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Abstract Neurons in vitro and in vivo have epochs
of bursting or “up state” activity during which fir-
ing rates are dramatically elevated. Various methods
of detecting bursts in extracellular spike trains have
appeared in the literature, the most widely used ap-
parently being Poisson Surprise (PS). A natural de-
scription of the phenomenon assumes (1) there are
two hidden states, which we label “burst” and “non-
burst,” (2) the neuron evolves stochastically, switching
at random between these two states, and (3) within
each state the spike train follows a time-homogeneous
point process. If in (2) the transitions from non-burst to
burst and burst to non-burst states are memoryless, this
becomes a hidden Markov model (HMM). For HMMs,
the state transitions follow exponential distributions,
and are highly irregular. Because observed burst-
ing may in some cases be fairly regular—exhibiting
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inter-burst intervals with small variation—we relaxed
this assumption. When more general probability distri-
butions are used to describe the state transitions the
two-state point process model becomes a hidden semi-
Markov model (HSMM). We developed an efficient
Bayesian computational scheme to fit HSMMs to spike
train data. Numerical simulations indicate the method
can perform well, sometimes yielding very different
results than those based on PS.
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1 Introduction

Extracellularly-recorded spike trains often contain
clusters of several spikes, separated by unusually small
inter-spike intervals (ISIs). Such clusters may represent
sudden epochs of elevated firing rate due to a neu-
ron’s intrinsic dynamics, a response to bistable network
behavior, or oscillations traveling through a region
of the brain (Koch 2004; Doiron et al. 2003; Cooper
et al. 2005; Izhikevich et al. 2003; Wilson and Cowan
1972). They are called “bursts” or “up states” depend-
ing on the context. Analysis of bursting or up state
data requires identification of when the bursts occur,
their number, and their duration. From extracellular
measurements alone, however, there is an immediate
problem of definition: when the underlying voltage fluc-
tuations are not observed, it is unclear what should con-
stitute a burst. In this paper we discuss a conceptually
simple approach: at each time point t we assume there
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is—for a given neuron—an unobserved dichotomous
state, which we label “burst” or “non-burst”. The statis-
tical problem then becomes one of identifying the hid-
den states, which may be accomplished using maximum
likelihood or Bayesian methods. This approach seems
quite natural, and accords well with theoretical concep-
tions of both intrinsic bursting and up/down networks.
We ignore any distinction here between bursts and up
states, because the statistical detection methods will be
the same regardless of the physiological situation, and
we use the term “burst” throughout.

Some authors have devised extracellular burst-
detection methods based on interspike interval (ISI)
length, often with a criterion for a minimal number
of spikes with small ISIs (Lo et al. 1991; Martinson
et al. 1997; Corner et al. 2002; Turnbull and Gross 2005;
Tam 2002). A conceptual difficulty for such methods,
illustrated in Fig. 1, is that spike trains generated from
pure renewal processes—such as those produced by
simple integrate-and-fire models—can exhibit clusters
of neurons that have the appearance of bursts. In some
circumstances these “null cases” might be ruled out by
substantive considerations. In most others, one needs a
careful, model-based calibration to determine whether
or not a cluster of short ISIs represents a burst.

A very popular burst-detection method, called Pois-
son Surprise (PS) (Legendy and Salcman 1985), offers
such a calibration based on a probabilistic model on
the ISIs. With PS, one calculates a surprise value S
to measure how unlikely it is that a cluster with n
spikes in a time interval T, would occur by chance.
The method performs its chance calculation under the
assumption that the ISIs are independent realizations
from an exponential density. This amounts to assuming
the neuron to spike according to a time homogeneous
Poisson process. It is, however, known that spike trains
often exhibit distinctly non-Poisson behavior (Koch
2004; Gourevitch and Eggermont 2007). To avoid the
Poisson assumption (Gourevitch and Eggermont 2007)
proposed a rank surprise (RS) index, which again com-
putes a surprise value but instead uses the distribution
of ISI ranks to perform the chance calculation.
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Fig. 1 Spike train simulated from inverse Gaussian renewal
model. By chance, spikes tend to form clusters, resembling bursts.
The inverse Gaussian mean was 30.8 spikes per second with shape
parameter 19.3, which were maximum likelihood estimates from
an inverse Gaussian fit to the retinal ganglion data analyzed
below

Both PS and RS calibrate clusters of ISIs under the
assumption that all ISIs in the spike train are generated
from a pure renewal process. When this “null” assump-
tion is rejected, the cluster is declared to come from a
burst. An alternative approach is to specify a model that
accommodates both bursting and non-bursting states.
In the framework introduced here, each ISI is assumed
to occur during either a bursting or non-bursting state,
and to follow either a burst probability distribution
or a non-burst probability distribution. That is, all the
ISIs during bursting follow one probability distribution,
and all the ISIs during non-bursting follow a second
distribution. The state itself is not observed, and must
be learned (estimated) from the data along with the
parameters for the two probability distributions. Our
explicit probability model allows us to evaluate the like-
lihood of any configuration of these parameter values.
For inference, we take a Bayesian approach by com-
bining this likelihood function with a prior probability
distribution function over the parameters. In particu-
lar, we use Bayes’s rule to compute, for every time t,
the conditional probability that the hidden state was
bursting at t given the entire spike train recorded from
the neuron. The time intervals where this probability
exceeds a certain cutoff value (such as 0.5) are then
declared to be bursts.

The simplest two-state model for neural spike trains
is a switching Poisson (SP) process (or Markov-
modulated Poisson process) (Scott 1999; Abeles et al.
1995) in which spiking activity follows two homoge-
neous Poisson processes, one for each state, and the
state transitions from non-bursting to bursting and
bursting to non-bursting occur according to a Markov
chain. Such hidden Markov models (HMMs) (Baum
and Petrie 1966; Rabiner 1989) have two potential
restrictions. First, the neural activity within bursting
and non-bursting states continues to be considered
Poisson, which may well be inaccurate. Second, as a
Markov model the transitions are assumed memoryless.
This means that the inter-burst intervals (and inter-
non-burst intervals) follow exponential distributions,
which are maximally irregular (they are distributions
that maximize entropy subject to being positive with
a fixed expectation). Thus, spike trains that exhibit
regular bursting activity (such as roughly oscillatory
bursting) will be poorly fit by HMMs, and this may
cause sub-optimal behavior of the detection algorithm.
We relaxed both the within-state Poisson assumption
and the between-state exponential assumption by im-
plementing a switching gamma process model in which
the state transitions were also governed by gamma dis-
tributions. The latter formulation makes this a hidden
semi-Markov model (HSMM). The parameters of the
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gamma distribution, and therefore the ISI distributions
in both bursting and non-bursting states, are learned
from the data, and the bursting and non-bursting state
transitions are estimated. The purpose of this article is
to describe our HSMM implementation and study its
effectiveness.

An appealing feature of HMMs is computational
tractability, most often via an expectation-maxi-
mization algorithm known as the Baum-Welch algo-
rithm. This algorithm uses a fast forward-backward
recursion to perform maximum likelihood estimation
of model parameters and conditional probability eval-
uation of the hidden state given the estimated para-
meters. Chib (1996) developed a variation of this to
construct a Markov Chain Monte Carlo (MCMC) al-
gorithm for a Bayesian treatment of this model. In the
Bayesian setting, the conditional probability evaluation
requires an additional integration over the model pa-
rameters with respect to their joint posterior distribu-
tion given the observed spike train. Chib (1996) noted
that the Markov chain structure of the HMM model
allows efficient sampling from the posterior distribution
through a Gibbs sampler. The computational approach
we have developed applies Gibbs sampling to HSMMs
by expanding the state space so that the HSMM takes
a Markovian form. In Section 2 we provide details of
our implementation; in Section 3 we give results from
a small simulation study, comparing our HSMM to PS
and RS, and also to a point-process HMM; in Section 4
we apply the HSMM to a data set analyzed previously
by several other authors; and in Section 5 we discuss the
results.

2 Methods

2.1 Hidden binary model

We denote the hidden binary state of the neuron at time
t by C(t) with C(t) = 1 coding a bursting state, C(t) = 0
a non-bursting state. We suppose the observation time
interval is [0, T] and assume that on this interval C(t)
can have only finitely many transitions between its two
states. The waiting time from one transition to the next
will be called an inter-transition interval (ITI). The
ITIs are assumed independent. Those corresponding to
the bursting state (C(t) = 1) are from a density f ITI

1 (·)
and those from a non-bursting state are from a density
f ITI
0 (·).

Within each state, we consider the neural spike train
to be governed by a renewal process with an inter-spike
interval (ISI) probability density f1 or f0 depending on
the state level. Such a conception may be technically

inaccurate because transitions may occur in the midst
of an ISI. However, for simplicity we assume that
every ISI is regulated by the state of the neuron at
the completion of the previous spike. (As we mention
in the discussion, we also investigated an alternative
method that did not make this assumption, but it was
much more cumbersome and gave similar results in the
cases we examined.) More formally, letting yi be the
i-th ISI and τi = ∑i

j=1 y j denote the time of the i-th
spike, the first ISI Y1 is assumed to follow f ISI

C(0) and the
subsequent ISI’s are conditionally modeled as:

yi | (y1, · · · , yi−1, C[0, τi−1]) ∼ f ISI
C(τi−1)

(1)

with C[0, T] = {C(t) : 0 ≤ t ≤ T}. Each of the four den-
sities f ITI

s , f ISI
s , s ∈ {0, 1} is assumed known only up

to finitely many parameters, all of which are collected
together into a vector θ . In addition to the hidden
binary burst states, the vector θ must be learned from
the data.

2.2 Burst detection

Note that the hidden process C[0, T] completely de-
termines the bursting and non-bursting states of the
neuron. After observing the spike train, statistical in-
ference about C[0, T] can be drawn from its posterior
distribution given y1:n = (y1, · · · , yn) (or equivalently
given τ1:n = (τ1, · · · , τn)). Identification of whether the
neuron is bursting at a time point t ∈ [0, T] is based
on the posterior probability Pr(C(t) = 1 | y1:n). Under
the interpretation of this posterior probability as a
reasonable degree of belief as to whether the neuron
is bursting at time t, the most intuitive cutoff value
would be .5, i.e., the neuron would be determined to
be bursting whenever the reasonable degree of belief
favored bursting rather than non-bursting. Using this
cutoff, we would identify the neuron as bursting at
time t if Pr(C(t) = 1 | y1:n) > .5. Other cutoff values
could be used and, in fact, we do use other cutoffs in
examining properties of the procedure, below. These
posterior probabilities were computed by using an ef-
ficient Markov chain Monte Carlo (MCMC) method.
Our assumption that the distribution of yi depends
only on the state si = C(τi−1) ensures that the posterior
distribution of C[0, T] factors as

p(C[0, T] | y1:n) = p(C[0, T] | s1:n)p(s1:n | y1:n)

where s1:n = (s1, · · · , sn). For this reason, we focused
our MCMC on sampling only from p(s1:n | y1:n).

We designed our MCMC to produce a sample of
(s1:n, θ) from their joint posterior distribution given
y1:n. Our MCMC algorithm begins with arbitrary initial



J Comput Neurosci

values for θ and s1:n and alternates between updates
of these two quantities. In the default implementation
of our code, the initial values are drawn randomly
from the joint prior distribution of (θ, s1:n), but user
specified starting values can also be entertained. The
starting values do not have any theoretical implication
on the convergence of our MCMC to its stationary
distribution, although the burn-in time may depend on
the initialization. To keep the burn-in short, we update
θ by using a sophisticated variation of the Metropolis-
Hastings move, known as the Multiple-Try Metropolis
move (Liu et al. 2000) that leaves the conditional pos-
terior density p(θ | s1:n, y1:n) invariant. This density is
easy to compute (up to a normalizing constant), see
expression Eq. (2) below. We use a Gibbs update for
s1:n, which is essentially a random draw of s1:n from
the conditional posterior p(s1:n | y1:n, θ). Below we de-
scribe this update in more detail.

2.3 Sampling from p(s1:n | y1:n, θ)

Given θ , the pair (s1:n, y1:n) defines a hidden Markov
model when f ITI

1 and f ITI
0 are exponential densities.

This results in the property that C(t, T] is conditionally
independent of C[0, t) given C(t) for any 0 ≤ t < T,
which ensures that the si’s form a Markov chain. For
such models where the si’s live on a finite state space,
Chib (1996) developed an efficient algorithm to sample
from the posterior distribution of s1:n given Y1:n. He
introduced a Gibbs sampler that sampled all of s1:n in
a single draw, which made the procedure much faster
than Metropolis-Hastings samplers where the hidden
states were updated one at a time.

Chib’s method, however, relies on the Markov prop-
erty of s1:n and thus does not apply to the case where
f ITI
1 and f ITI

0 are not exponential densities. We have
introduced a suitable variable augmentation which in-
duces the required Markov property on an extended
state space. The basic idea is to archive with every spike
time τi the time since the last transition. Although this
time cannot be exactly determined from y1:n and s1:n, it
can be bracketed by (ri − yi, ri) where

ri = yi−mi+1 + · · · + yi

with mi = min{ j > 0 : si− j �= s j}. If we restrict C(t) from
having more than one transition between two succes-
sive spikes, then

p(s1:n, y1:n | θ)

= p(s1) f ISI
s1

(y1)

n∏

j=2

Bernoulli
(
I(si = si−1) |φsi−1,ri−1,yi−1

)

(2)

where Bernoulli(x | p) = px(1 − p)1−x denotes a
Bernoulli pdf with probability p, I(·) denotes the
indicator function and φs,r,y = (1 − FITI

s (r))/(1 −
FITI

s (r − y)) is the probability that an ITI in state s
will stretch beyond r given that it is already larger
than r − y; here FITI

0 and FITI
1 are the cumulative

distribution functions corresponding to f ITI
0 and f ITI

1 .
With these definitions (si, ri, yi) forms a Markov chain
with the distribution of s1 = C(0) unspecified.

We now present details of our adaptation of Chib’s
method to sample from p(s1:n, r1:n | y1:n, θ) where r1:n =
(r1, · · · , rn). In the following we suppress θ from the no-
tations, because all computations are done for θ fixed at
its current value in the MCMC. The following notations
and derivations closely follow the constructions given in
Chib (1996). For any vector x1:n = (x1, · · · , xn), let xi: j

denote the sub-vector (xi, xi+1, · · · , x j), 1 ≤ i ≤ j ≤ n.
Notice that

p(s1:n, r1:n | y1:n)

= p(sn, rn | y1:n)
n−1∏

i=1

p(si, ri | si+1:n, ri+1:n, y1:n)

with

p(si, ri | si+1:n, ri+1:n, y1:n)

∝ p(yi+1:n, si+1:n, ri+1:n | si, ri, y1:i)p(si, ri | y1:i)

∝ p(yi+1, si+1, ri+1 | si, ri)p(si, ri | y1:i).

Because r1:i is always completely determined by y1:i
and s1:i, the first probability distribution above can be
written as

p(yi+1, si+1, ri+1 | si, ri) =
I(ri+1 = I(si+1 = si)ri + yi+1)p(si+1, yi+1 | si, ri).

Therefore, once the pdfs p(si, ri | y1:i) are known,
(s1:n, r1:n) can be easily sampled from p(s1:n, r1:n | y1:n)
by sequentially sampling (sn, rn), (sn−1, rn−1) and so
on. Below we outline how these pdfs can be com-
puted in a recursive manner—this again follows the
strategy in Chib (1996) but with some important
differences.

Let lij = yi + yi−1 + · · · + yi− j+1, i = 1, · · · , n and
j = 1, · · · , i. It is clear that the i-th pdf gi(si, ri) =
p(si, ri | y1:i) is to be evaluated only at (si, ri) ∈ {0, 1} ×
{lij; j = 1, 2, · · · , i}. Suppose these evaluations have
been done for a given i. Then the next pdf gi+1(si+1, ri+1)
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can be evaluated at the desired values via the following
two steps:

1. Prediction:

p(si+1 = 1, ri+1 = li+1,1 | y1:i)

=
i∑

j=1

gi(si =0, ri = lij)Bernoulli(1 | φ(0, lij))

× f (yi+1 | λ(1, 0, lij, θ))

p(si+1 = 0, ri+1 = li+1,1 | y1:i)

=
i∑

j=1

gi(si =1, ri = lij)Bernoulli(0 | φ(1, lij))

× f (yi+1 | λ(0, 1, lij, θ))

p(si+1 = 1, ri+1 = li+1, j | y1:i)

= gi(si =1, ri = li, j−1)Bernoulli(1 | φ(1, li, j−1))

× f (yi+1 | λ(1, 1, li, j−1))

p(si+1 = 0, ri+1 = li+1, j | y1:i)

= gi(si =0, ri = li, j−1)Bernoulli(0 | φ(0, li, j−1))

× f (yi+1 | λ(0, 0, li, j−1))

2. Update:

gi+1(si+1, ri+1) = p(si+1, ri+1 | y1:i)
ci+1

where

ci+1 =
1∑

k=0

i+1∑

j=1

p(si+1 = k, ri+1 = li+1, j | y1:i).

The algorithm described above demands O(n2) flops
and storage. This can be reduced to O(n) by splitting
the spike train into contiguous segments and updating
the states of the ISI’s within each segment together.
Choosing these segments to be of length O(w), the
entire train can be updated with only O(nw) flops
and storage. In our examples we chose the segment
length randomly from a discrete uniform distribution
on the integers in [5; 20]. The segments are created
and processed from right to left until the whole train
is covered. Notice that choosing the window length as
large as n would be practically infeasible except for
very small spike trains. On the other hand choosing the
window too short would resemble the less inefficient
one-state-at-a-time update.

3 Simulation study

After implementing the HSMM described above we
assessed its performance, comparing it to HMM, PS and
RS. For our comparisons we used spike trains simulated
from 5 distinct processes, which we call settings, cho-
sen to combine realistic ISI distributions together with
features that might pose a challenge to the methods.
We then evaluated the methods based on estimated
number of bursts and ROC curves (Fig. 2).

Each setting corresponded to a model that was likely
to produce clusters of small ISIs purely by chance
in addition to, and in one case dominating, a hidden
binary process C(t) having moderate regularity in its
transitions. The first setting was the “null” setting il-
lustrated in Fig. 1; the second and third settings were
inverse Gaussian and gamma switching processes with
the ISI distributions either largely overlapping (setting
2) or clearly separated (setting 3) under the bursting
and non-bursting states; the fourth setting produced
non-bursting state ISIs from a mixture model, which is
different than the HSMM and might confuse a burst de-
tection algorithm; the fifth setting used an exponential
distribution for the down-state durations, which makes
the inter-burst durations maximally irregular and state
identification more difficult to detect. More specifically,
the processes we considered were as follows:

1. (Null.) Here we set C(t) = 0 for all t ∈ [0, T].
We generated spike trains from a pure renewal
process with ISI distribution f ISI

0 given by an in-
verse Gaussian with shape 19.33 and mean 30.76,
as in Fig. 1.

2. (IGovlp.) The hidden state C(t) follows a switching
gamma process with f ITI

1 = Gamma(10, 10/(25ms))
and f ITI

0 = Gamma(10, 10/(200ms)). We chose the
average duration of 25ms for an bursting state
and 200ms for a non-bursting state according
to the HSMM fit to the goldfish data. The
bursting state ISIs were simulated from f ISI

1 =
Gamma(20, 20/(7ms)). Our fit to the retinal gan-
glion data (described below) provided the choice of
7ms as the average bursting state length. We gen-
erated the non-bursting state ISIs according to the
inverse Gaussian distribution of the Null process
described above.

3. (IGsep.) Same as IGovlp but we instead gener-
ated the down state ISIs from an inverse Gaussian
distribution with shape 150 and mean 50ms. This
choice ensured that the two ISI distributions were
well separated—-the shortest non-bursting state
ISIs were likely to be considerably larger than most
bursting state ISIs.
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Fig. 2 ROC curves for
HSMM, HMM, PS and RS
approximated from 100
simulated spike trains, for
each of the 4 non-null
simulation settings. Each
(x, y) point on a curve
corresponds to sensitivity and
1− specificity for a particular
cutoff value
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4. (Gmix.) Same as IGovlp but we instead generated
the down state ISIs from the mixture (2/3)

Gamma(10, 10/(10ms)) + (1/3)Gamma(10, 10/

(75ms)). The first component of the mixture had a
substantial overlap with f ISI

1 .
5. (IGirr.) Same as the IGsep setting but we instead

generated the non-bursting state ITI of C(t) from
f ITI
0 = Exponential(1/(200ms)) distribution. Thus

C(t) was memoryless during the down state.

In all cases the spike trains were 10s in duration, with
about 500 spikes per record on average.

We implemented HSMM burst detection with a
switching gamma model given by

f ISI
0 = Gamma(α0, α0/μ0)

f ISI
1 = Gamma(α1, α1/μ1)

f ITI
0 = Gamma(15, 15/λ0)

f ITI
0 = Gamma(15, 15/λ1)

with θ = (α0, α1, μ0, μ1, λ0, λ1). We modeled the ISI
shapes α0 and α1 with a log-normal prior: log αi ∼
Normal(log(10), 12). Similarly, we modeled the ISI
means (in ms) as log μi ∼ Normal(log(20), 22) and the

ITI means (in ms) as log λi ∼ Normal(log(100), 42). We
first obtained an MCMC estimate to the burst prob-
ability pi = Pr(si = 1 | y1:n) for each ISI. We labeled
each ISI with si = 1 if pi was at least as large as a
chosen cutoff level, and 0 otherwise. We considered
each contiguous string of states with si = 1 to be a burst.
An estimate of the time the neuron spent in the bursting
state is the sum of the ISIs with si = 1. Cutoffs used
were 0.00, 0.01, · · · , 1.00, 1.01.

We implemented HMM burst detection by modi-
fying the HSMM algorithm described above so that
f ITI
i = Exponential(1/λi), i = 0, 1. Note that this HMM

is more general than the switching Poisson process
model because it allows non-Poisson firing within burst
and non-burst periods. We implemented the PS and
RS methods via the exhaustive surprise maximization
(EMS) search technique of Gourevitch and Eggermont
(2007) with a chosen surprise cutoff − log(α) with α in
{0.001, 0.005, 0.01, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 05}. To
maintain parity between all four methods, we did not
count the bursts made of a single ISI and truncated f ISI

0
at the 75-th percentile of the observed ISI values. Both
these limits are hard coded in the EMS implementation
of Gourevitch and Eggermont (2007).
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To evaluate burst count accuracy of the 4 methods
we assessed the root mean squared error (RMSE).
Each method requires a choice of cutoff, and each
method will falsely identify some non-burst clusters of
spikes as bursts. To make the methods comparable,
we started with the null model, where there are no
bursts, and picked cutoff values that produced roughly
the same number of (false) bursts for each method;
we then assessed the ability of the methods to track
burst counts for the remaining 4 settings, where bursts
were truly present—this is analogous to the standard
statistical practice of fixing type I error and then exam-
ining power. Results are given in Table 1. In each of
the non-null settings, the RMSE for HSMM was much
smaller than those for PS and RS. HSMM and HMM
had similar results except in the cases IGovlp and Gmix,
where the RMSE for HMM was about 3 times larger
than that for HSMM. Figure 3 shows a visual summary
of burst detection by all four methods on a simulated
spike train.

Comparisons of the type given in Table 1 are im-
portant but, because the cutoffs were fixed according
to null-setting performance, they are only part of the
story. We examined all methods across a range a cut-
offs using ROC curves. For each method, for a set of
cuttoffs, we evaluated both sensitivity (proportion of
time in bursting state correctly identified) and speci-
ficity (proportion of time in non-bursting state correctly
identified). For every method, as the cutoff is increased
bursts become harder to detect, so that the specificity
increases and the sensitivity decreases. The ROC curve
plots sensitivity on the y-axis and 1− specificity on the
x-axis. An optimal ROC curve begins at the origin, hugs
the y-axis up to (0,1), and then moves to the point (1,1)
along the line y = 1. ROC curves for the 4 methods in
the 4 non-null settings are displayed in Fig. 2.

We draw three general conclusions from the ROC
analysis. First, HSMM performs as well as the other

Table 1 Root mean squared error (RMSE) of estimated burst
counts according to 5 distinct model settings (first column)

Setting HSMM HMM PS RS

Null (0) 15 14 14 14
IGovlp (38) 1 3 10 14
IGsep (38) 0 1 4 16
Gmix (38) 8 23 8 15
IGirr (81) 5 3 106 88

One hundred simulated spike trains were used for every setting.
For all settings the average true burst counts are given in paren-
theses. To ensure the methods were comparable under the null
setting, we used probability cutoffs of 0.5 for HSMM and 0.8 for
HMM, and surprise cutoffs of − log(0.01) for PS and − log(0.05)

for RS

Time (ms)

HSMM
HMM

PS
RS

0 500 1000 1500 2000 2500 3000

Fig. 3 Burst detection with HSMM, HMM, PS and RS on a spike
train simulated from a two-state model (IGovlp, see text; only the
first 3 s of a total of 10 s are shown here). We generated ISIs in
the bursting state from a gamma distribution with shape 20 and
mean 7 ms and in the non-bursting state from a 2:1 mixture of
two gamma distributions with means 10 ms and 75 ms each with
shape of 10. The gamma distributions controlling the durations
of the bursting and non-bursting states each had shape 10 and
with mean 25 ms and 200 ms respectively. The vertical bars show
the spike times, color coded according to the hidden state of
the preceding ISI: bursting state ISIs are marked as black, the
non-bursting states one are marked as grey. The horizontal lines
above the spikes represent (from bottom to top) burst detection
with HSMM (probability cutoff: 0.5), HMM (probability cutoff:
0.5), PS (surprise cutoff: − log(0.01)) and RS (surprise cutoff:
− log(0.05)). The thick dark strips on each line denotes the time
intervals identified as bursts. Note that the HMM cutoff here was
smaller than that in Table 1; this cutoff produced 33 false bursts
for the Null simulation in Table 1

methods, and for the IGovlp and Gmix settings it per-
forms better; the curves for HSMM were generally to
the left of the others, meaning that HSMM was much
more specific, spending significantly less time falsely
identifying bursting states; and the curves for HSMM
were also generally above those for the other methods,
meaning that HSMM was generally spending more of
the time correctly identifying bursting states. Second, in
some cases PS and RS with particular cutoffs performed
well, with RS outperforming PS in the IGovlp and
Gmix settings, where the 4 methods clearly differed.
However, it should be noted that a key feature of these
curves is their upper left-most point, which is obtained
for a particular “optimal” cutoff, and that cutoffs near
this optimal cutoff have generally good sensitivity and
specificity. Such cutoffs that allowed PS and RS to per-
form well in some settings produced unreliable results
in other simulation settings. In the Null case we found
that the ability of any method to handle false burstiness
depends crucially on the cutoffs. Thus, in particular, in
the last case, IGirr, which had memoryless switching
from non-bursting to bursting state, all methods per-
formed well according to the curves in Fig. 2; but the
cutoff values for which RS and PS attained the good
sensitivity and specificity in IGirr were much smaller
than those that would typically provide good perfor-
mance in the Null setting. Third, in Gmix, which we
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designed to contradict the assumptions of the HSMM
(the HSMM could not possibly provide fit the bimodal
f ISI
0 because it is based on a unimodal gamma density),

the HSMM performed extremely well.
One additional point worth mentioning is that the

HMM usually produced a nice fit to the ISI histogram
for the spike trains generated under Gmix. The reason
is that the non-burst ISI distribution from the first
component of the mixture was similar to the burst ISI
distribution—and the HMM identified both kinds of
ISIs as burst ISIs. Consequently, it did a poor job of
burst detection but that was not apparent from its fit to
the ISI histogram. In general, goodness of fit can not be
judged solely from a fit to the ISI histogram.

4 Data analysis

To illustrate our proposed method on real data we use a
spike train recorded from a goldfish retinal ganglion cell
neuron in vitro (Brown et al. 2004; Levine 1991; Iyengar
and Liao 1997). The data include 971 spikes recorded
over about 30 seconds. The plot of the spikes from this
neuron in Fig. 4 shows some apparent clusters of spikes
with shorter intervals, and these clusters are separated
by spikes with longer intervals between them.

We analyzed this spike train with HSMM, HMM, PS,
RS as well as with the switching Poisson (SP) model
which is a special case of HMM with the shape para-
meters of the ISI densities fixed at 1. The cutoffs were
probability .5 for HSMM, HMM, and SP, and surprise
− log .01 for PS and − log 0.05 for RS. Based on the
simulations reported above, we would expect HSMM to
be the most accurate, and the question remains whether
the methods are appreciably different for this data set.
HSMM found 127 bursts (Table 2), whereas PS and
RS found many fewer—the latter turned out to be
extremely conservative by comparison—and by several
other burstiness measures the three hidden-state mod-
els gave similar results, but the surprise methods made

Time (ms)

HSMM
HMM

SP
PS
RS

0 500 1000 1500 2000 2500 3000

Fig. 4 First 3 seconds of 971 spikes recorded over about 30 s in
vitro, from a goldfish retinal ganglion cell neuron. It is obvious
that groups of spikes with shorter ISIs are separated by individual
spikes with longer ISIs

Table 2 Goldfish retinal ganglion cell data: summary of esti-
mated bursting activity for each of 5 methods

Method HSMM HMM SP PS RS

Number of bursts 127 133 122 91 51
Time (ms) spent 3240 3482 3651 2273 902

in up state
(Percentage) (11%) (12%) (12%) (8%) (3%)
Average up state 145 148 138 173 227

firing rate (Hz)
Average burst 26 26 30 25 18

length (ms)

the neuron appear less bursty. We checked the fit of
HSMM, HMM and SP with a P-P plot. The P-P plot
uses a basic result about the probability integral trans-
form, which is that when a random variable X follows
a theoretical probability distribution having a cumula-
tive distribution function F(x) the probability integral
transformed random variable F(X) is uniformly distri-
bution on the interval (0,1). This implies that when a
theoretical model describes the variation in a variable
well, a plot of the probability integral transform of
the ordered observations (fitted cumulants) against the
corresponding probabilities for a uniform distribution
(uniform cumulants) should fall close to the line y = x
(see also Brown et al. 2002). As shown in Fig. 5, the
HSMM appeared to give the best fit among these three
hidden-state methods.
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Fig. 5 P-P plot (also called a KS plot) for HSMM, HMM and SP
fits to goldfish data. A good fit should produce a plot along the
diagonal line. The light grey band in the background represents
the ±1.63/

√
n pointwise band corresponding to the Kolmogorov-

Smirnov criterion. HSMM fits reasonably well, and HMM is
nearly as good, but the SP model fits poorly



J Comput Neurosci

5 Discussion

PS is a fast and simple method of detecting bursts in ex-
tracellular spike trains, and RS is a useful modification
of it. Because the goal is to identify a pair of unknown
states (burst vs. non-burst), we developed algorithms
for fitting point-process HSMMs that are based on
hidden binary states. We wished to find out whether
building a statistical model from this simple intuition
would lead to improved burst detection results. The
HSMM is more attractive, intuitively, than the hidden
Markov switching Poisson process model both because
neural spike trains often exhibit non-Poisson spiking
behavior, and because the switching process may be dif-
ferent than the maximally irregular switching assumed
by the HMM. HSMM code, written by the first author,
is available on the web site of the last author.

Our results support the notion that PS can be an
effective method when bursting states are well discrim-
inated from non-bursting states, or when an experi-
menter has confidence in the choice of the PS cutoff
value. Our results also illustrate the additional boost in
performance that RS can provide in comparison with
PS. On the other hand, for cases in which the bursts are
not clearly isolated, or the trade-off between identifying
too many bursts or too few bursts is unclear, hidden
state models are likely to be preferable. Overall, our
simulation results indicated that HSMM performs as
well as other methods and in some cases performs much
better.

When we applied the three hidden-state and two
surprise-based methods to the goldfish retinal gan-
glion spike train we found that the three hidden-state
methods produced similar results according to several
measures of burstiness. Consistently with some of our
simulation results, this suggests that for many situa-
tions hidden Markov models should perform well. An
additional idea is to (i) transform all ISIs by taking
logarithms and then (ii) apply standard (off the shelf)
two-state HMM software. We tried this, too, for our
simulated data and found the results to be nearly the
same as those for the HMM model. Thus, we expect this
relatively easy method to be useful in many situations.
In more difficult scenarios where there may be some
subtlety in discriminating bursting and non-bursting
states, we recommend the HSMM.

As we showed in detail, our implementation takes
advantage of the semi-Markovian structure of HSMMs
by extending the Gibbs sampling method of Chib
(1996). It assumes that each ISI may be assigned to
either the bursting state or the non-bursting state, and
does not allow mid-ISI transitions. We also explored an
alternative method that does allow mid-ISI transitions,

along the general lines used by Scott (1999) for switch-
ing Poisson process models. We found that in practice
this alternative approach did not produce greatly dif-
ferent results, and we therefore preferred to present
the more computationally efficient method. We have
not explored generalizations to multiple spike trains. A
hidden semi-Markov method for up and down network
state detection has been implemented by Chen et al.
(2009). That method is more computationally intensive
than the approach taken here. For convenience we used
gamma distributions to describe both ISIs and ITIs.
We would expect that in most cases, replacing gammas
with alternative two-parameter families, or introducing
more general families, would not have a large impact
on results. However, the algorithm we described was
formulated to allow such further generality. It is also
possible that faster methods based on EM-type algo-
rithms may be possible based on the same general idea
of exploiting the Markovian structure inherent in these
HSMMs. This is a topic for future research.
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