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It has been observed that spike count correlation between two simul-
taneously recorded neurons often increases with the length of time in-
terval examined. Under simple assumptions that are roughly consistent
with much experimental data, we show that this phenomenon may be
explained as being due to excess trial-to-trial variation. The resulting for-
mula for the correlation is able to predict the observed correlation of two
neurons recorded from primary visual cortex as a function of interval
length.

1 Introduction

Simultaneously recorded cortical neurons often exhibit correlations in spike
counts over substantial periods of time, and this has been interpreted as
producing important limitations on capacities for neural coding (Shadlen
& Newsome, 1998; Zohary, Shadlen, & Newsome, 1994). However, it has
also been observed that spike count correlations decrease as the length of
the time interval decreases (Averbeck & Lee, 2003; Reich, Mechler, & Victor,
2001). We provide here a simple theoretical explanation of this phenomenon
as a necessary consequence of excess trial-to-trial variation. The purposes of
this work are two: first, to emphasize the importance of specifying interval
length when interpreting spike count correlation, and, second, to focus
further attention on excess trial-to-trial variation as an indicator of common
neuronal input.

2 Results

Our object is to analyze the correlation of a pair of spike counts across
repeated trials in the presence of excess trial-to-trial variability, under rea-
sonable assumptions, when the measurement interval—and therefore each
expected count—increases. Let us consider random variables Y1

r and Y2
r

representing theoretical spike counts over an interval of length T for two
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neurons recorded simultaneously on trial r . To simplify some formulas, we
assume the two spike count probability distributions are the same, but this
does not affect the essence of the result. We will also assume the following:

1. Within trials, the expected spike counts increase proportionally to T .

2. The within-trial variance is proportional to the within-trial expecta-
tion.

3. After conditioning on the trial, Y1
r and Y2

r are independent.

Assumptions 1 and 2 are roughly consistent with many observed data
(see Shadlen & Newsome, 1998, for references). Assumption 1 concerns the
within-trial expected spike counts. In the absence of excess trial-to-trial vari-
ation, the within-trial expected spike count would equal the trial-averaged
spike count. When there is excess trial-to-trial variation, the neuronal re-
sponse depends on some external or internal state Sr that varies with the
trial. The within-trial expected spike count is the number that would be
produced by, hypothetically, averaging spike counts over trials with iden-
tical values of the state Sr . Assumption 2 is much more general than the
Poisson assumption, which would require the within-trial variance to equal
the within-trial expectation. Assumption 3 eliminates short timescale effects
and will be discussed below.

We also introduce a random variable Xr to represent excess trial-to-trial
variation and will take the expectation of each spike count on trial r to be
f (Xr ) when T = 1, for some function f (x) (see equation 2.1 below). In the
absence of excess trial-to-trial variation, f (Xr ) would be constant across
trials.

2.1 Monotonically Increasing Correlation. Under these three assump-
tions, the correlation of Y1

r and Y2
r and the conditional expectation and

variance of Yi
r given the trial may be computed in terms of T . Before pro-

ceeding, we make two observations. First, under assumption 1, we may
write the expectation conditionally on the trial effect Xr in the form

E(Yi
r | Xr ) = T f (Xr ), (2.1)

where f (Xr ) becomes the expected spike count when T = 1. Second, under
assumption 2, we may write

V(Yi
r | Xr ) = k · E(Yi

r | Xr ),

and combining this with equation 2.1, we have

V(Yi
r | Xr ) = kT f (Xr ). (2.2)
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In the case of Poisson counts, we would have k = 1. Underdispersion occurs
when k < 1 and overdispersion when k > 1.

In computing the correlation of Y1
r and Y2

r we will use equations 2.1 and
2.2 together with elementary formulas for the variances and covariance
in terms of the conditional variances, covariance, and expectations. For
i = 1, 2, we have

V(Yi
r ) = E(V(Yi

r | Xr )) + V(E(Yi
r | Xr ))

= E(kT f (Xr )) + V(T f (Xr ))

= kT E( f (Xr )) + T2V( f (Xr )),

and, applying assumption 3 and equation 2.1,

COV
(
Y1

r , Y2
r

) = E
(
COV

(
Y1

r , Y2
r |Xr

)) + COV
(
E

(
Y1

r | Xr
)
, E

(
Y2

r | Xr
))

= 0 + T2V( f (Xr )).

Writing µ = E( f (Xr )) and σ 2 = V( f (Xr )), we therefore obtain

COR
(
Y1

r , Y2
r

) = T2σ 2

kTµ + T2σ 2 = T
T + ω

, (2.3)

where ω = kµ/σ 2. This shows that the correlation will increase monotoni-
cally as T increases and will vanish as T → 0.

To see the implication of equation 2.3, suppose that the trial-to-trial
variation takes the form

E
(
Yi

r | Xr
) = T f (Xr ) = Tce Xr ,

where c is the firing rate when T = 1 and Xr = 0, and, for simplicity, suppose
further that Xr has a normal distribution. It is easily verified that if Xr has
mean a and variance b2, then

E
(
e Xr

) = ea+b2/2

and

V
(
e Xr

) = e2a+b2
(eb2 − 1).

These give the ratio

V
(
e Xr

)

E (e Xr )
= ea+b2/2(eb2 − 1

)
.
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Using this formula, we may compute the correlation in equation 2.3 for
various scenarios. For example, with a firing rate of c = ea = 20 spikes per
second and b = 12.5% trial-to-trial variation, correlations for counts in in-
tervals of length 2 ms, 100 ms, and 1000 ms become .0006, .03, and .24,
which are roughly consistent with those reported by Reich et al. (2001).
We do not mean to suggest that trial-to-trial variation may be described
well by normally distributed effects that are constant in time (see be-
low). These values are provided, rather, to help interpret the predictions of
equation 2.3.

2.2 Nonmonotonic Correlation. According to equation 2.3, the spike
count correlation will increase monotonically and, furthermore, will ap-
proach 1 for sufficiently long time intervals. However, Averbeck and Lee
(2003) report an increase of correlation as a function of T up to a maximum,
and then a subsequent decline. We now show that such effects could also
be due to excess trial-to-trial variability.

Suppose that the excess trial-to-trial variation is as described previously
up to T1, but that it disappears afterward. Such effects have been reported
previously (e.g., Baker, Spinks, Jackson, & Lemon, 2001). Under assump-
tions 1, 2, and 3, when T ≤ T1, equation 2.3 still applies. For T > T1, we
write Yi

r = Yi
r1 + Yi

r2, where Yi
r1 is the spike count in [0, T1], and Yi

r2 the spike
count in [T1, T], for neuron i on trial r . Because the spike counts Y1

r2 and
Y2

r2 in [T1, T] contain no excess trial-to-trial variation, they are mutually
independent and are also independent from the spike counts Y1

r1 and Y2
r1 in

[0, T1]. Then, for T > T1, we have

V
(
Yi

r

) = V
(
Yi

r1

) + V
(
Yi

r2

) = (
k T1 µ + T2

1 σ 2) + k(T − T1)

and

COV
(
Y1

r , Y2
r

) = COV
(
Y1

r1, Y2
r1

) = T2
1 σ 2,

so that, for T > T1,

COR
(
Y1

r , Y2
r

) = T1

T1 + w + k
T1 σ 2 (T − T1)

. (2.4)

Under these conditions, the correlation will increase with T for T < T1 and
will decrease with T for T > T1.

The modified assumption that trial-to-trial variability vanishes for T >

T1 is not supposed to reflect accurately a real situation. Rather, we have
provided equation 2.4 to indicate possible nonmonotonic behavior. Other,
more realistic forms of time-varying trial-to-trial effects could also produce
correlations that are nonmonotonic in T . One relatively simple alternative
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form of time-varying trial-to-trial variation is given, and its predictions are
compared with data below.

2.3 Illustration with V1 Data. We illustrate using data from two neu-
rons recorded simultaneously in the primary visual cortex of an anes-
thetized macaque monkey (Aronov, Reich, Mechler, & Victor, 2003, units
380506.s and 380506.u, 90 degree spatial phase), which were part of the
Reich et al. (2001) study. Figures 1B and 1C show their peristimulus time
histograms (PSTHs). Ventura, Cai, and Kass (2005) established that these
two neurons had excess trial-to-trial variation, whose effects were shared
across the neurons (see also Figure 1D), but that the neurons were in-
dependent once these effects were removed. Figure 1A displays the cor-
relation of spike counts for increasing time intervals. The data for these
two neurons were recorded from the same electrode, with an accuracy
of 2.8 milliseconds, so that it was impossible to detect joint spikes occur-
ring at time lags less than 2.8 milliseconds. This induces an artifactual
negative correlation, clearly apparent in Figure 1A for the smallest time
interval.

A fit of equation 2.3 to the data is overlaid in Figure 1A. It captures
reasonably well the general trend of the correlation. However, it fails to fol-
low a leveling off evident at intervals greater than about 200 milliseconds,
which may be due to nonconstant trial-to-trial variation. Indeed, Ventura
et al. (2005) showed that this pair of neurons had highly significant noncon-
stant trial-to-trial effects and that the firing rate of neuron i on trial r could
be described better by the function

Pi
r (t) = Pi (t) ew0r φ(t), (2.5)

with Pi (t) being the average firing rate of neuron i over many trials, and
w0rφ(t) being a nonconstant contribution shared across the two neurons.
According to equation 2.5, the excess trial-to-trial variation is due to trial-
specific effects w0r that modulate the function φ(t). We could not produce
analytical results, like those of equation 2.3, for the model of equation 2.5
because it is too complicated. Instead, we have calculated the predicted cor-
relation curve by numerical simulation. We simulated 1000 pairs of spike
trains from model 2.5 fitted to the data, which we used to compute the
correlation as a function of interval length T .1 We also adjusted the corre-
lation function for the recording accuracy of 2.8 msec.2 Figures 1B and 1C

1 Specifically, we sampled with replacement 1000 values w∗
0r from the histogram in

Figure 1F and then simulated pairs of Poisson spike trains with rates Pi (t)ew∗
0r φ(t), i = 1, 2,

with Pi (t) and φ(t) shown in Figures 1B, 1C, and 1E.
2 We identified all the occurrences of simultaneous spikes within 2.8 msec and, for each

occurrence, retained the spike of only one neuron, chosen with probability proportional
to its firing rate.
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show estimates of Pi (t), i = 1, 2, taken to be the smoothed PSTHs, Figure 1E
displays a fit of the function φ(t), and Figure 1F the histogram of the fitted
trial-specific effect coefficients w0r . In Figure 1A, the correlation predicted
by equation 2.5 appears as the dashed curve, and the correlation after
adjustment for the recording accuracy of 2.8 msec appears as the large-
dashed curve. While equation 2.5 is itself a simplified representation of
excess trial-to-trial variation and should not be expected to fit the data
perfectly, these curves track the observed correlation quite well.

3 Discussion

Trial-to-trial variation is of interest not only for its physiological significance
(Azouz & Gray, 1999; Hanes & Schall, 1996), but also because it confounds
assessments of correlation (Brody, 1999a, 1999b; Ben-Shaul, Bergman, Ritov,
& Abeles, 2001; Grün, Riehle, & Diesmann, 2003). We have shown here that
excess trial-to-trial variation produces spike count correlations that vary
with the length of time interval during which the counts are recorded.
This follows, essentially, from assumptions 1 and 2 by formulas 2.1 and
2.2. When assumption 3 holds, monotonicity holds throughout the interval
during which there is excess trial-to-trial variation and, furthermore, the
correlation vanishes as T → 0. We have also noted that when the excess
trial-to-trial variation disappears after time T1, the spike count correlation
will decline after it reaches a maximum at an interval of length T1. This
behavior conforms to observations reported in Averbeck and Lee (2003).
When there is correlation in the spike timing so that assumption 3 fails, it
would be reasonable to assume, analogous to assumption 2, that the within-
trial covariance between the two neurons’ spike counts is proportional to

Figure 1: (A) Correlation between the spike counts for two neurons in primary
visual cortex, as a function of interval length T . For each T , we plotted the
box plot (quantiles and 10th and 90th quartiles) of the correlations obtained by
sliding the interval along experimental time. The solid curve is equation 2.3
with ω = 34. The dashed curve is the correlation function predicted by model
2.5 fitted to the data; the large-dashed curve is also for data as in equation 2.5
but with recording accuracy of 2.8 milliseconds to match the observed data. The
activity of the two neurons was recorded during 64 trials from an anesthetized
monkey; the stimulus in each trial was a standing sinusoidal grating that ap-
peared at time 0 and disappeared at 237 ms. (B, C) Raw and smoothed PSTHs,
P i (t), i = 1, 2, of the two neurons. (D) Within-trial spike counts for the complete
interval of observation, which suggests that the neurons have shared effects of
trial-to-trial variation. (E) The fitted firing rate modulating function φ(t) and
(F) a histogram of the coefficients w0r .
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the within-trial expectation. We write:

COV
(
Y1

r , Y2
r | Xr

) = cT E
(
Y1

r | Xr
)
. (3.1)

In this case, monotonicity holds as long as c < k, and it is easy to show that
COR(Y1, Y2) → c/k as T → 0.

Note that in the absence of trial-to-trial variation, f (Xr ) becomes a con-
stant, and under assumption 3, the spike counts are uncorrelated. If assump-
tion 3 fails but equation 3.1 holds, in the absence of trial-to-trial variation,
the correlation becomes constant and does not increase with the length of
time interval. Under assumptions 1 and 2, an increase in spike count corre-
lation with length of time interval, as in Figure 1A, is an indication of excess
trial-to-trial variation that is shared across the two neurons. (For related
methods and additional analyses of these data, see Ventura et al., 2005.)

We have offered our analysis in the usual spirit of those made with
simplifying assumptions. We would not expect excess trial-to-trial varia-
tion to be summarized accurately by a single number, here represented
as Xr . Ventura et al. (2005) have shown how somewhat more complicated
phenomena involving trial-to-trial variability may be described. However,
we would expect equations 2.3 and 2.4 to capture dominant effects, as il-
lustrated in Figure 1A, and to provide insight into the possible origin of
widely observed correlations.
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