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Abstract

The activity of neurons in the brain often varies systematically with some quantitative
feature of a stimulus or action. A well-known example is the tendency of the firing rates
of neurons in the primary motor cortex to vary with the direction of a subject’s arm or
wrist movement. When this movement is constrained to vary in only two dimensions, the
direction of movement may be characterized by an angle, and the neuronal firing rate can
be written as a function of this angle. The firing rate function has traditionally been fit with
a cosine, but recent evidence suggests that departures from cosine tuning occur frequently.
We report here a new nonparametric regression method for fitting periodic functions and
demonstrate its application to the fitting of neuronal data. The method is an extension of
Bayesian Adaptive Regression Splines (BARS) and applies both to normal and non-normal
data, including Poisson data, which commonly arise in neuronal applications. We compare
the new method to a periodic version of smoothing splines and some parametric alternatives
and find the new method to be especially valuable when the smoothness of the periodic
function varies unevenly across its domain.

KEYWORDS: nonparametric regression, periodic functions, Bayesian Adaptive Regression Splines,
smoothing splines, neuronal data

1 INTRODUCTION

A striking finding from the past forty years of neurophysiological research is that the firing rates
of neurons in many parts of the brain are “tuned” to features of a stimulus or action. In a vari-
ety of experiments in which the voltage changes of indivdual neurons have been recorded using
microelectrodes, neuronal activity has been shown to vary systematically with some externally-
defined quantitative variable, e.g., References [1-7]. We consider here the relationship of neuronal

∗This is a preprint of an article accepted for publication in Statistics in Medicine, Copyright c©2004.
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activity in the primary motor cortex of a monkey to the monkey’s two-dimensional hand move-
ment direction, which we characterize by an angle θ between zero and 2π radians. Taking the
firing rate of a neuron to be λ, the scientific problem is to describe how λ varies with θ. The
statistical problem, therefore, is to define a periodic functional form for λ ≡ λ(θ), the so-called
“directional tuning curve,” and to fit it to data.

In the neurophysiology literature, a standard approach to fitting directional tuning curves to
motor cortical data for two dimensional movements is as follows [8]. If θ is the direction of
movement in a given time interval of length T , let Y (θ) be the number of times the neuron fires
during that interval. The count Y (θ) is assumed to be normally distributed with mean T · λ(θ)
with

λ(θ) = µ + α cos(θ − θ0) (1)

= µ + β1 cos(θ) + β2 sin(θ). (2)

Linear regression is used to fit the resulting cosine tuning function. The parameter θ0 in (1)
is commonly referred to as the neuron’s “preferred direction” and is the key component in the
pioneering method for predicting movement based on neuronal activity, the Population Vector
Algorithm [9, 10]. However, the linear parameterization in (2) is easier to fit and can easily be
used to derive an estimate of θ0 if needed.

There are two difficulties with this approach. First, the counts Y (θ) may not be even approxi-
mately normally distributed and may not have homogeneous variances with respect to θ. Second,
there is the more substantial problem that, in some cases, the cosine tuning function does not
fit adequately. One approach to solving the latter problem is to use more general parametric
forms, and these may be used successfully for many data sets [11]. A still more flexible approach
is to use nonparametric methods. In this paper we describe the fitting of periodic functions by
spline-based generalized nonparametric regression.

Figure 1 illustrates several of the methods discussed here using data from two neurons recorded
in the primary motor cortex of a rhesus monkey performing a movement task (described in
Section 4). The monkey made wrist movements to eight targets located radially in a plane;
hence, θ takes eight values. It is clear that the firing rate λ varies systematically with the
angle of movement θ. The data from the first neuron are approximately Poisson-distributed,
with sample means and variances that fluctuate together from nearly zero to over 100 spikes
per second, whereas the data from the second neuron are approximately normally distributed
with approximately constant variance. For both neurons the cosine model fits relatively well,
although it clearly misses detailed features of the tuning curve. Attempts to improve the fit
parametrically as suggested by Amirikian and Georgopoulos [11] are described in Section 2.1,
but they are only marginally effective here.

Spline-based generalized nonparametric regression has recently been reviewed by Hansen and
Kooperberg [12]. Spline fitting requires regularization in some form. Two general strategies
are to penalize the likelihood, thereby shrinking the spline basis coefficients toward zero, or
to reduce the number of basis elements by selecting locations for a relatively small number
of knots. The former, used by smoothing splines, is effective in a wide range of settings [13].
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Figure 1: Fits to activity of two motor cortex neurons. Each data point represents the observed
firing rate of a neuron in the motor cortex of a monkey during one repetition of a wrist movement
to a particular target at angle θ. Firing rates are shown in spikes per second and the recording
interval was 200 milliseconds. The cosine fits use the cosine function in (2) and the von Mises
fits use the parametric forms in (3) for Neuron 1 and (4) for Neuron 2. The cosine and von Mises
parametric regressions were fit by numerically maximizing the likelihood function, based on a
Poisson density for Neuron 1 and a normal density for Neuron 2. Poisson and normal versions
of the cBARS algorithm provide better fits. (See Section 4).

However, global penalization can be too crude to accommodate sharp local fluctuations in the
function being fitted, which has led many researchers to devise algorithms for selecting a small
set of knot locations [12]. To search through large spaces of alternative models (corresponding to
alternative sets of knot locations), Bayesian methods using Markov chain Monte Carlo (MCMC)
techniques have been shown to be effective [12, 14, 15, 17, 18]. Among these methods is Bayesian
Adaptive Regression Splines (BARS), proposed by DiMatteo, Genovese and Kass [14]. Because
BARS has worked well in many applications [19, 21, 22], and it has been shown to be clearly
superior to competitors in some examples [14], we developed a periodic version of BARS, which
we call cBARS (“c” for circular), to deal with periodic explanatory variables such as the angle
of movement θ. The first purpose of this paper is to report our implementation and application
of cBARS.

As mentioned, BARS and related methods perform better than global penalization methods
when the function being fitted has sharp variations. When the smoothness of the function is
more homogeneous, this advantage disappears. We compared cBARS to a periodic version of
smoothing splines to determine whether this result also holds in the periodic case. An extension
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of smoothing splines to periodic functions, which we will refer to as circular smoothing splines,
has been described by Wahba [24] and implemented by Wang, Ke and Brown [25]. In addition,
Wang and Ke [26] have made publicly available their ASSIST software, which may be used for
a wide range of smoothing spline methods, including circular smoothing splines. The second
purpose of this paper, then, is to provide some comparison of cBARS with circular smoothing
splines in fitting directional tuning curves to firing rate data from motor cortical neurons.

Section 2 describes parametric and nonparametric methods for fitting periodic regression models.
Section 3 compares the efficiency of these methods using simulated data. Before we conclude in
Section 5, Section 4 returns to the experimental data shown in Figure 1 and gives further details
about the experimental design and the application of each method to these data.

2 METHODS

In the case of a designed experiment in which a monkey is trained to make straight-line move-
ments to specific targets (as in the standard two-dimensional “center-out” task, e.g., [8, 6]),
then although the movement time T may be on the order of 200–500 milliseconds, we may take
the direction of movement θ to be constant throughout this interval. When the monkey makes
unrestrained movements in two-dimensions, the angle of movement θ will be measured along
with the firing count Y (θ), and T usually will need to be smaller, on the order of 50 ms, say,
to capture temporal variations in movement direction. Here, we assume the data come from a
designed experiment, although the methods we describe could also be applied to data involving
free arm movements.

Let Yi(θj) be the number of times a neuron fires during the ith trial (repetition of the ex-
periment) at angle θj, where j = 1, . . . , J , and J is the number of distinct angles. Although
neuron spike trains typically follow non-Poisson point processes, neuronal spike count data in
large intervals are often reasonably well approximated by the Poisson distribution [27, 28, 29].
Sometimes, as for the second neuron in Figure 1, the normal distribution appears to be a better
approximation. The methods we discuss in this paper are relatively easy to modify to handle
various distributional assumptions.

2.1 Parametric Models

The cosine tuning function in (1) may be generalized in various ways. Amirikian and Geor-
gopoulos [11] describe a class of functions based on the form of the von Mises probability density
function. For example, the von Mises-like functions used to fit the data in Figure 1 are

λ(θ) = µ + β exp(κ cos(θ − τ + η cos(θ − τ))) (3)

for the first neuron, and

λ(θ) = µ + β1 exp(κ1 cos(θ − τ1)) + β2 exp(κ2 cos(θ − τ2)) (4)
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for the second neuron. The function in (3) includes parameters controlling the baseline firing
rate (µ), the amplitude (β), width (κ) and location (τ) of the mode, and the skewness about the
mode (η). The function in (4) includes parameters corresponding to two modes and does not
allow for skewness. We chose the parametric form in (3) for the first neuron in Figure 1 because
by eye the firing rates corresponding to the middle two angles (π and 5π/4 radians) seemed to
suggest skewness. We chose the parametric form in (4) for the second neuron because by eye it
appeared that the width and amplitude of the mode were not equal to the width and amplitude
of the anti-mode. Some other von Mises-like functions are suggested in [11]. We explored several
of these, but none improved the fit.

To fit tuning curves like (3) or (4), the likelihood function may be maximized numerically using
nonlinear optimization software. When the data are normally distributed, this is equivalent to
minimizing the sum of squared errors.

2.2 Circular Smoothing Splines

Nonparametric methods are sometimes preferable to the parametric methods of the previous
section. They are more flexible and may be more convenient, for example, in the case that
a parametric approach requires delicate nonlinear optimization. One nonparametric option is
smoothing splines, which we describe briefly in this section. Another option is a regression
spline, and in the next section we discuss a Bayesian method for choosing the knots.

In the case of the standard nonparametric regression model Yi(θj) = λ(θj)+εij, with independent
and normally distributed errors, the smoothing spline estimate of λ is the twice continuously
differentiable function λ̂ which minimizes

1

IJ

I∑
i=1

J∑
j=1

(yi(θj) − λ̂(θj))
2 + ν

∫ 1

0
(λ̂′′(θ))2dθ. (5)

The global smoothing parameter ν determines the trade-off between goodness of fit (in terms of
mean squared error) and smoothness (in terms of the integrated squared second derivative of λ̂)
[23]. It may be chosen by any of several existing data-based methods, such as generalized cross
validation, generalized maximum likelihood and unbiased risk estimation; given a particular
value of ν, the unique minimizer of (5) is a natural cubic spline with knots at the distinct values
of θj and spline coefficients that are shrunk according to ν [24].

When the regression function λ is restricted to be in the collection of all periodic functions on
[0, 1] of the form

λ(θ) =
√

2
∞∑

k=1

ak cos 2πkθ +
√

2
∞∑

k=1

bk sin 2πkθ (6)

with
∑

∞

k=1(a
2
k + b2

k)(2πk)2m < ∞, the solution to (5) is a periodic spline basis expansion

λ(x) =
N∑

i=1

αiK(x, xi), (7)
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where K(x, xi) is the reproducing kernel

K(x, xi) =
∞∑

k=1

2

(2πk)4
cos(2πk(x − xi)), (8)

[24, 25].

For non-normal data, the negative log likelihood is used in place of the mean squared error in (5),
but the solution is the same as in (7). Wang and Ke [26] have written software for R and S-PLUS
called ASSIST that allows one to fit a variety of smoothing spline models, including circular
smoothing splines, to data with various distributions (Bernoulli, binomial, Poisson, gamma and
normal). Standard options are also available to determine the smoothing parameter ν in (5).

2.3 Circular BARS

Bayesian Adaptive Regression Splines (BARS, DiMatteo, Genovese, and Kass [14]) is a Bayesian
method for fitting regression splines with an unknown number of knots and knot locations.
Di Matteo et al. showed that BARS is sometimes more efficient than other leading spline-
based alternatives, such as the Bayesian version of Multivariate Adaptive Regression Splines
(Bayesian MARS) of Denison, Mallick and Smith [15] and the Spatially Adaptive Regression
Splines (SARS) of Zhou and Shen [16]. Some additional interpretation, contrasting BARS with
Bayesian MARS, is given by Kass and Wallstrom [17]. Because BARS is specifically designed
to allocate additional knots to regions of rapid functional variation, it is especially effective in
fitting functions that vary slowly throughout most of their domain but have one or more sudden
jumps or peaks. This behavior is observed in many neuronal firing rate intensity functions [19].
In this section we describe the model on which BARS is based and the algorithm used to fit it.
We give details of the implementation when the underlying function is assumed to be periodic.

To make inference about a function λ(θ) (here, the firing rate), BARS fits the spline-based
generalized nonparametric regression model for the spike counts Yi(θj)

Yi(θj) ∼ p(yi | λ(θj)), (9)

where λ is a spline having knots at unknown locations ξ = (ξ1, . . . , ξk), and p is a specified
distribution. For a given knot set ξ, we may write λ(θ) in terms of basis functions bξ,h(θ)
as λ(θ) =

∑
h bξ,h(θ)βξ,h, where the index of summation h depends on the spline basis being

used; cubic splines and the natural spline basis have been used in most applications of BARS.
However, to allow BARS to fit periodic functions, we use the periodic spline basis defined by the
reproducing kernel (8). Suppose the knots are ξ1, . . . , ξk in [0, 2π]. Then a periodic spline basis
of order 1 has k basis functions, excluding an intercept, and the ith basis element is a cosine
with maximum value occurring at the knot ξi.

For a given knot set ξ, model (9) poses a relatively easy estimation problem; for exponential-
family responses (such as Poisson) it becomes a generalized linear model. The difficult problem
is to determine ξ. BARS begins by placing prior distributions on the number and locations of
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the knots, generally Poisson and uniform, respectively. An MCMC algorithm is then used to
generate draws from the posterior distribution on the knot sets.

Key features of the MCMC implementation of BARS include (i) a reversible-jump chain [20] on
ξ after integrating the marginal density

p(y|ξ) =

∫
p(y | βξ, ξ)π(βξ | ξ)dβξ (10)

for observations y = (y1, . . . , yn), (ii) continuous proposal distributions for ξ, in contrast to the
proposal distributions used by Bayesian MARS, which allow knots only at the data points, and
(iii) a locality heuristic for the proposals that attempts to place potential new knots near existing
knots. Items (ii) and (iii) together allow proposal knots to be placed close to one another, which
is advantageous when there is a sudden jump or peak in the function. For the circular version of
BARS, we must also ensure that the proposal distribution for new knot locations in the MCMC
algorithm is also periodic. We proceed as follows: a current knot ξi is drawn randomly from the
set of current knots. A proposal knot ξc is given by

ξc = [ξi + 2π(X − 0.5)], X ∼ Beta(α, α), (11)

where the operator [ ] signifies modulo on [0, 2π], and α is an adjustable tuning parameter in the
MCMC algorithm controlling how close the proposal knot ξc tends to be to the current knot ξi.
Changing α changes the proportion of proposal knots which are accepted and may be adjusted
to improve the mixing of the chain. Note that Beta(α, α) has support on [0, 1] and is symmetric
about 0.5, so that the distribution of ξc is periodic on [0, 2π] and symmetric about the current
knot ξ. Clearly (11) can easily be scaled for periodic domains other than [0, 2π].

For each sample ξ(g) drawn from the posterior distribution of ξ, a sample of regression spline

coefficients β
(g)
ξ is obtained via generalized linear regression. The posterior distribution of (ξ, βξ)

is not of primary interest, however; what we want is a sample from the posterior distribution
of λ(θ̃) for any specified θ̃ in the range of the function, which can be obtained by calculating

λ(g)(θ̃) =
∑

b
(g)
ξ,h(θ̃)β

(g)
ξ,h. Either the posterior mean or median across knot sets may be used as a

point estimate of λ(θ̃), and (pointwise) credible intervals may likewise be obtained using sample
quantiles.

3 SIMULATION STUDY

We conducted a small simulation study to compare cBARS with circular smoothing splines
and cosine regression for the four periodic functions shown in Figure 2. We did not include a
comparison with the von Mises-like functions of Section 2.1 because the nonlinear optimization
needed to fit such functions is difficult to automate. The first test function is the cosine function

λ1(θ) = 50 + 25 cos(θ − π/2). (12)

The next two test functions are the actual cBARS fits to neurons from the experiment described
in Section 4. The fourth function has a sharp peak, with

λ4(θ) = 50 + 25 sin(θ − 1.2π) + 75 exp(−10(15(θ − π)/2π)2). (13)
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Figure 2: Four different test functions were used in the simulation study (solid curves). For
each function, 1000 datasets were generated, each of size 100 data points. These data points
were drawn from a Poisson distribution with mean function corresponding to one of the four
test functions. Points in the figure are the data drawn in the first iteration of the simulation.

For each test function λk(θ), our efficiency results are based on 1000 datasets of size 100, sim-
ulated from a Poisson model with mean λk(θ) and with θ taking 100 equally spaced values in
[0, 2π]. A simulated data set for each function is also shown in Figure 2.

The cosine model was fit to the simulated data via the glm function in S-PLUS, specifying Pois-
son data and either the identity or log link function. We tried both link functions for each test
function except λ2(θ), for which the identity link is problematic, because the many zero data
values often yield predicted rates that are negative. The smoothing spline was fit via the ssr

function in ASSIST, specifying Poisson data and with smoothing parameter determined by gen-
eralized maximum likelihood. Finally, cBARS was fit by modifying recent C code implementing
BARS, as described in Section 2.3. 1 The prior distributions on the knots took their number to
be Poisson distributed with mean five and their locations to be uniformly distributed on [0, 2π].
The adjustable parameter α in the distribution for proposal knots (11) was 25, which means
that the proposal knot ξc will be within approximately π/4 radians of the current knot ξ with
probability 95%. We found this choice of α allowed the MCMC algorithm to mix well in the
types of data we examined. For each simulated dataset, a burn-in period of 100 iterations was
used; the next 1000 iterations were treated as a sample from the posterior distribution, and the
fitted curves according to each of the knot sets in this sample were averaged pointwise to create
the fit to that dataset.

The integrated squared error between the true curve and a fit is the squared area between the
two curves; it was approximated on a grid of size 100 and averaged across the 1000 simulated
datasets to produce the mean integrated squared errors (MISE) reported in Table 1.

For the cosine test function λ1(θ), the cosine parametric model fits well, but for the other

1The cBARS code may be obtained via www.stat.cmu.edu/˜ kass.
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Table 1: Mean integrated squared errors (MISE) for each curve fitting method and four periodic
test functions. Simulation errors were all less than .0013.

Simulation Test Function 1 2 3 4

Cosine (Log Link) 0.53 3.83 3.67 5.74

Cosine (Identity Link) 0.30 NA 1.88 5.33

Circular Smoothing Spline 0.50 0.90 1.40 3.84

Circular BARS 0.47 0.59 1.12 1.80

three functions the nonparametric methods improve the fits substantially. In every case cBARS
performs better than circular smoothing splines. As expected, for λ2(θ) and λ4(θ), for which
the functional variation is non-uniform, circular smoothing splines perform considerably worse
than cBARS: the MISE for circular smoothing splines are, respectively, 50% and 110% greater
than those for cBARS. Figure 3 displays typical fitted curves for λ2(θ) and λ4(θ).

4 APPLICATION TO EXPERIMENTAL DATA

We applied the methods of Section 2 to data from an experiment involving wrist movement
reported by Kakei, Hoffman and Strick [6]. In this experiment, a monkey was trained to move
its wrist in one of eight directions located radially about a circle, while its forearm was restrained
in either a pronated (palm down), a supinated (palm up), or a middle (palm inward) position.
Meanwhile, the firing times of single neurons in the primary motor cortex were recorded. This
experimental paradigm allowed the researchers to dissociate the effects of the direction of move-
ment and the specific muscle needed to make the movement. First, tuning curves were fit to
the firing rates for each forearm position (in [6], modeled with a cosine), then the direction at
which the fitted curve achieved its maximum (the “preferred direction”) was compared across
forearm positions. Neurons with only small changes in preferred direction were dubbed “extrin-
sic like,” because their tuning properties depended only on movement direction, while neurons
with large shifts were dubbed “muscle like,” because their tuning properties changed with the
muscle needed to make the movement. This study gave evidence that variables defined on both
extrinsic and intrinsic (physiological) coordinate systems are encoded by neurons in the primary
motor cortex, addressing a longstanding scientific controversy.

In the Introduction we noted that cBARS provides better fits than parametric models to the
data from the two neurons shown in Figure 1. The data for Neuron 1 appeared to be approxi-
mately Poisson distributed and we fit Poisson regression models by numerically maximizing the
likelihood using the nlminb function in S-PLUS. (We used the log link to fit the cosine model
and the identity link to fit the von Mises model.) The data for Neuron 2 were more closely
approximated by a normal distribution with constant variance, and so to find the maximum
likelihood estimates numerically, we used the least squares criterion. Note that to fit (4), we
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Figure 3: Fits from circular smoothing splines and cBARS for a single data set in the simulation
study with periodic test functions 2 and 4. Both functions have non-uniform variation across
their domains, which leads to better performance by cBARS.

constrained τ1 and τ2 to be of opposite signs to stabilize the optimization. For Neuron 1 the
Poisson deviances for the Cosine, von Mises, circular smoothing spline and cBARS fits were,
respectively, 57.5, 57.1, 37.5 and 36.0. For Neuron 2 the mean squared errors were 226, 161, 132
and 130. Circular smoothing splines were nearly identical to those of cBARS in terms of fitted
values and deviances and are therefore omitted from Figure 1.

5 DISCUSSION

We have extended BARS methodology to the fitting of periodic functions and applied the new
algorithm, cBARS, to the fitting of directional tuning curves from neuronal data. The new
method uses a periodic spline basis, as in the approach of [25], which applies smoothing splines
rather than regression splines with empirically-defined knots. BARS smooths data adaptively
and thereby is able to produce fitted curves that vary slowly in one part of the domain but rapidly
in another. So, too, can cBARS adapt to sudden jumps or peaks in a periodic function. Our
simulation study showed that cBARS can provide better fits than circular smoothing splines.
On the other hand, when the variation in the periodic function is nearly uniform throughout its
domain, circular smoothing splines are likely to produce fits that are nearly the same as those
from cBARS, as for the neuronal data in Figure 1.

Cosine tuning functions are widely used in the analysis of neurophysiological data, and in algo-
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rithms for brain-controlled robotic devices [30]. Recent evidence using 16 directions of movement
has indicated that directional tuning curves often deviate from cosine form [11]. The experi-
ment described in Section 4 involved only eight directions, and therefore, departures from cosine
tuning are less apparent. Nonetheless, as Figure 1 shows, they are sometimes still discernible.
The extent to which they are important neurophysiologically has yet to be determined. There is
already some evidence that allowing for non-cosine tuning curves may improve brain-controlled
robotic devices [31]. The work reported here indicates that incorporation of periodic nonpara-
metric regression methods into algorithms for such devices may be desirable. These methods
may also be useful in other applications where the data is inherently periodic, such as biological
monitoring.
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