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Ventura, Valérie, Can Cai, and Robert E. Kass. Statistical assess-
ment of time-varying dependency between two neurons. J Neuro-
physiol 94: 2940–2947, 2005; doi:10.1152/jn.00645.2004. The joint
peristimulus time histogram (JPSTH) provides a visual representation
of the dynamics of correlated activity for a pair of neurons. There are
many ways to adjust the JPSTH for the time-varying firing-rate
modulation of each neuron, and then to define a suitable measure of
time-varying correlated activity. Our approach is to introduce a
statistical model for the time-varying joint spiking activity so that the
joint firing rate can be estimated more efficiently. We have applied an
adaptive smoothing method, which has been shown to be effective in
capturing sudden changes in firing rate, to the ratio of joint firing
probability to the probability of firing predicted by independence. A
bootstrap procedure, applicable to both Poisson and non-Poisson data,
was used to define a statistical significance test of whether a large ratio
could be attributable to chance alone. A numerical simulation showed
that the bootstrap-based significance test has very nearly the correct
rejection probability, and can have markedly better power to detect
departures from independence than does an approach based on testing
contiguous bins in the JPSTH. In a companion paper, we show how
this formulation can accommodate latency and time-varying excitabil-
ity effects, which can confound spike timing effects.

I N T R O D U C T I O N

Advances in multineuronal recording methods have in-
creased interest in studying the simultaneous activity of two or
more neurons. The timing of potentially correlated activity,
relative to presentation of a stimulus or occurrence of some
behavior, is often studied. An immediate concern is that fluc-
tuations in firing rate will create fluctuations in near-coincident
spiking behavior, even if the neurons act independently. Thus
any attempt to quantify time-varying correlated activity must
take account of time-varying firing rates. In addition, it is
possible that the neurons respond with differing time lags
relative to the stimulus or behavior. Therefore in examining
spike trains from a pair of simultaneously-recorded neurons,
the activity of one neuron at peristimulus times t must be
examined together with the activity of the second at times t �
�, for many lags �, as in Aertsen et al. (1989). From these
considerations two statistical problems emerge. The first is to
assess deviations from the joint spiking behavior that would be
expected if the two neurons were statistically independent. The
second is to acknowledge the large number of assessments that
must be produced, across both peristimulus times t and lag
times �, which may lead to spuriously significant results. (For
example, 1,000 significance tests at the 0.05 level would be
expected to yield 50 “significant” assessments by chance
alone.) On the one hand, potentially large deviations from

expected coincident spike rates that occur at many neighboring
times t would be much more convincing than those that might
occur at isolated times. This suggests smoothing the assess-
ments across time. On the other hand, smoothing alone does
not eliminate the opportunities for statistical false alarms, so it
is highly desirable to have a global evaluation of statistical
significance.

A starting point is to collect the joint spike counts for the
pair of neurons, across times t and t � �, at an appropriate time
resolution (such as 1 ms). These may be displayed with the
joint peristimulus time histogram (JPSTH). To take account of
firing rate variation in the neurons, Aertsen et al. (1989)
proposed a normalized version of the JPSTH and showed how
the normalized departures from expected joint spike counts
could be assessed under the hypothesis that the 2 neurons fired
independently. Aertsen et al. also recognized the importance of
smoothing (see also Kass et al. 2003; and the APPENDIX) but
they did not provide a global evaluation of statistical signifi-
cance. In this paper we use a smoothed version of the JPSTH
to define an alternative, more powerful test, and we show how
the bootstrap may be used to evaluate global statistical signif-
icance (Davison and Hinkley 1997; Efron and Tibshirani
1993). See Ventura (2004) for a short overview of bootstrap
testing and model selection in the analysis of spike train data.

A short summary of our procedure is as follows. If 2 neurons
were to fire independently, in the sense of probability theory,
then the joint spiking probability would equal the product of
the 2 neurons’ individual spiking probabilities. Using the
notations P1(t) for the probability that neuron 1 spikes at time
t, P2(t � �) for the probability that neuron 2 spikes at time t �
�, and P12(t, t � �) for the probability that both neuron 1 spikes
at time t and neuron 2 spikes at time t � �, if the neurons were
independent then the ratio

���t� �
P12�t, t � ��

P1�t� � P2�t � ��
(1)

would equal 1 for all t and all �. The quantity [��(t) � 1] may
be interpreted as the excess proportion, above what is predicted
by independence, in the probability that neuron 1 will fire at
time t and neuron 2 will fire at time t � �. As we explain in
detail in subsequent sections, our procedure begins with a
smooth estimate �̂�(t) of the function ��(t).

Throughout this paper we assume time t takes on discrete
values defined by the recording resolution (such as 1 ms). A
point process representation in continuous time would be
possible, but is not necessary for our purposes.

Our test of excess synchronous activity is based on the
magnitude of the excursion, across time, of �̂�(t) outside certain
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bounds centered at 1. When �̂�(t) is either high above its
expected value of 1 for a brief period of time, or moderately
above for a substantial period of time, the magnitude of the
excursion becomes large, providing evidence against indepen-
dence. We have used the bootstrap both to define excursion
boundaries and to compute statistical significance.

Our bootstrap excursion test was developed with the goal of
being useful for small or moderate numbers of trials. In related
work, Pipa and Grün (2003) show how to use both a permu-
tation test and a bootstrap test to assess the significance of
synchrony using the unitary event coincidence count as the test
statistic. Their approach, however, considers only the total
coincidence count across the trial interval and does not attempt
to assess time-varying excess firing. The method here provides
temporal information in the spirit of the normalized JPSTH. An
important additional motivation for this work is that the ex-
cursion test may be extended to adjust for excess trial-to-trial
variability, as described in a companion article (Ventura et al.
2005b). In PROPERTIES OF THE EXCURSION TEST we present results
from simulation studies, under the assumption of Poisson
spiking, that show that our test has the correct type I error. In
NON-POISSON VARIABILITY we show how the procedure may be
extended to non-Poisson spiking, which is important in many
settings, and we report additional simulation studies of the
non-Poisson case that show that non-Poisson spiking behavior
can often be ignored without damaging the properties of the
test.

B O O T S T R A P S I G N I F I C A N C E T E S T

Figure 1 illustrates the statistical procedure presented in this
paper. Panels A–C display the simulated data; panel D displays
��(t) and a smooth estimate �̂�(t), for � � 0. Under the null

hypothesis of independence �̂�(t) will, because of random
fluctuations, differ from ��(t) � 1. Real departures of ��(t) from
1, the kind we wish to detect, will be statistically substantial
and will be sustained over some interval of time. We therefore
measure the deviation of �̂�(t) from 1 by assessing the magni-
tude of its excursion beyond 95% probability boundaries for �̂�

based on the assumption of independence. This is illustrated in
Fig. 1E. Note that some excursions beyond the boundaries
remain likely to occur as a result of chance alone, under the
null hypothesis. We evaluate the probability of large excur-
sions, and thereby obtain a P value for the statistical signifi-
cance test.

The computation begins with a set of bootstrap samples,
which are first used to compute 95% probability boundaries for
��(t) � 1 under the assumption of independence, and are
subsequently reused to compute the probability of large excur-
sions outside those boundaries. The upper boundary hU(t), at
each time t, is defined to be the value such that the probability
of �̂�(t) � hU(t), under independence, is 2.5%; similarly, the
lower boundary hL(t) is defined to be the value such that the
probability of �̂�(t) � hL(t), under independence, is 2.5%. We
refer to these boundaries as pointwise null bands. This is
explained in the next subsection. Because this procedure is
computationally intensive, in the APPENDIX we also discuss the
use of Normal approximations in creating the null bands, based
on a smaller bootstrap simulation. We then define a test
statistic based on the null bands, and specify how the bootstrap
samples drawn to compute the bands are reused to compute the
P value of the test statistic.

In specifying the bootstrap significance test we will assume
that smooth estimates of the firing rate functions P1(t) and
P2(t � �) (smoothed versions of the PSTHs) are available from

FIG. 1. A and B: peristimulus time histograms (PSTHs) for the 2 simulated neurons, based on 200 trials, together with BARS estimated firing rates (dotted
curves), and true firing rates P1(t) and P2(t) (bold). C: main diagonal of the joint persistimulus time histogram (JPSTH), together with BARS estimated (dotted),
and true joint firing rate P12(t, t) (bold). D: true function �0(t), defined in Eq. 1 (bold), and estimated �̂0(t) (solid). E: estimate �̂0(t) (solid) with 95% bootstrap
confidence bands hL�0.025 and hU�0.975 (dashed). Excursion Ĝobs of �̂0(t) beyond the bands is the area of the shaded region.
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a preliminary analysis, which we write as P̂1(t) and P̂2(t � �).
A smoothing method may similarly be applied to the joint
spike counts at times t for neuron 1 and t � � for neuron 2 to
obtain an estimate P̂12(t, t � �) of P12(t, t � �). An estimate
�̂�(t) of ��(t) in Eq. 1 may thereby be obtained as

�̂��t� �
P̂12�t, t � ��

P̂1�t� � P̂2�t � ��

Details about smoothing are provided in the APPENDIX. In the
work reported here we have applied a recently developed
smoothing method, called BARS, that has been shown to
perform very well in similar smoothing applications (DiMatteo
et al. 2001; Kass and Wallstrom 2002; Zhang et al. 2003).
However, in many applications Gaussian filtering, which is
available in statistical software packages, will be adequate. The
advantage of introducing ��(t) is that we can estimate it
relatively efficiently, which in turn will provide increased
power to detect synchrony, as shown later in Fig. 3. More
details can be found in the APPENDIX; see also Kass et al. (2003).

Pointwise null bands for ��(t)

Assuming the data set consists of R trials in which spiking
events for a pair of neurons are observed, the following steps
may be used to obtain 95% pointwise null bands for ��(t) � 1
under the assumption of independence.

1) Simulate R trials of Poisson spike trains for the 2 neurons
independently using the estimated firing rate functions P̂1(t)
and P̂2(t); this is a bootstrap sample. The non-Poisson case is
discussed later.

2) Obtain a smooth estimate �̂�(t) based on this bootstrap
sample, for each � of interest.

3) Repeat steps 1–2 N times to get N estimates �̂�(t).
4) For each time t, define hL(t) and hU(t) to be the 0.025 and

0.975 quantiles of the N values �̂�(t) [so that, for example, 2.5%
of the sampled �̂�(t) values lie below hL(t)].

Note that Step 1 is an implementation of a parametric
bootstrap. An alternative nonparametric bootstrap procedure is
also straightforward: form R joint spike trains by sampling at
random with replacement the observed spike trains of neuron
1, and separately of neuron 2. This nonparametric option is
appropriate if there are a large number of trials and there is no
excess trial-to-trial variability (discussed in Ventura et al.
2005b). Other nonparametric bootstrap simulations can be
found in Ventura (2004).

To determine the bands accurately we have used bootstrap
sample sizes of N � 1,000. To obtain (1 � Q)% bands for any
Q instead of 95% bands, we take hL(t) and hU(t) to be the Q/2
and 1 � (Q/2) quantiles, respectively. To reduce the compu-
tation effort, a normal approximation can be used with N � 50,
as described in the APPENDIX.

Significance test for assessing time-varying synchrony

We define Gobs to be the largest area of any contiguous
portion of �̂�(t) that exceeds the bands, where “obs” stands for
“observed,” shown as the shaded area in Fig. 1E. A mathemat-
ical definition of Gobs is given in the APPENDIX. To calculate its
bootstrap P value, let �̂�

(n)(t), n � 1, . . . , N stand for the
estimate of ��(t) obtained from the nth bootstrap sample. For
each bootstrap sample we compute Gboot

(n) , the largest contigu-
ous portion of �̂�

(n)(t) that exceeds the bands. Then the bootstrap
P value for Gobs is

P �
number of bootstrap samples for which Gboot

(n) � Gobs

N � 1

as is standard for bootstrap tests. As an illustration, we ob-
tained P � 0.001 for the shaded area in Fig. 1E, so we would
conclude correctly that there exists synchrony between this pair
of neurons at time lag � � 0.

P R O P E R T I E S O F T H E E X C U R S I O N T E S T

Formally, a statistical test of hypotheses yields either the
correct decision, or one of 2 types of errors. A type I error
occurs when the null hypothesis is rejected erroneously, as we
would here if we detected synchronous activity when the 2
neurons were independent. Conversely, a type II error occurs if
we fail to detect synchrony when in fact the 2 neurons are not
independent. In applying a test, the truth is unknown. A good
test will have small probabilities of type I and type II errors.
However, the probabilities of making the 2 types of errors vary
in opposite directions, and it is impossible to eliminate errors.
Additionally, it is often difficult to design a test so that it has
specified type I and type II errors. The accepted way to proceed
is to build a test that has prespecified probability � of a type I
error, say 0.05, and also has a small probability of a type II
error. That is, in statistical jargon, we try to build a powerful
test.

In this section we evaluate the operating characteristics of
the bootstrap significance test and compare it to a simpler test

FIG. 2. Observed type I error �̂ vs. its nominal value � for (B) the bootstrap excursion test, and for (C) the alternative tests based on contiguous bins of the
JPSTH. A: firing rate functions used for the 2 simulated neurons. B, C: having set the nominal type I error to � (shown on the x-axis), the observed type I error
is the proportion among 1,000 simulated data samples for which the P value satisfies P � �. Solid line corresponds to perfect agreement � � �̂, and the bold
bands are 95% confidence intervals for �̂. The plot displays good agreement between �̂ and � for our bootstrap test in B, but not for the JPSTH-based tests in
C.
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based on the normalized JPSTH of Aertsen et al. (1989), which
we describe below. We consider first, in the next subsection,
whether the bootstrap test has the correct probability of a type
I error. Then, in the subsequent subsection we consider the
power of the test (the probability of rejecting the null hypoth-
esis when it is indeed false).

As a comparison, we also considered a significance test
based on the normalized JPSTH of Aertsen et al. (1989), the (t,
t � �) pixel of which is

���t� �
P12�t, t � �� � P1�t�P2�t � ��

�P1�t��1 � P1�t�	P2�t � ���1 � P2�t � ��	
(2)

with estimate �̂�(t) taken to be the value of ��(t) when the
spiking probabilities P1(t), P2(t) and joint spiking probability
P12(t, t � �) are replaced with their observed-data counterparts,
i.e., the spike counts divided by the number of trials (and the
pixel width). If the 2 neurons are independent, then �̂�(t) has
approximately a standard normal distribution for all � and all t.
Large values of � �̂�(t) � are evidence that the 2 neurons are
correlated at lag �, but because large magnitudes for isolated
values of t would likely be interpreted as chance fluctuations, we
define the test to reject the null hypothesis whenever �̂�(t) � z�/2
or �̂�(t) � �z�/2 for 2 contiguous values of t, where z�/2 is the
�/2th quantile of the standard normal distribution. We also con-
sider the corresponding 3 contiguous values test.

Significance level—probability of a false negative

We examine only the case � � 0, corresponding to syn-
chrony because we expect performance for other values of � to
be similar: the procedures and data are essentially identical
(except that for large � � � the data become sparse, as we would
be examining data that go into the upper left and lower right
corners of the JPSTH, and there the statistical power drops off
sharply). We simulated 1,000 pairs of independent neurons,
i.e., H0 true: �0(t) � 1 for all t. The firing rates of the neuron
pairs are shown in Fig. 2A.

For each simulated neuron pair, we calculated the P value
specified earlier in Significance test for assessing time-varying
synchrony. If we reject the null hypothesis based on � � 0.05,
then the percentage of the P values �0.05 is the empirical type
I error �̂ of the test. Figure 2B displays a plot of �̂ versus �, for

values of � ranging up to 10%. We find, in this case, that the
empirical type I error of our excursion test closely matches the
nominal � level. This is not the case for the JPSTH based tests,
as shown in Fig. 2C. These tests do not have the correct
properties. The empirical type I error of the JPSTH based tests
is an unknown function of the prespecified �; number of
contiguous bins considered, and width of the bins.

Power—probability of a false positive

To examine the power of significance tests for time-varying
dependency we must define time-varying alternatives to the
null independence model. In our framework (and again con-
fining attention to � � 0) this means we must define some set
of functions �0(t) that are not identically equal to 1. We
continue to use 2 neurons with the firing rates displayed in Fig.
2A, and set �0(t) � 1 � 4	f (t), where f (t) is a bell-shaped
function we took to be the Normal density function with mean
350 ms and SD 55, and 	 is a gain coefficient taking increasing
values 1, 2, 3, 4, 6, 8, and 12, which correspond to maximum
percentage of excess joint firing rates of 2.9, 5.8, 8.7, 11.6,
17.4, 23.2, and 34.8, respectively. The �0(t) functions we used
here are proportional to the �0(t) plotted in Fig. 1D.

For 2 alternative statistical tests, here the bootstrap-based
excursion test versus the 2 contiguous-bin JPSTH test, to be
comparable with respect to power they must be defined to have
the same type I error. Because the JPSTH based test does not
have the specified type I error, we modified it to reject the null
hypothesis whenever �̂0(t) � �** �̂o(t) � ��** for 2 contig-
uous values of t, where �** is a threshold value so that the type
I error of this procedure is the prespecified � � 0.05. The value
�** is not the same as z�/2, the 0.05-level threshold for a single
t: it is computed by comparing many alternative thresholds
under the null hypothesis and choosing the value that rejects
(falsely) 5% of the time.

Figure 3 displays the results of the power calculation. The
bootstrap test is able to achieve very good power when the
maximum percentage of excess joint spiking activity is around
20%. The JPSTH-based method using Eq. 2 is much less
powerful. In fact, when the maximum excess firing rate is
17.5%, four times as many trials would be needed using the
JPSTH-based method than using the bootstrap significance
test.

FIG. 3. Power of the bootstrap-based excursion test com-
pared with the test using 2 contiguous bins of the JPSTH. Power
(probability of rejecting H0) is plotted against maximum per-
centage excess firing [max �0(t) � 1]. Both tests have the same
probability of rejecting H0 when H0 holds (type I error) � �
0.05, indicated by the coincidence of the 2 power graphs when
the percentage excess firing is zero.
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N O N - P O I S S O N V A R I A B I L I T Y

The foregoing material assumed Poisson variation either im-
plicitly, by ignoring spiking history (timing of sequences of
spikes) within trials, or explicitly, by generating spike trains from
Poisson distributions, both within the bootstrap procedure and in
our simulation studies. Two remaining issues are 1) the extent to
which the Poisson-based bootstrap P value becomes inaccurate in
the presence of non-Poisson variability in the observed spike
trains, and 2) the manner in which the excursion test should be
modified for non-Poisson variability, and its resulting statistical
properties. We consider these issues in this section.

Robustness of the excursion test applied to non-Poisson
spike trains

To examine the effect of departures from Poisson spiking on
the excursion test for synchrony we performed further simula-
tion studies. These consisted of applying the test to non-
Poisson data and recording the empirical significance level �̂ to
check whether �̂ � �.

We considered two types of non-Poisson spike trains. Spike
trains of the first type were Poisson, pruned back to enforce a hard
refractory period. The second type constituted gamma spike trains
of order q ranging from 0.05 (much more variable than Poisson
processes) to 16 (much less variable). An easy way to understand
a gamma process with q an integer is to consider simulating one.
A Poisson spike train is simulated as follows: divide the time in
small intervals centered on times ti, and generate a spike in each
interval with probability P(ti), where P(t) denotes the spiking
probability at time t. A gamma process of order q is defined as the
waiting time until the qth event of a Poisson process; therefore to
generate such a process with firing rate P(t), we generate a
Poisson process with rate q � P(t), but retain only every qth spike.
For more general q values (integer or not, above or below 1), we
generate gamma processes using the time rescaling theorem, as
described in Brown et al. (2002).

To further explain the properties of gamma processes, we
note that for a Poisson process with constant rate 
, the
interspike intervals (ISIs) have an exponential distribution with
mean 
�1 and variance 
�2. For a gamma(q) process with rate


, the distribution of the ISI is q�1 times a gamma distribution
with mean q
�1 and variance q
�2. Thus the ISIs have mean

�1, as do the ISIs of the Poisson process, but variance 
�2/q
that is smaller (larger) if q is larger (smaller) than 1. Therefore
the spikes of a gamma process with q � 1 (q � 1) occur with
more (less) regularity than the spikes of a Poisson process with
the same firing rate. Figure 4 illustrates this. It shows raster
plots, each based on 10 spike trains generated from gamma
processes with rate 
 � 200 Hz, and q � 0.25, 1 (Poisson), and
4, respectively. The right panels of Fig. 4 show the distribu-
tions of the number of spikes in a 10-ms window; all have
mean 2, as expected, because the average ISI for all spike trains
is 5 ms. The larger (smaller) q is, the smaller (larger) the ISI
variability is about the mean. Also, as q decreases, the proba-
bility of observing 10 spikes in a 10-ms window increases.

Figure 5A shows the empirical significance level �̂ of the test
applied to a pair of neurons that are Poisson with equal firing rates
ranging from 
 � 25–125 Hz, and pruned back to have the same
hard refractory period d1 � d2 �d � 0, 1, 5, or 10 ms. For each
combination of d and 
 we simulated 1,000 independent neuron
pairs, applied the joint spiking model under the Poisson assump-
tion, and calculated the P value of the excursion test ��(t) for � �
0. When d � 0, so that the 2 neurons are Poisson, �̂ should not,
and indeed does not, differ significantly from �. The type I error
also remains correct provided the refractory period d is small
compared with the average ISI, which is 1,000
�1 ms. As a rule
of thumb based on Fig. 5 and additional simulations, we found
that, when both neurons have the same rate and the same refrac-
tory period, there should be little concern about applying the
Poisson based excursion test to non-Poisson spike trains provided
d � 0.1(1,000
�1) ms. We next investigate the robustness of the
Poisson-based test when the 2 neurons do not have the same rates
or refractory periods.

Figure 5B shows �̂ when neuron 1 has a rate of 200 Hz, and
extreme ISI to refractory period ratio with d1 � 5 or 10 ms, so that
d1 �� 0.1(1,000
�1). We chose the fairly extreme rate of 200 Hz
to demonstrate more clearly the limitations of our test. Neuron 2
has a refractory period d2 ranging from 0 to 10 ms, and rate 200,
125, or 50 Hz. Note that when the rate of neuron 2 is as low as

 � 50 Hz, 0.1(1,000
�1) � 2, so that by the standards of Fig. 5A,

FIG. 4. Properties of gamma processes. Left: raster plots of gamma(q) spike trains with firing rate 
 � 200 Hz. Right: simulated distributions of the number
of spikes in 10-ms windows. Black dots in the middle panel are the theoretical distribution of the counts for a Poisson process; simulated and true distributions
match.
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the ISI to refractory period of neuron 2 is still fairly extreme for
d2 � 2 ms, yet with no damaging effects on �̂. This suggests that
the departure of �̂ from � is severe only if both neurons, not just
one, have extreme ISI to refractory periods ratios, and that the
departure is all the more severe if the refractory periods and the
rates of the 2 neurons are similar.

Figure 5C shows �̂ for a variety of gamma point processes.
Neuron 1 is gamma(q1) with rate 200 Hz, whereas neuron 2 is
gamma(q2) with rate 130 Hz. We observe that the Poisson
procedure applied to gamma spike trains produces approxi-
mately the correct empirical significance level �̂, unless q1 and
q2 are both either very large, or very small.

Non-Poisson models

Neuronal spiking behavior that follows a Poisson process is
determined by the spiking probability P(t) that, importantly,
depends only on time t. For a general (not necessarily Poisson)
point process the firing rate is governed by the conditional
spiking probability P(t � H), where H is the spiking history (for
a given trial) up to time t. Various non-Poisson alternatives
may be used, including the inhomogeneous Markov interval
(IMI) models discussed by Kass and Ventura (2001), Gamma
process models, or other inhomogeneous versions of renewal
processes (Barbieri et al. 2001; Brown et al. 2002). The joint

spiking model under the alternative non-Poisson assumption
may be fitted just as under the Poisson assumption except the
form for the firing rate probability functions, P1(t) and P2(t) of
each neuron must be changed. We make the simplifying
assumption that, although the overall joint spiking depends on
the spiking history for each neuron through their conditional
individual firing rates, their excess joint spiking above that
predicted by independence ��(t) is not itself mediated by recent
spiking activity. Some mathematical details are given in the
APPENDIX. The smoothed estimate of ��(t) is obtained, as before,
by smoothing the joint spike counts to obtain a smoothed
version of the numerator of Eq. 1 and then dividing by the
similarly estimated product for the denominator. In our work
we have again used spline-based likelihood methods to esti-
mate the conditional spiking probabilities, following Kass and
Ventura (2001).

We repeated the simulation study of the previous subsection,
but we used an IMI rather than a Poisson process to define the
bootstrap excursion test. That is, bootstrap samples of spike
trains were simulated from an IMI rather than from a Poisson
model. Figure 5D displays �̂ in the case where both neurons
were Poisson with firing rate 200 Hz and hard refractory period
10 ms. We can see that the type I errors are now indistinguish-
ably close to the desired level � � 0.05. The outcome of the
IMI based bootstrap test applied to the other truncated Poisson

FIG. 5. Type I error of excursion test under the Poisson assumption when (A, B) the data are non-Poisson attributed to a hard refractory period, and when
(C) the data are gamma. A: both neurons have the same firing rate (x-axis) and the same refractory period d1 � d2. Horizontal line is at � � 5%, the type I error
the test is supposed to achieve. Vertical bars show the simulation error in the form of 95% confidence intervals; they were omitted in B for clarity. (Vertical bars
have been separated horizontally to make them more distinct.) B: neuron 1 has firing rate 200 Hz and refractory period d1 � 5 or 10 ms; neuron 2 has firing
rate 200, 130, or 50 Hz, and refractory period d2 (x-axis). C: neurons 1 is gamma(q1) with rate 200 Hz; neurons 2 is gamma(q2) with rate 130 Hz. x-axis is on
the log scale for clarity. D: type I error of excursion test for the Poisson spike trains with hard refractory period of 10 ms in A, when the model in Eq. A3 is
used in the bootstrap simulation.
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and gamma spike trains of the previous subsection were sim-
ilar.

D I S C U S S I O N

The function ��(t) uses probability to characterize theoreti-
cally the evolving dependency in the firing of 2 neurons. A
smooth estimate �̂�(t), like a smoothed diagonal of the JPSTH,
describes evolving dependency in the data. Because the data
are noisy, a statistical procedure must be used to judge whether
an observed deviation of �̂�(t) away from the value of 1, which
would hold under independence, arises from chance fluctua-
tions.

The magnitude of the excursion of �̂�(t) beyond the 95% null
bounds matches the intuition that increases in joint spiking
activity over continuous intervals of time above that expected
under independence should provide evidence of dependency.
Creation of an approximately correct P value for any excursion
test of this type could be difficult. With the bootstrap, however,
it is quite straightforward. A substantial literature on the
bootstrap indicates that it has good statistical properties (e.g.,
Davison and Hinkley 1997; see Sections 2.6 and 5.4 and
references therein), and the results presented here indicate that
the bootstrap excursion test performs well in the sense of
yielding accurate P values and having good power for moder-
ate sample sizes.

The particular choice of ��(t) is not essential to the bootstrap
approach applied here, and alternative measures of departure
from independence could be used instead. As Ito and Tsuji
(2000) observed, there is no uniquely compelling normaliza-
tion of the JPSTH and each normalization effectively models
the occurrence of excess joint spiking activity beyond what
would be predicted by independence. Thus when dependency
evolves over time different measures could lead to distinct
pictures of the phenomenon. For example, in the presence of
time-varying marginal firing rates, excess joint spiking activity
that is constant in time when measured in the ratio form of ��(t)
would appear nonconstant when measured in an additive form.

Non-Poisson neurons can produce a greater or smaller num-
ber of joint spikes than that predicted under Poisson firing. We
discussed and reported on applications of the bootstrap excur-
sion test to non-Poisson spike trains. For mild departures from
non-Poisson spiking, and low firing rates, the effects on per-
formance of the Poisson-based test are not large. However,
good data-analytical practice would involve checking for non-
Poisson behavior by fitting non-Poisson models and, if indi-
cated, applying the non-Poisson version of the bootstrap ex-
cursion test discussed herein.

As Bar-Gad et al. (2001) have documented convincingly,
omission of spikes resulting from erroneous spike sorting can
have a substantial effect on assessments of correlated activity.
We have assumed throughout that the recorded spike trains are
accurate representations of neuronal action potential se-
quences. Under these circumstances, the benefit of the statis-
tical approach adopted here is that it efficiently used the
information in the data. In addition, the framework allows us to
extend the significance test to include effects such as excess
trial-to-trial variation, which is discussed in the companion
paper (Ventura et al. 2005b).

A P P E N D I X

At several points in this paper we simulate joint spike trains. It is
easy to do under the assumption that the 2 neurons are independent.
Here, we describe how we simulated spike trains for 2 correlated
neurons with marginal rates P1(t), P2(t) and joint rate P12(t, t) �
P1(t)P2(t)�0(t). This algorithm is valid for Poisson, and for non-
Poisson spike trains when we substitute Pi(t/Hi) for Pi(t). It extends
immediately to correlations at other lags. It does not extend to
correlations that spread across several lags.

1) Simulate a spike train for neuron A with firing rate P1(t).
2) Simulate the spike train of neuron B conditional on the spike

train of neuron A, that is
a) If neuron A had a spike at time t, generate a spike for neuron B

at time t from a Bernoulli distribution with conditional probability

P2�t�neuron A spiked at t� �
P12�t, t�

P1�t�

�
P1�t�P2�t��0�t�

P1�t�

� P2�t��0�t�

b) If neuron A did not fire at time t, generate a spike for neuron B
at time t from a Bernoulli distribution with probability

P2�t�neuron A did not spike at t� �
P2�t� � P2�t�P1�t��0�t�

1 � P1�t�

The statistical efficiency of smoothing

The function ��(t) was introduced in Eq. 1 as a measure of
time-varying departure from independence. The advantage of intro-
ducing ��(t) is that we can estimate it relatively efficiently, which in
turn will provide increased power to detect synchrony, as was shown
in Fig. 3.

Figure 1 displays the result of a simulation of 2 correlated Poisson
neurons in which the correlated activity occurs at lag � � 0, i.e.,
synchronously. Figure 1 also shows the estimate �̂0(t) of �0(t) obtained
by smoothing the sequences Y1(t)/R to estimate P1(t), Y2(t)/R to
estimate P2(t), and Y0

12(t)/R to estimate P12(t, t � 0), where Yi(t) is the
number of times out of R trials neuron i (i � 1, 2) fires at time t, and
Y0

12(t) is the number of times neuron 1 fires at time t and neuron 2 fires
at time t � t � �, with � � 0. To do the smoothing we prefer a
spline-based method called BARS (DiMatteo et al. 2001) because it
produces relatively good statistical estimates in many contexts, and
works particularly well when a firing-rate function varies rapidly in
some part of the time domain. However, this particular smoothing
method is not essential to the methodology presented here: any other
smoothing method could be used, such as Gaussian filtering (see Kass
et al. 2003).

It is not possible to illustrate the efficiency gain of smoothing based
on ��(t) because an unsmoothed estimate of ��(t) is not defined at
times t when either Y1(t) � 0 or Y2(t � �) � 0. Instead, we illustrate
the benefits of smoothing based on the main diagonal of the JPSTH,
P12(t, t) with an unsmoothed estimate Y0

12(t)/R, and a smoothed
estimate P̂12(t, t), which we take to be a BARS-smoothed Y0

12(t)/R.
Figure A1 shows the true diagonal of the JPSTH we used in Fig. 1,

along with 95% simulation bands obtained from 1,000 simulations
from our model for the raw diagonal of the JPSTH, Y0

12(t)/R, and for
the BARS-smoothed P̂12(t, t). This clearly shows that the variability
of the smoothed estimate is much smaller. Another way of measuring
the quality of an estimate f̂ (t) of f (t) is to calculate (or approximate)
its mean integrated squared error (MISE)

MISE � � � f̂�t� � f�t�	2dt

The MISE values for the smoothed and unsmoothed estimates of
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P12(t, t) are indicated in Fig. A1, and suggest that for the unsmoothed
diagonal of the JPSTH to have the same accuracy as P̂12(t, t), one
would need to collect approximately 10 times as much data. See also
Kass et al. (2003) for additional examples of the advantages of
smoothing.

Normal approximations for the bootstrap null bands of ��(t)

As a rough guideline we recommended N � 1,000 bootstrap
samples to construct 95% null bands for ��(t). To reduce computing
time, if desirable, a Normal approximation may be used: for large
number of trials R one may assume �̂�(t) � Normal [1, �z

2(t)], where
�z

2(t) is the variance of �̂�(t), which can be estimated for each t by the
sample variance of the �̂�(t) computed from a small bootstrap sample
(e.g., N � 50).

In practice, to make Normal approximations more accurate a
change of variable (or “transformation”) is usually helpful. Our
simulations suggest that the square root transformation improves
Normality, that is, we may use

��̂��t� � Normal �1, �2�t�	

where, again, �2(t) is estimated from a small bootstrap simulation, say
with R 
 50.

Mathematical definition of the test statistic

Focusing on a particular diagonal specified by �, the null hypothesis
of no synchrony between the 2 neurons at lag � is that ��(t) � 1 for
all t. (The complete null hypothesis of independence is that ��(t) � 1
for all t and all �.) A test statistic is a formal ordering of the deviations
from the null hypothesis, that is, a way of saying which deviations are
greater than others. In our context, deviations of interest will be those
that affect many contiguous values of time, so we define our test
statistic to be the magnitude of the largest excursion of the estimate of
��(t), which we denoted by �̂�(t), either above the null band hU(t) or
below the null band hL(t). More specifically, our test statistic is the
largest area between the fitted curve and the null band. This is pictured
as the shaded area in Fig. 1 for our simulated example. Mathemati-
cally, the observed value of the test statistic is

Gobs � maxts, te ��
ts

te

��̂��t� � hU�t�	dt,�
ts

te

�hL�t� � �̂�t�	dt� (A1)

where ts and te are the starting and ending times of the periods during

which �̂�(t) is outside the null bands, and the maximum is taken across
all values of ts and te. Then Gobs is the largest area of �̂�(t) exceeding
the band.

Non-Poisson models

When the observed spike trains are severely non-Poisson, it will be
safer to apply the bootstrap excursion test based on a model more
appropriate than Poisson. Indeed, for non-Poisson spike trains, the
spiking probabilities of the 2 neurons depend on the past, so that

P12�u, v� � P1�u�H1� � P2�v�H2� � ��u, v� (A2)

where Hi (i � 1, 2) represents the respective spiking histories for the
2 neurons up to time t. In the special case where we use IMI models
to fit the observed spike trains, each neuron’s conditional intensity
probability function may be written in the form

P�t�H� � P�t, s*�t�	

where s*(t) is the most recent spike time before t so that Eq. A2
becomes

P12�u, v� � P1�u, s*
1 �u�	 � P2�v, s*

2 �v�	 � ��u, v� (A3)

The estimate of ��(t) in Eq. 1 is then obtained as the ratio of smoothed
estimates of P12(t, v), and P1[t, s*

1(t)] � P2[t��, s*
2(t��)], the latter

obtained as in Kass and Ventura (2001).
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FIG. A1. 95% simulation bands for the main diagonal of the JPSTH based
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confirm that.
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