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Abstract Neuroprosthetic devices such as a computer
cursor can be controlled by the activity of cortical neu-
rons when an appropriate algorithm is used to decode
motor intention. Algorithms which have been proposed
for this purpose range from the simple population
vector algorithm (PVA) and optimal linear estimator
(OLE) to various versions of Bayesian decoders. Al-
though Bayesian decoders typically provide the most
accurate off-line reconstructions, it is not known which
model assumptions in these algorithms are critical for
improving decoding performance. Furthermore, it is
not necessarily true that improvements (or deficits) in
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off-line reconstruction will translate into improvements
(or deficits) in on-line control, as the subject might
compensate for the specifics of the decoder in use at
the time. Here we show that by comparing the perfor-
mance of nine decoders, assumptions about uniformly
distributed preferred directions and the way the cursor
trajectories are smoothed have the most impact on de-
coder performance in off-line reconstruction, while as-
sumptions about tuning curve linearity and spike count
variance play relatively minor roles. In on-line control,
subjects compensate for directional biases caused by
non-uniformly distributed preferred directions, leaving
cursor smoothing differences as the largest single algo-
rithmic difference driving decoder performance.

Keywords Neural decoding · Off-line reconstruction ·
Prosthetics · Bayesian inference

1 Introduction

Recent developments in experimental technology allow
us to record neural activity from ensembles of motor
cortical neurons in real time. When coupled with an
appropriate decoder, the activity of these neurons can
be used to establish a brain-computer interface, and
directly drive the motion of, for example, a cursor on
a computer screen or a robotic arm (Chapin et al. 1999;
Serruya et al. 2002; Taylor et al. 2002; Lebedev and
Nicolelis 2006; Velliste et al. 2008). Many decoding al-
gorithms have been proposed for this purpose; choices
range from the simple population vector algorithm
(PVA) (Georgopoulos et al. 1986, 1988) and optimal
linear estimator (OLE) (Salinas and Abbott 1994) to
various versions of Bayesian decoders (Brockwell et al.
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2004; Wu et al. 2006; Brockwell et al. 2007; Yu et al.
2007; Foldiak 1993).

The PVA characterizes each neuron’s activity by
preferred direction and performs optimally when the
tuning functions are linear, the set of preferred direc-
tions are uniformly distributed, and spike counts in
adjacent time bins are conditionally uncorrelated (e.g.,
Zhang et al. 1998). To improve performance when a set
of preferred directions are not uniformly distributed,
Salinas and Abbott suggested the OLE which corre-
sponds to least-squares estimation (Salinas and Abbott
1994). The PVA may be considered a special case of
least-squares estimation when the preferred directions
are assumed to be uniformly distributed. Bayesian de-
coders make use of a fully probabilistic model com-
prising 1) an observation model, which describes how
the observed neural activity relates to the time-evolving
signal of interest, and 2) a state model, which describes
how the signal changes from one time step to the next.

Bayesian decoders typically provide the most accu-
rate off-line trajectory reconstructions (Brockwell et al.
2004; Wu et al. 2006; Yu et al. 2007). However, since
Bayesian and linear decoders differ in several respects,
it is not known which factors are critical for improving
device performance. Furthermore, it is not necessarily
true that improvements in off-line reconstruction will
translate to improvements on-line control, and deficits
in off-line reconstruction will translate to deficits in on-
line control. The latter case is almost certainly wrong,
because the subject might compensate for the specifics
of the decoder in use at the time (Chase et al. 2009).

Neural decoders such as the PVA, OLE or Bayesian
decoder are each derived as the optimal estimators un-
der certain assumptions. In this study, we consider four
assumptions underlying derivation of these decoders:
(A) uniformity of a set of preferred directions, (B)
tuning curve linearity, (C) spike count variance, and
(D) smoothing process. We assess the performance of
nine decoders (the PVA, plus eight decoders obtained
by taking one of two alternative assumptions in each of
conditions (B), (C) and (D)) in off-line reconstruction
of hand control data, and three decoders (PVA, OLE
and a Bayesian decoder) in a brain-control task. By
comparing the performance of the decoders under each
of these set of conditions, it is possible to attribute per-
formance differences to the four modeling assumptions.

In off-line reconstruction, we find that assumptions
about uniformity in the set of preferred directions
and the way the cursor trajectories are smoothed are
the most critical for improving decoding performance;
perhaps surprisingly, assumptions about tuning curve
linearity and spike count variance play relatively minor
roles. In on-line control, subjects compensate for biases

caused by non-uniformly distributed preferred direc-
tions, leaving cursor smoothing differences in decoders
as the largest single algorithmic difference driving
decoder performance.

2 Decoding algorithms

In this section, we briefly review the derivation of the
decoding algorithms. Decoding algorithms consist of
two components: an encoding model and a filtering
process. The optimal estimator will depend on the mod-
elling choices of both components.

2.1 Encoding model

The derivation of a decoding algorithm starts by assum-
ing an encoding model. Let yi,t be the spike count of the
i-th cell (i = 1, . . . , N) at time t, and vt ∈ R

d (where d
is the number of movement dimensions) be the to-be-
decoded velocity of the intended movement at time t.
Throughout this article we assume that the neural firing
rates are conditionally independent given the velocity.
An encoding model is specified by two components;
one describes the dependency of mean spiking activity
on velocity,

E(yi,t) = f (vt, pi), (1)

where pi denotes the preferred direction of i-th cell:
the other describes the variance of spiking activity,
Var(yi,t). We will specify these components for each of
the decoding algorithms below.

2.1.1 Linear and constant variance model

If we take the mean model to be a cosine (linear) tuning
function,

f (vt, pi) = bi + mi pi · vt, (2)

and assume the normalized spike counts, zi,t = yi,t−bi

mi
,

have a constant variance for all i and t, then it is
well known in statistical analysis that ordinary least-
squares regression gives the optimal estimator of vt, in a
minimum-variance sense (Bickel and Doksum 2006). If
we collect the normalized spike counts together into a
vector zt = (z1,t, . . . , zN,t)

T and the preferred directions
into a corresponding matrix P = ( p1, p2, . . . , pN)T , the
ordinary least-squares estimate is expressed as

v̂t = (PT P)−1 PT zt. (3)

In the neuroscience literature, this is also called the
optimal linear estimator (OLE) (Salinas and Abbott
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1994).1 If we further assume that the preferred direc-
tions are uniformly distributed in a unit sphere in R

d,
Eq. (3) reduces to

v̂t = d
N

PT zt, (4)

which corresponds to the population vector algorithm
(PVA) estimate (Georgopoulos et al. 1986, 1988).

2.1.2 Log-linear model

Spike counts often exhibit Poisson-like variability,
where the variance of the spike count is not constant,
but rather is proportional to the mean. Log-linear mod-
els may be more adequate for the analysis of such data
(McCullagh and Nelder 1989). In log-linear models,
the two components of the classical linear model are
replaced in the following way: first, the count distribu-
tion is assumed to be Poisson, or more generally, the
variance is assumed to be

Var(yi,t) = σ 2 E(yi,t), (5)

where σ 2, the dispersion parameter, is assumed to
be constant over the data (σ 2 = 1 for Poisson case).
Under-dispersion, σ 2 < 1, implies less variable spike
counts, which may occur when using filtered spike
counts (see Section 2.2 for filtered spike counts).
Second, the dependence of E(yi,t) = f (vt, pi) on the
velocity vt is often assumed to be logarithmic,

log f (vt, pi) = bi + mi pi · vt (6)

The main reason for taking the logarithmic form is
that it ensures f (vt, pi) remains positive, as required by
the Poisson assumption. In addition, this form has an
important property for neural encoding models: the in-
verse f (vt, pi) = exp(bi + mi pi · vt) is similar to the von
Mises tuning function which allows for a narrower tun-
ing curve than the cosine tuning function (Amirikian
and Georgopulos 2000). Decoding based on log-linear
models can be done by maximizing the Poisson log
likelihood.

1If spike counts of the various neurons have different variances
(and are not independent), the weighted least-squares:

v̂t = (PT�−1 P)−1 PT�−1 zt

will be more efficient than the OLS. Here �−1 is the covariance
matrix of zt (Kutner et al. 2004). We consider only the OLS
here, and instead, the non-constant variance is taken in log-linear
models below.

2.1.3 Other combinations

The combination of the cosine tuning function Eq. (2)
with the constant spike count variance or the log-firing
rate Eq. (6) with the variance proportional to the mean
are the standard choices in the framework of general-
ized linear models, since the linear (identity) function
and the logarithm function are the canonical link for
the Gaussian and Poisson distributions, respectively.2

Of course we can chose either the log-firing rate with
the constant spike count variance or the cosine tuning
function with the variance proportional to the mean.
In the latter case, however, we must be careful about
the treatment of the mean of spike count to ensure
it remains positive. In our analysis below, we simply
rectify the mean of spike counts when the value of
Eq. (2) goes under 1Hz.3

2.2 Filtering

Decoding vt directly from raw spike counts in short
time windows (.03s is typical for real-time decoding)
often results in very noisy trajectory estimates unless
there are a large number of cells, and thus the estimates
should be smoothed. A common way of smoothing
trajectories, employed by PVA and OLE, for instance,
is to use filtered spike counts. In the analysis below, we
use a 5-point boxcar filter, i.e. spike counts are averaged
over 5 consecutive short time windows (Velliste et al.
2008; Chase et al. 2009).

State-space methods, used in Bayesian decoders,
provide an alternative way of smoothing (Brown et al.
1998; Brockwell et al. 2004; Eden et al. 2004; Koyama
et al. in press). In addition to an encoding model, which
is called an observation model, the state-space method
relies on the specification of a state model describing
the evolution of the state we are trying to predict (here,
velocity {vt}). For the purpose of obtaining a smooth
velocity trajectory, we use a state model that constrains
the sequence of states {vt} so that they are likely to
evolve with some degree of smoothness from one time
step to the next. To see intuitively how the state-
space method works, take a random walk, p(vt|vt−1) =
N (vt−1, η

2 I) (where N (m, V) is a multivariate Gaussian

2The canonical link function equates the linear predictor with
the canonical parameter of the exponential family distribution,
which allows PT yt to be a sufficient statistic for vt (McCullagh
and Nelder 1989).
3We took the threshold value to be 1 Hz instead of 0 because the
algorithm becomes unstable as the variance gets close to 0 due to
the fact that the inverse of variance is taken as the “weight” of
the weighted least-squares; see Eq. (17) in Appendix A2.



J Comput Neurosci

Table 1 Summary of the
decoding algorithms

Algorithm Model Filtering

PVA Cosine tuning function
Constant spike count variance
Uniformly distributed preferred directions

LGB/LGS Cosine tuning function Spike count filtering
Constant spike count variance (by a 5-point boxcar filter)

NGB/NGS Non-cosine tuning function
Constant spike count variance or

LPB/LPS Cosine tuning function
Spike count variance ∝ mean State-space method

NPB/NPS Non-cosine tuning function
Spike count variance ∝ mean

distribution with the mean vector m and the covariance
matrix V, and I is the identity matrix) as the state
model (Brockwell et al. 2004). The estimate of vt is ob-
tained from the conditional probability distribution of
vt given the observations, whose logarithm is computed
by Bayes’ theorem as

log p(vt|yt) = p(yt|vt) − 1
2η

‖vt − vt−1‖2 + const, (7)

where the second term comes from the state model. The
maximum a posteriori (MAP) estimate of the velocity
is obtained by maximizing Eq. (7) with respect to vt.
As is seen in Eq. (7), the second term enforces the
smoothness on vt by penalizing vt for being far from
vt−1, where the degree of smoothness is controlled by
the variance of the state model, η.

A conceptual difference between the two filtering
processes is that in the former filtering and estima-
tion of the velocity are performed separately, while in
the latter filtering and estimation of the velocity are
performed simultaneously within a probabilistic frame-
work that uses an explicit model of how the output
should evolve over time.

2.3 Summary of decoding algorithms

We have considered several alternative assumptions:

(A) The preferred directions are uniformly distrib-
uted or not.

(B) The tuning function is cosine or not (narrower).
(C) The variance of spike counts is constant or

proportional to the mean.
(D) Trajectory smoothing is performed by averaging

several spike counts or by a state-space method.

Excepting the assumption of uniformly distributed pre-
ferred directions, we have eight combinations by choos-
ing one of the two alternative assumptions in (B), (C)
and (D). The assumption of non-uniformly distributed

preferred directions is then automatically incorporated
in the optimal decoders (the maximum likelihood esti-
mator for a spike count filter or the optimal Bayesian
decoder for a state-space method). As already men-
tioned, PVA is a special case of the optimal linear
Gaussian decoder with a spike count filter under the
assumption of uniformly distributed preferred direc-
tions. We thus have 8 + 1 = 9 decoders. We label these
eight decoders (except PVA) with three capital letters,
“XYZ”, where X specifies condition (B) taking either
“L” (linear, i.e. cosine tuning) or “N” (nonlinear, log-
firng rate), Y specifies condition (C) taking either “P”
(Poisson distribution, i.e. count variance proportional
to the mean) or “G” (Gaussian distribution, i.e. con-
stant count variance), and Z specifies condition (D) tak-
ing either “S” (state-space method) or “B” (spike count
filtering with a boxcar filter). For example, “LGB”
stands for the optimal decoder under the assumptions
of linear tuning curve and constant spike count variance
with a spike count filter, which corresponds to the “op-
timal linear estimator”(OLE). Note also that “LGS”
corresponds to the Kalman filter. Table 1 summarizes
the decoding algorithms. In Appendix A2, we show
that these eight decoders are implemented in the same
framework of exponential family regression. Our goal is
to study how much impact the alternative assumptions
have on decoding performance by contrasting the nine
decoders.

3 Study design

3.1 Off-line trajectory reconstruction

The data we analyzed off-line was taken in the follow-
ing way. A 96 channel electrode array was implanted
in the motor cortex of a monkey to record neural
activity (Blackrock Microsystems, Salt Lake City, UT;
Maynard and Normann 1997). In all, 78 distinct cells
were recorded simultaneously. Raw voltage waveforms
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were amplified, filtered, thresholded, and template
sorted to isolate the activity of individual cells using
a Plexon MAP system (Plexon Inc., Dallas, TX).4 A
monkey in this experiment was presented with a virtual
3-D space, containing 8 possible targets which were
located on the corners of a cube, and a cursor which
was controlled by the subject’s hand position. The task
was to move the cursor to a highlighted target from the
middle of a cube; the monkey received a reward upon
successful completion.

In our data each trial consisted of a time series of
spike counts from the recorded cells, and a time series
of recorded hand positions. Hand velocities were found
by taking differences in hand position at successive � ≈
0.033 s intervals. Each trial contained 23 time-steps on
average. Our data set consisted of 104 such trials.

16 trials, consisting of 2 presentations of each of the
8 targets, were reserved for estimating the parameters
of the model. The parameters of the cosine tuning
function were determined by linear regression of the
spike counts on the intended velocity, and in the same
way, those of the log-linear model were determined
by Poisson regression. The variance of the state model
in the state-space method was estimated via maximum
likelihood. The time lag between the arm movement
and the neural activity of each cell was also estimated
from the same training data. This was done by fitting
a model over different values of time lag ranging from
0 to 3� s (� ≈ 0.033). The estimated optimal time lag
was the value at which the model had the highest R2.
66 cells whose modulation depth were 5 Hz or more
were used for decoding. Having estimated all of the
parameters, cursor motions were reconstructed from
spike trains for the other 88 trials. The performance
of the decoding methods was measured by the mean
integrated squared error (MISE) between the actual
and decoded cursor velocities.

3.2 Simulation

The simulations were meant to mimic the 3-D open-
loop control experiments. We first generated Fisher
tuning curves for N = 60 simulated cells by specifying
the following parameters: the half-width of dropoff θhw,
the modulation depth md, and the baseline firing rate
b s (Fig. 1; see also Appendix A1). The baseline firing
rates and modulation depths were taken to be 5 Hz
and 100 Hz, respectively, and the half widths were
taken to be values between π/4 and π/2. The preferred

4Some of the cells were well-isolated single-units, while others
were multi-unit combinations.
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Fig. 1 Illustration of tuning curve. θhw , md and bs are half-width
of the dropoff shape, modulation depth and baseline firing rate,
respectively

directions were drawn at random from a uniform distri-
bution in a 3-D unit sphere. The intended movements
were generated as velocity vectors pointing straight
from the origin of the workspace to the center of the
presented target, with a bell-shaped speed profile:

‖vt‖ = 1
2

[
1 + sin

(2πcst
T

− π

2

)]
, (8)

where T = 0.833 s. Movements were generated over
the time interval [0, T]. This time interval was chosen
so that it consisted of 25 time-steps with 30 Hz binning.
The eight targets were spaced at the corners of a cube.
Binned spike counts were then generated at 30 Hz as
Poisson realizations of the underlying rate parameter
for the specified intended movements. Note that the
movement commands simulated open-loop control, i.e.,
we did not simulate on-line corrections of errors in the
trajectories.

The first 16 trials, consisting of 2 presentation of
each of 8 targets, were used for estimating model pa-
rameters. These parameters were determined in the
same way as in the real-data analysis. Once the para-
meters were estimated, 10 center-out trajectories were
generated to each of the 8 targets, and the movement
velocities were decoded by the 9 methods introduced in
Section 2.3. The performance of the decoding methods
was quantified by MISE between the intended and
decoded velocities.

3.3 On-line closed loop control

The same monkey was used to perform the brain-
control center-out task. In this experiment, the mon-
key was presented with a virtual 2-D space, and had
to modulate the recorded neurons to move a cursor
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from the center of the workspace to one of 8 targets
spaced uniformly around a virtual circle. Both cursor
and target had a radius of 8 mm; targets were spaced
85 mm from the center of the workspace. If the target
was hit within 1750 ms of being displayed, the monkey
received a liquid reward. After either success or failure,
the cursor was placed back in the center following a
750 ms inter-trial interval.

We implemented the three real-time decoding algo-
rithms of PVA, LGB and NPS. In each experimental
session, two of the three algorithms were used for
decoding; we call this experimental paradigm dual con-
trol. At the start of each session, a calibration session
was run to determine the model parameters of each
algorithm. In this session, decoding parameters were
initially assigned to the cells at random. Then a single
presentation of each of the 8 targets was made in
random order. For the PVA and the LGB, after all
targets were presented the tuning functions of the cells
were estimated by linearly regressing the spike rates
against target direction. Cells with modulation depths
of less than a cutoff of 4 Hz were not used for control
(this eliminated, on average, ∼1/2 of the cells). For the
NPS, the parameters of the log-linear model were de-
termined by Poisson regression; cells with firing rates of
less than 5 Hz were not used for control. After an initial
estimate of the decoding parameters was obtained, they
were set in the decoder and another round of 8 targets
was presented. The regressions were then performed
on the accumulated data. This procedure was repeated
until good cursor control was achieved; typically this
required a total of 4 to 5 rounds of target presentation
(∼32 to 40 movements), and never took more than
7 rounds of target presentation.5 The number of cells
used for decoding varied from 29 to 40 for the PVA,
from 29 to 32 for the LGB, and from 35 to 45 for
the NPS across sessions. To examine how accurate the
cursor control can be with each decoder when going
the same speed, the preferred direction vectors were
multiplied by a constant speed factor. The speed fac-
tor was adjusted in each session so that the average
cursor speeds decoded by the two algorithms approx-
imately matched. The speed factor was also changed
across sessions to examine the decoding performance
at different cursor speeds; the average speed fell be-
tween 0.1 and 0.23 m/s. Once all the parameters were
determined, each of the 8 targets were presented 15
times in random order, and the monkey performed the

5During the dual control experiment, only one algorithm could
control the cursor at a time. The controlling algorithm during the
calibration phase was alternated between experimental sessions
in order to encourage a more balanced comparison.

task by using one of the two decoding algorithms. The
decoding algorithm was then switched to the other, and
repeated the same number of target presentations. We
analyzed the data from 10 NPS/PVA-, 6 NPS/LGB-,
and 6 LGB/PVA-dual control sessions.

Since we did not have the “true” subject’s intention
of cursor control in on-line control experiments, the
performance of the decoders was evaluated with four
measures: 1) the length of the trajectory, 2) the tra-
jectory variance across trials, 3) the speed asymmetry
across the target positions, and 4) the hitting time.
The lengths of the cursor trajectories were calculated
by summing the distance the cursor moved in each
time step from the trial start until the target was hit.
For calculating the variance of the trajectory, the time
axis of each trajectory was uniformly scaled to unity.
That is, the time samples for an individual movement
t of duration T were scaled by a factor α = 1/T to
create a new set of time samples ts = tα. Each x and
y component of the trajectory was then independently
resampled using spline interpolation to a common time
axis consisting of 100 evenly sampled points. Finally,
the mean and variance of the cursor position was cal-
culated at every time point. The speed asymmetry was
defined as the standard deviation of the mean speed
across targets. The hitting time was defined as the time
at which the target was hit, relative to the time of target
presentation. We chose these 4 measures to see how
estimation errors in the decoding algorithms reflect the
different aspects of the quality of cursor control; if a
certain decoder causes a systematic bias in estimation
of the cursor velocity (e.g. the directional bias caused by
using PVA), it may increase the length of the trajectory
and the speed asymmetry across the target positions.
On the other hand, noisy estimation may make the
trajectory longer and more variable across trials, and
increase the time it takes to hit the target. Of course
biases and variance in the estimates made by decoders
can reflect all 4 measures and their effects cannot be
isolated completely by these 4 measures.

4 Results

4.1 Off-line trajectory reconstruction

Results from off-line reconstruction of experimental
hand-trajectory data are summarized in the first row
of Table 2. We show in Fig. 2 typical trajectories re-
constructed by PVA, LGB, and NPS. Overall, LGS
and NPS show the best performance among the nine
decoders, while PVA stands out as the worst of all of
the decoders. Comparing within decoders having the



J Comput Neurosci

Table 2 MISEs [units of
10−2×(m/s)2] in estimating
the true cursor velocity

The means and the standard
errors were obtained from
88 trials

LGB NGB LPB NPB PVA

n = 66 1.46 ± 0.11 1.60 ± 0.12 1.85 ± 0.15 1.42 ± 0.11 2.33 ± 0.18
n = 50 1.73 ± 0.13 1.91 ± 0.16 2.12 ± 0.17 1.59 ± 0.13 2.66 ± 0.23
n = 40 1.84 ± 0.15 1.94 ± 0.15 2.29 ± 0.18 1.70 ± 0.14 2.98 ± 0.24
n = 30 2.22 ± 0.17 2.37 ± 0.19 3.01 ± 0.24 1.88 ± 0.15 3.78 ± 0.30

LGS NGS LPS NPS

n = 66 1.02 ± 0.09 1.14 ± 0.09 1.16 ± 0.09 1.01 ± 0.08
n = 50 1.14 ± 0.10 1.20 ± 0.11 1.31 ± 0.11 1.11 ± 0.10
n = 40 1.26 ± 0.10 1.30 ± 0.11 1.43 ± 0.11 1.24 ± 0.11
n = 30 1.39 ± 0.11 1.40 ± 0.12 1.58 ± 0.12 1.32 ± 0.11

same tuning function and variance model, the state-
space method performs substantially better than the
spike count filter. We also reconstructed the trajectories
from different numbers of cells, n = 50, 40, and 30;
these cells were selected randomly from the 66 cells
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Fig. 2 Trajectories reconstructed by PVA, LGB and NPS for a
trial. The solid line represents the true trajectories. The trajecto-
ries reconstructed by PVA and LGB are deviated from the true
trajectory more than that reconstructed by NPS

recorded in the experiment. These trend are the same
as the trends we observe when all 66 cells are used (the
2nd-4th rows of Table 2). In the following, we examine
how much impact the alternative assumptions (A)–(D)
described in Section 2.3 have on decoding performance.

4.1.1 Assumption of uniformly distributed preferred
directions

The result that PVA stands out as the worst of all of
the decoders implies that the assumption of uniformly
distributed preferred directions is critical for the decod-
ing performance, since this assumption differentiates
PVA from all other decoders. Particularly, the effect
of this assumption can be isolated by comparing the
MISE of the PVA with that of the LGB. As seen in
Table 2, the decoding performance of the PVA deteri-
orates more than that of other decoders as the number
of cell decreases. Since the non-uniformity in a set of
preferred directions becomes larger as the number of
cell decreases, this result confirms that the performance
of the PVA is affected by the non-uniformity more
critically than the other decoders.

4.1.2 Smoothing process

The result that the state-space method performs sub-
stantially better than the spike count filter regardless of
the choice of tuning function and spike count variance
indicates that the smoothing process has a major impact
on the decoding performance. The degree of smooth-
ness both in the state-space method and in the spike
count filter is determined by the memory length of the
past trajectory (or data) that is averaged to produce
the current state estimate. In the state-space method,
the memory length is scaled by 1/η where η is the
magnitude of the fluctuation of the state process in
Eq. (7), which is determined by the maximum likeli-
hood principle. In the spike count filter, on the other
hand, we chose empirically a 5-point boxcar filter fol-
lowed by the previous experimental setting (Chase
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et al. 2009; Velliste et al. 2008), which may not be
optimal in our data. We therefore reconstructed the
trajectory from the same experimental data using the
spike count filter with different filter lengths to examine
if it improves the decoding performance (Fig. 3(a)). As
seen in this figure, the best decoding performance was
achieved when the filter length is about 5. Note also that
the decoding performance was significantly improved
compared with that without any filtering (that is, MISE
for filter length 0). We thus conclude that the filtering
process has a large impact on the decoding perfor-
mance.

4.1.3 Tuning curve linearity and spike count variance

When using either the state-space method or spike
count filtering as the smoothing process, the results
in Table 2 show that the linear tuning model exhibits
slightly (but not significantly) better performance than
the nonlinear, log-firing rate, model when a constant
spike count variance is assumed (that is, LGB and
LGS are better than LPB and LPS, respectively). Con-
versely, the nonlinear tuning model is better than the
linear tuning model when the variance of the spike
count is assumed to be proportional to the mean (that
is, NPB and NPS are better than NGB and NGS,
respectively). Although the effect of the assumptions
of tuning curve linearity and spike count variance are
not well isolated, the effect of these two assumptions on
the MISE are smaller than either that of uniformity in
the set of preferred directions or that of the smoothing
process. Thus, we can conclude that the assumption of
tuning curve linearity (here, “sharpness” of the tuning

curve) and the spike count variance play relatively
minor roles in our data.

In order to examine how much impact these two
assumptions could have on the decoding performance,
we performed the simulations described in Section 3.
To see how linearity in the tuning curve affects the de-
coding result, we plot the MISE between the input sim-
ulated velocities and the decoded simulated velocities
as a function of the half-width in Fig. 3(b) for the spike
count filter and in Fig. 3(c) for the state-space method.
While NPB and NGB behave well across the entire
range of half-widths, the performance of LPB and LGB
are degraded as the half-width becomes very small; the
same result is seen in Fig. 3(c). Thus, the assumption
of tuning curve linearity could have a large impact on
the decoding performance when the cells have very
narrow tuning curves. The mean and standard deviation
of half-width values that were measured in the 66 cells
analyzed in Table 2 are 1.22 ± 0.14 rad, comparable to,
though slightly larger than the results of Amirikian and
Georgopulos (2000). Taking into account the simula-
tion results shown in Fig. 3(b–c), it is concluded that
the cells in the real-data do not have a strong enough
nonlinearity to have a large impact on the performance
of the linear decoders.

Although the synthesized data was generated from
Poisson processes, there is no clear evidence that the
Poisson assumption performs better than the constant
spike count variance model. Particularly, the Poisson
assumption with the linear tuning function (LPB and
LPS) tends to behave much worse than the other com-
binations. This may be due to our method of rectifying
the link-function in the linear Poisson decoder; in the
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Fig. 3 Results of off-line reconstruction. (a) MISE as a function
of filter length. The velocity was reconstructed with 66 cells. The
best performance was achieved when the filter length is about
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All 60 simulated cells had the same half-width represented in the
horizontal axis. The performance of LGB and LPB are degraded
relatively to that of NGB and NPB as the half-width becomes
smaller. (c) the same as (b) for state-space method
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Poisson model, the linear tuning function must be rec-
tified in order to ensure the firing rate remains positive.
Although we did not perform further systematic inves-
tigation on how it affects on the decoding performance,
the rectification should be carefully designed case
by case.

It would be worth mentioning that in the results of
real-data analysis, LGS (i.e. Kalman filter) performs as
well as NPS, which, as well as the fact that its implemen-
tation is much simpler than NPS, would encourage the
use of the Kalman filter in practice. The Kalman filter,
however, does not work well when the assumption of
linearity is critical for the decoding performance; as
seen in Fig. 3(c), MISE of LGS becomes larger than
that of NPS when the half-width of tuning curve is less
than 5π/16. Although we examined only the sharpness
of tuning curve as a nonlinearity, any kind of nonlinear-
ity can deteriorate the performance of linear decoders
if its effect is not negligible.

In summary, although the assumption of tuning
curve linearity could potentially have a large impact on
the decoding performance, we can conclude that both
this assumption and the spike count variance model
play relatively minor roles in determining trajectory
reconstruction error in the data we analyzed.

4.2 On-line closed loop control

To see how well the results of off-line reconstruc-
tion represent those of on-line control, we performed
on-line control experiments comparing decoding tech-
niques. Trajectories controlled with the three algo-
rithms are shown in Fig. 4 (in slow speed control) and in
Fig. 5 (in high speed control) for visualization. It is seen
from these figures how variable cursor trajectories are;
cursor trajectories in PVA and LGB control become
more variable across trials than those in NPS control
do as the average speed is increased. Figure 6 quantifies
the cursor control with the four measures, (a) trajectory
length, (b) trajectory variance, (c) speed asymmetry
and (d) hitting time, as a function of the average cursor
speed. Overall, the NPS has smaller values in these
four measures than either the PVA or the LGB. That
is, cursor trajectories under NPS control are shorter
(which implies straighter trajectories from the center to
the targets), less variable across trials, exhibit relatively
more symmetric speed profiles across target direction,
and hit the target within a shorter time. Trajectories
controlled with PVA and LGB behave about the same
in terms of (a), (b) and (c), though trajectories con-
trolled with the PVA hit the target with relatively
shorter times than those controlled with the LGB. As
the average speed increases, the values of trajectory

length and variance also increase, which leads to an
“optimal speed” in terms of least time to target. The
average cursor speed that gives the least time to target
is estimated to be 0.180 m/s for the NPS, 0.164 m/s for
the LGB, and 0.175 m/s for the PVA (by fitting the
data with a quadratic curve: Fig. 6(d)). These results
may imply that the subject could control the cursor
more accurately in NPS control than in PVA and LGB
control.

5 Discussion

We used both simulations and experiments to compare
the performance of several decoding algorithms. Each
of these algorithms are optimal6 under certain con-
ditions. We found that assumptions about uniformity
in the set of preferred directions and the trajectory
smoothing method have the most impact on decoder
performance in off-line reconstruction. From the view
of statistical inference, these two assumptions account
for systematic biases and variance in decoding errors,
respectively. In theory, specification of the width of
the tuning curve and allowing non-constant spike count
variance may also have reduced the two errors, but
these played relatively minor roles in the data we
analyzed.

In on-line control, we saw that, first, there were
no substantial differences in performance between the
PVA and the LGB in terms of the trajectory length,
trajectory variance or speed asymmetry. If the direc-
tional biases that result from the use of the PVA still
had a large impact on the on-line control performance
as seen in off-line reconstruction, the performance of
the LGB would differ from that of the PVA. Thus,
the experimental results indicate that the subject can
compensate for the directional biases caused by non-
uniformly distributed preferred directions. This result
is consistent with that in Chase et al. (2009), in which
PVA and LGB (they used the conventional labeling,

6The maximum likelihood estimator asymptotically achieves the
theoretical lower bound (the “Cramer-Rao” lower bound given
by the inverse of the Fisher information Schervish 1996) of
the variance in the limit of large samples. In the Bayesian in-
ference, the posterior expectation gives the optimal estimator
under the squared error loss. In our analysis, we approximately
computed the recursive Bayesian equations (see Appendix A2),
which provides the first-order approximation of the posterior
expectation in the “high-information” limit, where the posterior
becomes very sharply peaked around the mode and the Laplace
approximation is valid (Koyama et al. in press). Thus, the state-
space estimates we computed are asymptotically optimal under
the squared error loss.
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Fig. 4 Results comparing
between cursor trajectories
controlled under different
decoders in slow speed
control. Color changes across
targets are to aid visibility.
From top to bottom: results
in NPS/PVA-, NPS/LGB-,
and LGB/PVA-dual control.
Trajectories in NPS control
are less variable than either
those in PVA control or those
in LGB control, while
trajectories in PVA control
are about as variable as those
in LGB control (compared
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“OLE”) were compared both in off-line and on-line
control. Second, the NPS control outperformed both
the LGB and the PVA (e.g. trajectory length for NPS
control was about 90% of the trajectory length for PVA
and LGB.) The LPS differs from the LGB in 1) allow-
ing narrower tuning functions, 2) assuming a Poisson, as

opposed to Gaussian, spike count variance model, and
3) smoothing trajectories through a state-space model,
as opposed to filtering the spike counts directly. As is
shown in the results of off-line reconstruction, 1) and
2) play relatively minor roles; we can thus attribute
the performance differences to 3). In other words,
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Fig. 5 Same as Fig. 4 in high
speed control. Cursor
trajectories in PVA and LGB
control are more variable
than those in NPS control as
is the same as in Fig. 4, but
trajectories are more variable
than those in slow speed
control
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improvement of the performance in NPS control was
made by the way trajectories were smoothed (i.e.,
reducing the variance) in the algorithm.

These results lead to a natural interpretation of what
is “learnable” for a subject in on-line control: while
subjects may compensate for systematic biases caused
by decoders (Chase et al. 2009), they are much less

likely to compensate for variance differences, although
it should be noted that we did not specifically reward
the subjects for either increased consistency or reduced
cursor jitter.

As variance does not seem to be automatically com-
pensated by a subject in on-line control, it should be
reduced in a decoder to the greatest extent possible,
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Fig. 6 A comparison of the
on-line control performance
under different decoders.
(a) Average trajectory length
as a function of the average
speed. (b) Trajectory variance
as a function of the average
speed. (c) Speed asymmetry
as a function of the average
speed. The lines in (a), (b)
and (c) were fitted to the data
points in log-log scale.
(d) Average hitting time as a
function of the average speed.
The quadratic curves were
fitted to the data points in
normal scale. Each data point
was calculated with 120 trials
(8 targets × 15 trials). Blue,
red and green points,
respectively, indicate the data
of NPS/PVA-, NPS/LGB-
and LGB/PVA-dual control
shown in Figs. 4 and 5.
Overall, the NPS has smaller
values in these four measures
than either the PVA or the
LGB
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without impeding control. In spike count filtering, noise
reduction was performed by smoothing spike counts
with a 5-point boxcar filter, where the filter length
was chosen empirically, and the same filter length was
used in different speed factors. There is a way to se-
lect an optimal filter length for estimating firing rate
(Shimazaki and Shinomoto 2007), and using the opti-
mal filter length will improve the estimation of trajec-
tories. However, the optimal filter length may differ for
each cell (so that the number of free parameters is the
same as the number of cells) because it depends on
the time scale and amplitude of rate modulation, and
on the mean rate (Koyama and Shinomoto 2004). The
state-space method, on the other hand, incorporates
the inherent dynamic behavior of the trajectory (here
smoothness) into the state model, and, in contrast to
filtering spike counts, the smoothness is controlled by a
single parameter η that is then determined by maximum
likelihood.

In our case, there is not much difference between
“Bayesian” (i.e. state-space) and “non-Bayesian” de-

coding. While it is supposed that an advantage of the
former is its ability to integrate prior information into
the inference, there is also a way in the latter to do it,
through the use of a spike count filter. So, what is the
substantial benefit of the state-space method? One po-
tential advantage is its flexible framework. Although we
have restricted our attention to velocity in this paper,
more generally the state could involve position, accel-
eration, or other movement parameters, and it may be
extended to more complicated state models (Wu et al.
2006; Yu et al. 2007). Furthermore, inherent dynamical
properties of movement such as the two-third power
law (Reina and Schwartz 2003) may be incorporated
into the state model to realize natural movements dur-
ing robotic arm control. Inference of the states as well
as the model parameters can then be performed in the
same probabilistic framework. However, a drawback of
the state-space method is its computational complexity;
the computational cost of posterior estimates becomes
more expensive as the state-space model becomes more
complicated, which will be critical for real-time neural
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decoding. Therefore, the key to utilizing state-space
methods in BCIs is in developing an efficient algorithm
to perform approximate posterior inferences in real-
time. Such an attempt has been made in Koyama et al.
(in press), for example.

To summarize, we have assessed the performance
of several decoders in simulations and experiments.
In off-line reconstruction, we find that assumptions
about uniformity in the set of preferred directions
and the way the cursor trajectories are smoothed have
the most impact on decoder performance; assumptions
about tuning curve linearity and spike count variance
play relatively minor roles. In on-line control, the
subject compensated for directional biases caused by
non-uniformly distributed preferred directions, leaving
cursor smoothing differences as the largest single algo-
rithmic difference driving decoder performance. These
results may provide a helpful interpretation of when the
off-line performance of a certain decoder will translate
to on-line improvements in control.
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Appendix A1: Fisher tuning function

The Fisher tuning function is defined as

f (θ) = b + c exp(κ cos θ), (9)

where θ is the angle between the cell’s preferred di-
rection and the movement direction (Amirikian and
Georgopulos 2000). Note that this corresponds to the
log-linear model Eq. (6) when b is omitted. The pa-
rameters b , c and κ determine the tuning properties.
These parameters are translated into three physiologi-
cal parameters: the half-width of the dropoff shape θhw,
the modulation depth md, and the baseline firing rate
b s, as

θhw = cos−1
[

log(cosh κ)

κ

]
, (10)

md = 2c sinh κ, (11)

and

b s = b + ce−κ . (12)

The half width takes θhw < π/2 for κ > 0. For κ →
0 (as θhw → π/2), Eq. (9) becomes the cosine tuning
function,

f (θ) = b s + md

2
+ md

2
cos θ. (13)

Appendix A2: Exponential family regression

Here, we briefly describe the exponential family re-
gression and its extension to the state-space method
which provides a unifying framework for the neural
decoders introduced in Section 2.3. We assume that the
spike counts of the ith cell (i = 1, . . . , N) follows the
exponential family distribution,

p(yi,t|θi, φi) = exp[(yi,tθi − b(θi))/a(φi) + c(yi,t, φi)],
(14)

where θi is the canonical parameter related to the mean
of yi,t and φi is the dispersion parameter (McCullagh
and Nelder 1989). This family includes commonly used
distributions such as the Poisson and Gaussian. The
mean and variance of yi,t are given as E(yi,t) = b ′(θi)

and Var(yi,t) = a(φi)b ′′(θi), respectively. Since the tun-
ing function f (vt, pi) relates the velocity to the firing
rate as E(yi,t) = f (vt, pi), θi = θi(vt) is a function of vt.
Assuming that the spiking of N cells are indepen-
dent of each other, the probability distribution of yt =
(y1,t, . . . , yN,t) is given by

p(yt|vt) =
N∏

i=1

p(yi,t|θi(vt), φi). (15)

Let l(vt) = log p(yt|vt) be the log likelihood function of
Eq. (15). The gradient of l(vt) is then derived as

∇vt l(vt) =
N∑

i=1

yi,t − f (vt, pi)

Var(yi,t)
∇vt f (vt, pi), (16)

where ∇vt denotes the gradient with respect to vt. The
maximum likelihood estimate of vt is then obtained by
solving ∇vt l(vt) = 0. Note that only the tuning function
f (vt, pi) and the spike count variance Var(yi,t) appear
in Eq. (16). When the tuning function is linear and the
variance is constant, ∇vt l(vt) = 0 is solved analytically
leading to the LGB (i.e. the optimal linear estimator).
Otherwise it is solved numerically (by the Newton-
Raphson method, for example). Note also that it is seen
from Eq. (16) that the maximum likelihood estimate
corresponds to the weighted (nonlinear) least-squares
estimate which minimizes the weighed squared error,

N∑
i=1

[yi,t − f (vt, pi)]2

Var(yi,t)
. (17)

In state-space filtering, in addition to the likelihood
of velocity Eq. (16), which is called the observation
model, we take a state model describing the evolution
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of the state, vt. In our analysis, the state model was
taken to be a random walk,

p(vt+1|vt)= 1
(2πη)d/2 exp

[
− 1

2η
(vt+1− vt)

T(vt+1− vt)

]
.

(18)

The set of posterior distributions of vt given the obser-
vation up to time t, for t = 1, 2, . . ., is then computed by
the recursive relationships,

p(vt|y1, . . . , yt) ∝ p(yt|vt)p(vt|y1, . . . , yt−1), (19)

where

p(vt|y1, . . . ,yt−1)=
∫

p(vt|vt−1)p(vt−1|y1, . . . , yt−1)dvt−1

(20)

is called the predictive distribution. Note that in the
limit of large variance, η → ∞, (or when there is no
dependence of vt on vt−1) the state-space estimate
(more precisely, the maximum a posteriori (MAP) es-
timate) converges to the maximum likelihood estimate
obtained by solving ∇vt l(vt) = 0.

One implementation of the recursive formula ap-
proximates the posterior distribution Eq. (19) as a
Gaussian centered on its mode (Brown et al. 1998).
Let vt|t and Vt|t be the (approximate) mode and covari-
ance matrix for the posterior distribution Eq. (19), and
vt|t−1 and Vt|t−1 be the mode and covariance matrix for
the predictive distribution Eq. (20) at time t. Further,
let r(vt) = log{p(yt|vt)p(vt|y1, . . . , yt−1)}. The posterior
distribution is then approximated as a Gaussian whose
mean and covariance are vt|t = arg maxvt r(vt) and Vt|t =
−[∇∇vt r(vt|t)]−1, respectively (where ∇∇vt represents
the second derivative with respect to vt). Since the state
model is a random walk, the predictive distribution
Eq. (20) is also Gaussian, whose mean and covariance
are computed as

vt|t−1 = vt−1|t−1, (21)

Vt|t−1 = Vt−1|t−1 + ηI. (22)

We take the initial state for filtering to be the center
of the workspace. This approximate filter is a version
of Laplace-Gaussian filter in which the posterior dis-
tribution is approximated to be a Gaussian by using
Laplace’s method (Koyama et al. in press). Note that
we used the Gaussian approximation instead of particle
filtering (Doucet et al. 2001) to compute the posterior
estimates because under the constraint of computa-

tional cost for real-time decoding, the Gaussian approx-
imation provides faster and more accurate posterior es-
timates than the particle filter (Koyama et al. in press).
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