These, however, are computationally intensive and are currently unable to handle large
numbers of simultaneous signals. New methods that allow similar capabilities while scaling up to much larger
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data sets would provide flexible identification of interactions among time-varying networks of brain activity.

2.3 Optimal spatiotemporal control of large neural populations

Most of the topics discussed above involve recording information from the brain. There are also a number of
applications that involve stimulating the brain, using electrical, magnetic, or optical input signals. Indeed, one
of the most exciting recent advances in neuroscience involves new optogenetic stimulation methods that allow
scientists to excite or inhibit genetically-defined neural populations with fine temporal control (9). Most applica-
tions of these methods involve rather crude, purely temporal control stimuli, in which all of the targeted neurons
in a given brain region are activated (or inactivated) simultaneously (i.e., the control signal has no particular
spatial structure). An important and relatively open area for future research involves optimal spatiotemporal
control of neural populations, in which different spatial locations are stimulated with different temporal control
signals (1), potentially in a closed-loop paradigm, necessitating real-time statistical signal processing. Such ap-
plications may arise in the near future in the context of brain-machine interface systems involved in deep-brain
stimulation, epilepsy control, or sensory prosthetics (42).

2.4 Data assimilation for biophysical models

Even as new technologies allow us to record from increasingly large neural populations, only a small subset of
the signals related to neural activity (e.g., a neuron’s voltage, or calcium flux) are typically observed. A funda-
mental question in neuroscience is how to link observed neural activity to the unobserved biophysical mecha-
nisms that generate this activity. As emerging technologies accelerate the number of neurons observed simul-
taneously, targeted experimental manipulations that permit detailed assessment of these biophysical mecha-
nisms become infeasible or intractable. There is therefore a critical need for data assimilation methods that can
incorporate the limited and imprecise data that we observe with detailed, mechanistic models of neural activity.
Such methods are sometimes described as a “mathematical microscope" that would permit researchers to look
more deeply into the mechanisms responsible for data structure beyond what ordinary modeling, visualization,
or statistical inference can provide.

Several groups have demonstrated recently that data assimilation methods can successfully identify classes
of biophysical models that are consistent with observed activity using spikes, intracellular voltage recordings, or
local fields in small-scale neural systems (27; 38). One important feature of such methods is that they can often
identify a full space of models, rather than a single model, consistent with the observed data. An important
statistical challenge moving forward is to develop data assimilation methods that scale well as the complexity
of the mechanistic models and the size of the data sets increase.

3 Training

To achieve the goals of the BRAIN initiative, a multifaceted approach to statistical training must be under-
taken. First, the next generation of biologically-oriented scientific investigators will need a solid understanding
of statistical ideas and a broad familiarity with available techniques. Furthermore, computationally-oriented
neuroscientists need to be exposed to statistical thinking, so that they can avoid wasted effort and be fully
productive. Finally, statisticians, computer scientists, and bioengineers must be recruited to the brain sciences,
and educated as to where their efforts will be best directed.
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3.1 Training for neurobiologists

There currently seem to be relatively few doctoral programs in neurobiology that provide statistical training
aimed specifically at these students. General courses in biostatistics can be helpful, but are not ideal. A
suitable textbook has recently become available (28), and there will likely be some movement toward in-
creased exposure to fundamental statistical ideas, but a significant hurdle is the difficulty of providing con-
ceptual foundations, together with exposure to advanced methods, without getting bogged down in details
and/or intimidating students who have minimal mathematical backgrounds. Additional teaching materials would
be very valuable. (One example course, focusing on the statistical analysis of spike train data, is here:
http://www.stat.columbia.edu/∼liam/teaching/neurostat-fall13/.) In particular, modularized electronic open ac-
cess tools for instruction would both assist the creation of these courses and eliminate the need to duplicate
efforts across universities.

3.2 Training for those with strong mathematical backgrounds

The lion’s share of advanced data analysis in the brain sciences is carried out by neuroscientists trained in
bioengineering, biophysics, and computer science. Many of these people have had little or no systematic
exposure to the statistical paradigm. A course based on material such as that covered in (18; 28; 31; 44) could
go a long way toward giving them essential tips that can keep them on the path toward effective application, and
development, of statistical methods. Modularized instructional tools would again assist efforts. In fact, there
is considerable overlap in content between the materials needed for statistical training of neurobiologists and
quantitative neuroscientists.

We need to attract a greater share of our most talented mathematical, computational, and statistical scien-
tists into brain-related research. To be effective, they will need to learn how to think like a laboratory scientist,
and to use that thinking in designing data collection and analysis strategies. Trainees should take neuroscience
classes, embed themselves in neuroscience labs, and get repeated practice in data-related projects. They
should be critiqued and challenged on their data work, and be upheld to a writing standard comparable to that
for a neuroscience graduate student. The trainees should also be educated in principles of ethical and effective
collaborative behavior. Support for BRAIN-relevant interdisciplinary training programs in the mathematical sci-
ences are desperately needed: they would provide appropriate incentives for increased production of effective
researchers in this domain.

3.3 Specialized workshops

In addition to multi-course programs aimed at producing outstanding cross-disciplinary researchers, short-term
workshops can be very useful: they can give quantitatively-oriented graduate students, and postdoctoral fel-
lows, essential vocabulary and concepts they need in order to get involved in BRAIN-related statistical work,
even when their home institution does not have a specific program in this area. Good examples are the former
NIH-funded neuroinformatics course at Woods Hole; the former NSF-funded course on Mining and Modeling
of Neuroscience Data at the Redwood Center, Berkeley; and the current NIH-funded Multi-Modal Neuroimag-
ing Training Program at Carnegie Mellon and the University of Pittsburgh. These kinds of workshops should
continue.
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