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Behseta S, Berdyyeva T, Olson CR, Kass RE. Bayesian correction
for attenuation of correlation in multi-trial spike count data. J Neu-
rophysiol 101: 2186–2193, 2009. First published January 7, 2009;
doi:10.1152/jn.90727.2008. When correlation is measured in the pres-
ence of noise, its value is decreased. In single-neuron recording
experiments, for example, the correlation of selectivity indices in a
pair of tasks may be assessed across neurons, but, because the number
of trials is limited, the measured index values for each neuron will be
noisy. This attenuates the correlation. A correction for such attenua-
tion was proposed by Spearman more than 100 yr ago, and more
recent work has shown how confidence intervals may be constructed
to supplement the correction. In this paper, we propose an alternative
Bayesian correction. A simulation study shows that this approach can be
far superior to Spearman’s, both in accuracy of the correction and in
coverage of the resulting confidence intervals. We demonstrate the
usefulness of this technology by applying it to a set of data obtained from
the frontal cortex of a macaque monkey while performing serial order and
variable reward saccade tasks. There the correction results in a substantial
increase in the correlation across neurons in the two tasks.

I N T R O D U C T I O N

A central theme in the statistical analysis of neuronal data is
the appropriate accounting for uncertainty. This often involves
the inclusion of sources of variability that might otherwise be
omitted. Although in some cases taking into account additional
sources of variability may decrease the magnitude of an effect
(Behseta et al. 2005), in other cases, the effect of interest may
actually increase. An important example of this second situa-
tion involves estimation of correlation in the presence of noise.
Suppose � and � are random variables having a positive
correlation ��� and � and � are independent “noise” random
variables that corrupt the measurement of � and � producing
X � � � � and Y � � � �. A simple mathematical argument
(see APPENDIX) shows that

�XY � ���

where �XY is the correlation between X and Y. In words, the
presence of noise decreases the correlation. Thus in many cir-
cumstances, a measured correlation will underestimate the
strength of the actual correlation between two variables. However,
if the likely magnitude of the noise is known, it becomes possible
to correct the estimate. The purpose of this note is to provide a
Bayesian correction and to show that it can produce good results
when examining correlations derived from multi-trial spike
counts.

We apply the method in the context of single-neuronal
recording experiments. Broadly speaking, it is sometimes nec-
essary to compare the selectivity of a neuron for a particular
variable across two task contexts. For example, one might wish
to compare shape selectivity across blocks of trials in which the
shape has different colors (Edwards et al. 2003) or compare
selectivity for saccade direction across blocks of trials in which
the saccade is selected according to different rules (Olson et al.
2000). It is also sometimes necessary to compare selectivity for
two different variables as measured in separate task contexts.
For example, we might wish to compare selectivity for the
direction of motion of a visual stimulus viewed during passive
fixation with selectivity for saccade direction in a task requir-
ing eye movements (Horwitz and Newsome 2001). The stan-
dard approach to making such comparisons is to compute, for
multiple neurons, index 1 in context 1 and index 2 in context
2 and then to compute the correlation between the two indices
across neurons. The correlation may be statistically significant
but smaller than one might expect, which raises the question: is
the small correlation due to a genuine discordance between the
two forms of selectivity, or is it due to noise arising from
random trial-to-trial variability in the neuronal firing rates?
This is the kind of question the methods of this article are
designed to answer.

The idea of introducing a “correction for attenuation” of the
correlation goes back at least to Spearman (1904). He did not
at that time, however, have the technology to provide confi-
dence intervals associated with his proposed technique. Frost
and Thompson (2000) reviewed some solutions to the problem
of constructing confidence intervals for the slope of a noise-
corrupted regression line, and Charles (2005) gave procedures
for obtaining confidence intervals for the correlation based on
Spearman’s formula. We performed a computer simulation
study to compare the Bayesian correction with Spearman’s
correction and the Bayesian confidence intervals with those
based on Spearman’s correction. We found the Bayesian
method to be far superior. We then applied the method to data
from the frontal cortex of a macaque monkey recorded while
the monkey was performing serial order and variable reward
saccade tasks.

M E T H O D S

Notation

Let Xi � �i � �i, and Yi � �i � �i, where �i and �i represent the
underlying true values, and �i and �i are the associated error values
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(representing noise) for the ith observation, for i � 1, 2, . . . , n. Let
�xi

2 and �yi

2 represent the variance for Xi and Yi respectively. To
construct the Bayesian model (see following text), we assume that �i �
N(0,��i

2 ), and �i � N(0,��i

2 ). In neurophysiological applications,
��i

2 and ��i

2 may be estimated from repeated trials and then treated as
known, separately for each neuron, as we discuss in DATA ANALYSIS

and also in the APPENDIX. This is referred to as inhomogeneous
variances. Otherwise, in the case of homogeneous variances, since
��i

2 � ��
2 and ��i

2 � ��
2, for i � 1, . . ., n, we will use the notation

��
2 and ��

2. Finally, we let 	�, 	�, ��
2, and ��

2 be the means and the
variances of �i and �i, respectively.

Spearman’s method

Spearman (1904) tackled the problem of correcting the attenu-
ation of the correlation coefficient through a series of intuitive
steps (see Charles 2005). Spearman’s formula for attenuation
correction is given by

��� �
�XY

��XX��YY

(1)

where ��� is the corrected correlation, �XY is the correlation
between X and Y, and �XX, and �YY are known as reliabilities,

defined as �XX �
��

2

�X
2, and �YY �

��
2

�Y
2. The derivation of Eq. 1 is given

in the APPENDIX.
In practice, we estimate (1) with the sample corrected correlation as

follows

r�� �
rXY

�rXX�rYY

(2)

where rXY is the usual (Pearson) correlation given by rXY

�
�i�1

n �xi 
 x� ��yi 
 y� �

�n 
 1�sx 
 sy

, in which x� and y� are the sample means, and

sx and sy are the sample SDs of X and Y. Also rXX

�
sx

2 
 ��
2

sx
2 , and rYY �

sy
2 
 ��

2

sy
2 . According to Spearman (1904), to

calculate �rXX, �rYY in Eq. 2, one would need repeated measurements
of Xi and Yi for each i � 1, . . ., n. This is important because in some
applications, such as in DATA ANALYSIS in the following text, the
quantities Xi and Yi are indices derived from complete sets of trials;
repeated measurements are not available.

It is possible for r�� to be �1. Spearman was aware of this, but the
method was received quite unfavorably by Karl Pearson (1904), who
firmly believed that correlation formulas that yield values larger than
one are essentially faulty. The Bayesian method we introduce in the
following text does not suffer from this defect.

Confidence intervals for Spearman’s method

The most commonly applied confidence interval for ��� is as
follows (Charles 2005; Hunter and Schmidt 1990; Winne and Belfrey
1982)

L

�rxx�rYY

� ��� �
U

�rxx�rYY

(3)

in which by L and U, we refer to the lower and upper bounds of the
confidence interval for �xy. To calculate L and U in Eq. 3, one can use
the asymptotic confidence interval of the so-called Fisher’s z trans-
formation (Fisher 1924). In general, if � and r are the theoretical and
the sample correlations, respectively, then it can be shown that

�n�r 
 �� converges in distribution to a normally distributed random
variable with mean 0 and variance (1 � �2)2, and that the asymptotic

variance of z �
1

2
log�1 � r

1 
 r
� is

1

n 
 3
which does not depend on r

(see page 52 in DasGupta 2008). Consequently, the lower and the

upper bounds of a confidence interval for
1

2
log �1 � r

1 
 r
� are

Lz � z 
 z�1�/2�� 1

n 
 3

Uz � z � z�1�/2�� 1

n 
 3

where z(1�/2) is the 100(1 � /2)-th percentile of the standard normal
distribution. Using the inverse transformation to restate the confidence
bounds in terms of r we obtain

L �
exp �2Lz� 
 1

exp �zLz� � 1

U �
exp �2Uz� 
 1

exp �2Uz� � 1

Specifically, for data (x1, y1), . . ., (xn, xn), putting L and U defined
in the preceding text in Eq. 3 provides the usual confidence interval
based on Spearman’s method. The values of Lz and Uz based on
Fisher’s z-transformation can be obtained using standard software.
For example, to calculate L and U in Matlab, one can use the
command corrcoef. The command cor.test in the statistical software R
will also produce L and U.

Measurement error methods

The problem of correlation attenuation due to noise can be viewed
from a simple linear regression perspective. For a thorough review,
see the books by Carroll et al. (2006), and Fuller (1987), and the
article by Frost and Thompson (2000). Consider the linear regression
model

Yi � * � �*�i � ei*

for i � 1, . . . , n, with the familiar assumption e* � N�0, �e*
2 �

Suppose that instead of observing values for the predictor �, we record
noisy values Xi � �i � �i, where �i is the measurement error for the
ith observation. Consequently, we fit

Yi �  � �Xi � ei

Note that unlike previous sections, measurement error is only assumed
for the predictor X.

The problem may be formulated further with two assumptions:
�i � N�	�, ��

2�, and �i � N�	�, ��
2�, where ��

2 and ��
2 represent the

so-called between objects and within objects uncertainty, respectively.
As shown in the APPENDIX, one can estimate the true slope of the
regression line �*, via

�̂* � �Rx�
�1�̂

where �̂ is the least-squares estimator of �, and Rx �
��

2

��
2 � ��

2 is the

reliability or �xx, as introduced in the previous text. Note that similar
to Spearman’s technique, the regression-based model assumes homo-
geneous variances. As shown in the APPENDIX, when the measurement
error is also considered for the response variable, the regression-based
method and Spearman’s approach will produce the same correction
for attenuation. As with Spearman’s technology, regression-based
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techniques are constructed under the assumption that there are re-
peated measurements in each (Yi,Xi), for i � 1, . . ., n.

Bayesian method

To address the problem of correlation attenuation, we form a random-
effects model, also called a hierarchical model. Following the notation in
the previous text, let Xi � �i � �i and Yi � �i � �i, where �i and �i

represent the underlying true values, and �i and �i are the associated
error values for the ith observation, i � 1, 2, . . ., n. In the first stage

of the model, we have: �i � N�0,��i

2 �,�i � N�0,��i

2 �, where ��i
, and

��i
are estimated for repeated trials and then treated as known for each

i � 1, . . ., n.
In the second stage of the model, we join to the distributional

assumption for the pairs (Xi, Yi), the additional specification

� �i

�i
� � Normal �	, ��

in which

	 � �	�

	�
� , and � � � ��

2 �������

������� ��
2 �

where 	�, 	�, ��
2, and ��

2 be the means and the variances of �i and �i

respectively.
The quantity we seek is � •

�� Because we have formulated the model
in this way, and because the uncertainty of measurements of interest
is explicitly incorporated into �� and ��, the estimate of ��� will be
adjusted for those sources of variation. We employ Bayesian methods
(Casella and George 1992; Gelman et al. 1995; Wilks et al. 1995) to
estimate ��� via its posterior distribution. We use conjugate priors for
	 and �. This will facilitate the application of conventional software
(such as WinBugs).

We put independent univariate normal priors on 	� and 	�.
In both cases, we use diffuse Gaussian priors with mean 0 and a
large variance, �2. An Inverted-Wishart prior with the scale matrix
R, and degrees of freedom d with the density f���R, d�

� ���
�d�3

2 exp �

1

2
tr��R��1� is used for the covariance matrix �. To

avoid injecting substantial information, we use a very diffuse prior on
�. Following Kass and Natarajan (2006), we set d � 2 df, and we take
the scale matrix R to be the harmonic mean of the observed covari-

ance matrices Si, R � �1

n
�

i�1

n �Si�
�1��1

, where Si is a 2 	 2 observed

covariance matrix associated with neuron i, obtained from trial-to-trial
variation in the spike counts.

By sampling from the posterior distribution of �, one can form a
confidence interval (often called a Bayesian “credible interval”) for
the correlation coefficient �. Thus a confidence interval for � having
coverage probability approximately 1 �  is

���

2�, ��1�


2��

where ��

2�, and �� 1�


2�are the


2
th and the�1 




2
�th quantiles of

the sample from the posterior distribution of �.
The hierarchical model used here has the property that the

resulting posterior means for (�i,�i) are weighted combinations of
the observed values (Xi,Yi) and their weighted means (with weights
defined in terms of the relative values of the variances, so that more
precisely measured observations have greater weight). This is
usually referred to as “shrinkage” because the spread of the values
of posterior means for (�i,�i) will be smaller than the spread of the
data (Xi,Yi). This phenomenon is discussed in Bayesian texts, such
as Gelman et al. (1995) and will be illustrated in Fig. 1.

R E S U L T S

Data analysis

We demonstrate the effect of the Bayesian correction of the
attenuation using data from an experiment we carried out
recently. The aim of the experiment was to characterize the
neural mechanisms that underlie serial order performance. We
trained monkeys to perform eye movements in a given order
signaled by a cue. For example, one cue carried the instruc-
tion: look up, then right, then left. Monitoring neuronal
activity in frontal cortex during task performance, we found
that many neurons fire at different rates during different
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FIG. 1. Plots of reward- vs. rank-selective indices, before and after Bayes-
ian correction. Top: uncorrected indices. The x axis represents the index value
for the the serial order saccade task. This is obtained through Irank � (f3 �
f1)/(f3 � f1), where f1 and f3 were the mean firing rates measured at the times
of the 1st and 3rd saccades, respectively. The y axis indicates the index of
selectivity for the size of the anticipated reward: Ireward � (fb � fs)/(fb � fz)
where fb and fs were the firing rates during the postcue delay period on
big-reward and small-reward trials, respectively. Bottom: plot of posterior
means representing values after correction for noise.
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stages of the task, with some firing at the highest rate during
the first, some during the second, and some during the third
stage. We refer to this property as rank selectivity. Rank-
selective neurons might genuinely be sensitive to the mon-
key’s stage in the sequence. Alternatively, they might be
sensitive to some correlated factor. One such factor is
expectation of reward. Reward (a drop of juice) was deliv-
ered only after all three movements had been completed.
Thus as the stage of the trial progressed from one to three,
the expectation of reward might have increased.

To test whether rank-selective neurons were sensitive to the
size of the anticipated reward, we trained the same monkeys to
perform a task in which a visual cue presented at the beginning
of the trial signaled to the monkey whether he would receive
one drop or three drops of juice after a fixed interval. We
reasoned that neuronal activity related to expectation of reward
would be greater after the promise of three drops than after the
promise of one. We monitored the activity of 54 neurons
during the performance of both the serial order task and the
variable reward task. We then computed an index of rank
selectivity in the serial-order task and of selectivity for the size
of the anticipated reward in the variable reward task for each

neuron. The rank index was Irank �
� f3 
 f1�

� f3 � f1�
, where f1 and f3

were the mean firing rates measured at the times of the first and
third saccades, respectively. To obtain the rank index for a
given neuron, we collected data from �25 trials for each of the
nine possible rank-direction combinations (3 directions of eye
movements: rightward, upward, or leftward; and 3 ranks: 1st,

2nd, or 3rd). The reward index was Ireward �
� fb 
 fs�

� fb � fs�
where

fb and fs were the firing rates during the post cue delay period
on big- and small-reward trials, respectively. To obtain
reward index for a given neuron, we collected data from
�20 trials for each of the six possible reward-direction
combinations (3 directions of eye movements: rightward,
upward or leftward; and 2 sizes of anticipated reward: 1 or
3 drops of juice).

On carrying out a conventional correlation analysis, we
found that the two measures were positively correlated but that
the effect was not strong (r � 0.49). We speculated that the low
correlation was in part due to trial-to-trial uncertainty of
neuronal firing rate that would affect the correlation even when
all controllable factors (such as rank and the size of the
anticipated reward) are held constant. We were surprised at the
low degree of the measured correlation between the rank and
reward indices because we knew that the expectation of reward
increases over the course of a serial-order trial and that neu-
ronal activity in the SEF is affected by the expectation of
reward (Roesch and Olson 2003). We wondered if our estimate
of the correlation between the two indices had been attenuated
by noise arising from random trial-to-trial variations in neuro-
nal activity.

To implement the proposed Bayesian technology, we let
Ireward and Irank play the role of Xi and Yi for i � I, . . ., n
neurons as in the preceding text. Consequently, we would need
to estimate ��

2 and ��
2, the variances of Ireward, and Irank respec-

tively. The following relationship may be used to calculate ��
2

per neuron

��
2 � � 2	f2

(	f1
�	f2

)2��f1

2 �� �2	f1

�	f2
� 	f1

�2��f2

2 (4)

where 	f1
, �f1

2 , 	f2
, and �f2

2 are the means and the variances of f1
and f2 in I � (f1 � f2)/(f1 � f2), respectively. A similar
formulation can be used to estimate ��

2. The derivation of Eq.
4 is given in the APPENDIX. Also considering the magnitude of
X, and Y values, we let �2 � 80 for the variance of normal
priors on 	� and 	�.

In Fig. 1, we demonstrate the dramatic effect of the Bayesian
attenuation correction for 54 recorded neurons. On the top, we
give the scatterplot for the pairs of indices prior to the appli-
cation of the Bayesian method. The x and y axes are repre-
sented by Irank and Ireward, respectively. The bottom part
contains the scatterplot for the posterior estimation of the same
set of indices. The correlation for the attenuated data are 0.49.
The corrected correlation using the Bayesian method increased
dramatically to 0.83 with the confidence interval (0.77,0.88).
For this data, Spearman’s method gave an estimate of 0.85 but
the 95% confidence interval was (0.65,0.99). Not only is the
Bayesian interval much smaller, but from our results of the
simulation study, we expect it to have a probability coverage
much closer to 0.95.

Simulation study

METHODS. To investigate the accuracy of the proposed Bayes-
ian method, we performed simulation studies repeating the data
structure of the previous section under three scenarios. In
scenario 1 (Fig. 2), we considered the truth to be a realization
of a bivariate normal distribution with

	 � � 0
0� , and � � �0.16 0.1

0.1 0.15� .

As a result of bivariate normality, the Bayesian method as-
sumes a linear relationship between � and �. However, one
might not expect much distortion from this assumption. Cor-
relation is itself a measure of linear association, so a method
based on linearity might be expected to behave reasonably well
even when the underlying relationship is nonlinear. We used
scenario 2 as an initial check on this intuition. Scenario 2 is
shown in Fig. 3. In scenario 2, we assumed that the true data
points were built around the quadratic equation y � 1.1x2 �
0.6x � 0.004, evaluated at x � (�0.6, 0.6), after adding
random noise N(0,1) to each point.

As may be seen in Fig. 3, scenario 2 provides a strikingly
nonlinear relationship between � and �, clearly violating the
linearity assumption imbedded in the Bayesian method. Fi-
nally, in scenario 3, we took the true values to be the data
shown in Fig. 1, bottom, that is, the data obtained from
implementing the Bayesian procedure.

The general algorithm for simulating neuronal data in all
scenarios can be explained through the following steps: 1) let
the bivariate data in Figs. 2 and 3 and Fig. 1, bottom, represent
true values for Irank and Ireward in each scenario. 2) Considering

that Irank �
�1 
 �2

�1 � �2

, and Ireward �
�3 
 �4

�3 � �4

, manufacture true

values for �1, �2, �3, �4, associated with each pair of true (Irank,
Ireward). 3) Knowing �s, randomly simulate 1,000 sets of 200
Poisson counts: 200 � 50 (neurons) 	 4 (�s). 4) For each
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randomly generated dataset, calculate the associated simulation
values of Irank and Ireward . 5) Implement both the Bayesian
technology and Spearman’s approach on the simulated data.
Assess the goodness of each technology.

To implement step 2, we generated a pair of Poisson inten-
sities, one for each condition. Because we began the simulation
process by setting true values for I, we would need to calculate
true � values by applying a reverse procedure. Due to the fact

that I �
�1 
 �2

�1 � �2

, we manufactured a pair of ��1, �2� such that

they match the equation for I. For example, when I � 0.08, we
may take �1 � 0.77 and �2 � 0.65, and when �0.036, we
let �1 � 0.40 and �2 � 0.43 (see the supplementary material
for an extended example.)

In each scenario, to imitate the multi-trial nature of neuronal
recordings, we simulated Poisson data with n � 15,30,60,120,
where n is the number of trials. For step 3, we generated
Poisson counts using the following general idea. Let � be the
true firing rate for a given experimental condition and suppose
that interest lies in creating multiple trials of spike occurrences
over the span of 1 s. Let n be the number of trials. Then n� is
the expected value of the Poisson counts for that condition.

After simulating data for each scenario, we kept track of the
mean square error as well as the SE of the point estimator using
the usual correlation (rXY), the corrected rXY or r�� as shown in
formula 1, and the proposed Bayesian method. Additionally,
we calculated the coverage of the true correlation in the simulated
confidence intervals, using: the z-transformed uncorrected correlation
coefficient, the corrected z method as presented in the previous text,
and Our proposed Bayesian method.

To calculate the coverage we use

C �
number of confidence intervals containing the true value

M

where M is the number of simulated data sets. To calculate the
mean squared error, we set MSE � E(�̂ � �)2, where �̂ is the
point estimator for �. For example, in the Bayesian case, since

the posterior draws of � were fairly symmetric, the posterior
mode and the posterior mean were extremely close. Conse-
quently we used the posterior mode as the point estimator.
Note that MSE is generally approximately proportional to 1/n.
Therefore the practical implication is that if one method re-
duces MSE by a factor of say 2, this is roughly equivalent to
doubling the sample size.

Simulation results are summarized in Tables 1–6. Each table
contains the results for the z-transformed method, the corrected
z method, and the Bayesian method. The method that produces
smaller mean square error is more desirable. Confidence inter-
vals were constructed to have �0.95 probability of coverage.
Therefore good performance of each method would be indi-
cated by coverage probability close to 0.95.

In each scenario, 25,000 sets of Poisson data were simulated.
The results of the mean squared error calculations are given in
Table 1. They indicate that the hierarchical Bayesian method
yields a huge reduction in mean squared error compared with
both of the rXY and r��, the corrected rXY method. An explana-
tion for the improvement of the hierarchical method over the
other two techniques is that the Bayesian approach, because of
its multi-level structure, allows for proper accounting for
uncertainty due to error. To give an example, the estimated
mean squared error achieved by the Bayesian method at n � 30
is about half of the mean squared error of the other two
methods at n � 120. In other words, use of the Bayesian
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FIG. 2. Simulation scenario 1. True indices are obtained by simulating from
a bivariate normal distribution.
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FIG. 3. Simulation scenario 2. Data points are constructed around the
quadratic equation y � 1.1x2 � 0.gx � 0.004, evaluated at x � (�0.6,0.6),
after adding random noise N(0,1) to each point.

TABLE 1. MSE for simulations under scenario 1 (normal data)

rXY Spearman Bayesian

n � 15 0.036 0.025 0.0037
n � 30 0.015 0.01 0.0016
n � 60 0.0061 0.0051 0.00091
n � 120 0.0026 0.0025 0.00049

For example, the MSE of rXY when n � 15 was 0.036. In every case, the
Bayesian estimator has much smaller MSE than Spearman’s. MSE, mean
squared error.
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method is roughly equivalent to eightfold increase in sample
size with Spearman’s method. Further calculations (not in-
cluded in Tables 1–6) revealed results: mean square error of
the Bayesian estimator at n � 15 is nearly equal to the mean
squared error at n � 90 when the corrected rXY method is
performed; both in terms of the mean square error and the SE,
the Bayesian method at n � 45, outperformed Spearman’s
technique even at a considerably large sample size of n � 120;
and, for smaller n (n � 15,30), the mean squared error of the
Bayesian technique was 10 times smaller than the mean
squared error of the Spearman’s method.

As shown in Table 2, both transformed-z, and the corrected
technique tend to either underestimate (for small n), or over-
estimate (for large n), the true coverage of 0.95. The overes-
timation phenomenon reveals itself sharply especially in the
case of larger trial numbers (n � 30). In contrast, the
coverage of the Bayesian method is consistently close to
0.95 regardless of the sample size. Additionally, simulation
standard errors of the Bayesian method are universally
smaller than the ones obtained from the other two methods.
For instance, the SE of the coverage at n � 120 is 0.008 for
the z-transformed method, 0.009 for the corrected z method,
and 0.0008 for the Bayesian method, a reduction of �10
times. This is a suggestion the SE of the coverage in
Spearman’s method is highly affected when a few of the
simulated data sets behave erratically.

Tables 3 and 4 summarize the results for scenario 2. Again,
the proposed Bayesian method outperforms the other methods
in terms of the mean squared error, as well as the coverage
values. As shown in Table 3, the mean squared error of the
Bayesian method at n � 30, which is 0.001, cannot be achieved
by either of the other two methods even at a significantly
larger trial size of n � 120. According to Tables 3 and 4, the
Bayesian coverage is far more accurate than the others.
Similarly to scenario 1, both the z-transformed and its
corrected version have the undesirable property of underes-
timating the coverage for data sets with smaller to moderate
trial numbers (n � 30), and overestimating the coverage for
the ones with even moderate trial sizes (n � 60). The results
of the scenario 3 (Tables 5 and 6) are fully consistent with
the findings of the other two scenarios.

In addition to the above mentioned simulation studies, Pois-
son data were generated from a true scenario with extremely
low correlation, r 
 0. We performed simulations for n � 15
and n � 60. We did this additional simulation to study the
performance of the Bayesian correction method when there is
no correlation. As with the previous simulations, for both
sample sizes, the posterior coverage of 0 was extremely close

to 0.95 for the Bayesian test at the 0.05 level. Meanwhile, the
simulation’s mean squared error was close to 0.01 for n � 15,
and 0.001 for n � 60. This provides an example when the
Bayesian methodology does not cause an artificial increase in
the correlation.

D I S C U S S I O N

Spearman’s idea of correcting for attenuation of the corre-
lation coefficient has been around for �100 yr. It deserves
wider recognition in neurophysiological practice, but Spear-
man’s method is flawed. In the first place, it can produce
correlations larger than 1. Second, Spearman’s reliability rxx is
only well-defined when the variability within items (here,
within neurons) is the same for every item; but the variance
of such things as a firing-rate index is likely to change
across neurons. Third, as our simulation results showed, it is
much less accurate than the Bayesian method we intro-
duced: for normally distributed variables Spearman’s
method may require 10 times as many trials for comparable
accuracy, while in the non-normal case Spearman’s method
is even worse. Finally, while confidence intervals based on
Spearman’s method have been developed, they are also
much less accurate than the Bayesian intervals we recom-
mend.

The Bayesian method we applied is easily implemented with
existing software (see the APPENDIX). In some situations, prac-
titioners worry that the prior information injected via Bayes’
Theorem may introduce substantial biases. The priors we
used were chosen to be diffuse (not highly informative) and
have been shown to have good properties in previously-
published work (Kass and Natarajan 2006). The simulation
study reported here indicates that the method performs well.
From our analysis of SEF data we conclude that the method
can have a substantial impact on neurophysiological find-
ings.

TABLE 2. Simulations under scenario 1 (normal data)

z Corrected z Bayesian

n � 15 0.82 0.93 0.94
n � 30 0.97 0.95 0.95
n � 60 0.99 0.99 0.95
n � 120 1.00 1.00 0.95

Coverage probability of the Fisher’s z, corrected z, and Bayesian, 95%
confidence intervals. For different sample size values, the Bayesian estimator
has a coverage probability closer to 95% than the corrected z. The coverage
standard errors are all small. For example, the SE of the Bayesian method is
0.007.

TABLE 3. MSE for simulations under scenario 2 (banana-shaped
data)

rxy Spearman Bayesian

n � 15 0.091 0.034 0.0072
n � 30 0.035 0.012 0.0013
n � 60 0.014 0.0052 0.00086
n � 120 0.0036 0.0026 0.00035

In all cases, the Bayesian method has much smaller MSE than Spearman’s
entries as in Table 1.

TABLE 4. Simulations under Scenario 2 (banana-shaped data)

z Corrected z Bayesian

n � 15 0.092 0.85 0.94
n � 30 0.15 0.92 0.95
n � 60 0.61 0.96 0.95
n � 120 0.96 0.97 0.95

Entries as in Table 2. In all cases, the Bayesian technique provides accurate
coverage probability with much less varibility across datasets.
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A P P E N D I X

Correlation decreases when noise is added

Let � and � be two independent random variables with � and � as
their associated noise. Let X � � � �, and Y � � � � Because of
independence, one can write

Cov�X, Y� � Cov�� � �, � � �� � Cov��, �� � Cov��, ��

� Cov��, �� � Cov��, �� � Cov��, ��.

Cor�� � �, � � �� �
Cov��, ��

��Var��� � Var�����Var��� � Var����

�
Cov��, ��

�Var���Var���
� ���

Derivation of Spearman’s formula

Suppose that we observe pairs of X and Y s, with X � � � �, and
Y � � � �. Note from the definition of correlation that

Cov��, �� � ���
2���

2 ���

Also due to independence between �, and � (previous APPENDIX), we
have

Cov�X, Y� � ��X
2 ��Y

2 �xY � Cov��, �� � ���
2���

2 ���

therefore

��� � �XY��X
2

��
2 ��Y

2

��
2

let

�xx �
��

2

�X
2

Spearman referred to �xx, the proportion of the observed variance of
X’s that is due to variance among true values �s, as the reliability of
X’s. Similarly the reliability of Y’s is defined as

�YY �
��

2

�y
2

Then Spearman’s formula for correcting attenuation in correlation
is

��� �
�XY

��XX��YY

(A1)

Relationship between regression-based approach
and Spearman’s correction

First, assume that Xi � �i � �i and consider the regression model
Yi �  � �Xi � ei, for i � 1, . . ., n. The covariance matrix of
(X, Y) is

� �Y
2 �XY

�XY �X
2� � ��2��

2 � �2��
2 � ��

2 ���
2

���
2 ��

2 � ��
2�

Let RX � � ��
2

��
2 � ��

2� . Clearly, RX � �XX, the reliability in Spear-

man’s notation.
Suppose now that we are interested in finding the relationship

between �Y�, the true correlation, and �XY, the attenuated one through
the regression model. We have

�0Y
2 �

Cov2��, Y�

��
2�Y

2 �
��

2

�Y
2 �2 (A2)

on the other hand

�XY
2 �

Cov2�X, Y�

�X
2 �Y

2 �
�2��

4

���
2 � ��

2��Y
2 (A3)

Substituting Eq. A2 in A3 gives

�XY
2 � � ��

2

��
2 � ��

2���Y
2

One can easily expand this result to the case in which Yi � �i � �i,
where �i �  � �Xi. Note that

�XY
2 �

CovX, Y
2

�x
2�y

2 �
Cov�,�

2

�x
2�y

2 �
�2��

4

�x
2�y

2 �
���

2 ��
2��

2

���
2 � ��

2����
2 � ��

2�

therefore

��� � ��RX�
�1��RY�

�1�XY

which is Spearman’s formula.

Derivation of Formula 4

The derivation of ��
2 and to ��

2 is a simple application of the delta
method (for details, see section 9.9 in Wasserman 2004.) Let X and Y
be two random variables. Consider the function u�X, Y�

�
X 
 Y

X � Y
. We have

�u

�X
�

X � Y 
 �X 
 Y�

�X � Y�2 �
2Y

�X � Y�2.

Similarly,
�u

�Y
�

��X � Y� 
 �X 
 Y�

�X � Y�2 �
�2X

�X � Y�2. Let E�X�

� 	i, and E(Y) � 	2, Var(X) � �1
2, and Var(Y) � �2

2. Then assuming
independence between X and Y, one can write Var�u�X, Y��

� � 2	2

�	2 � 	1�
2��1

2 � � �2	1

�	2 � 	1�
2��2

2

Normal hierarchical modeling in WinBugs

WinBugs is a freeware that can be downloaded from the BUGS
Project website at http://www.mrc-bsu.cam.ac.uk/bugs/. The follow-
ing provides a general way of coding hierarchical normal models as

TABLE 5. MSE for simulations under scenario 3 (based on the
SEF data)

rxy Spearman Bayesian

n � 15 0.011 0.042 0.0098
n � 30 0.055 0.019 0.0049
n � 60 0.017 0.0061 0.00099
n � 120 0.009 0.0011 0.00047

The results of simulations 1 and 2 are repeated. For different sample size
values, the Bayesian method produces a much smaller MSE.

TABLE 6. Simulations under scenario 3 (based on the SEF data)

z Corrected z Bayesian

n � 15 0.012 0.91 0.93
n � 30 0.07 0.92 0.94
n � 60 0.39 0.96 0.95
n � 120 0.68 0.96 0.95

Entries as in Table 2. In all cases, the Bayesian technique provides accurate
coverage probability with much less varibility across datasets.

Innovative Methodology

2192 S. BEHSETA, T. BERDYYEVA, C. R. OLSON, AND R. E. KASS

J Neurophysiol • VOL 101 • APRIL 2009 • www.jn.org

 on M
arch 10, 2010 

jn.physiology.org
D

ow
nloaded from

 

http://jn.physiology.org


explained in the previous text (Bayesian Method).
model
{
for (i in 1 : N) (
theta {i, 1 : 2} dmnorm (mu []. signal [.])
for (j in 1 :T) (
Y [i. j]dnorm (theta [i, j]. se[i, j])
}
}
mu [1 : 2] dnorm (mean [], prec [, ])
sigma [1 : 2, 1 : 2]dwish (r[,], 2)
R. inv [1:2,1:2]� -inverse (sigma [,])
}

In the preceding, N represents the number of objects (neurons), T �
2 is the dimensionality, Y[i, j] represents the experimental data. In our
data analysis DATA ANALYSIS), Y[i, j] would be the ith index for the
variable reward task (j � 1), and serial-order task (j � 2), theta[i,j]
refers to the vector (�i,�i), se[i,j] represents ��

2 (j � 1), and ��
2 (j � 2)

for the ith observation, mu[], and Sigma[,] are the mean vector 	, and
the covariance matrix �, as shown in Bayesian model, respectively.
Finally, mu[1:2], and R.inv[1:2,1:2] are the priors for the mean vector
	, and the covariance matrix �. To run this model, the data need to be
formatted appropriately. As an example, to generate the posterior
values in the lower panel of Fig. 1, the data need to be formatted as
a 54 	 2 array. Additionally, an array of size 54 	 2 of se[i,j] values
is needed to run the model.
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