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SUMMARY

According to the definition used by Box & Tiao (1973) for a likelihood to be ‘data
translated’ it must have location form in terms of a sufficient statistic. In contrast to
Jeffreys’s arguments for a uniform prior, theirs does not cover cases such as the Cauchy
location family, and is in this sense stronger than the group-theoretic criterion of
invariance. Their definition is easily modified to cover such cases through the introduction
of an ancillary statistic, and their argument in favour of a uniform prior then becomes
group-theoretic. Their concept of ‘approximate data-translated likelihood’ may also be
modified to produce a sharper local approximation.
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1. INTRODUCTION

Box & Tiao (1973, § 1-3) introduced the notion of ‘data-translated likelihood’ to
motivate the use of uniform priors. They then introduced ‘approximate data-translated
likelihood’ to motivate Jeffreys’s general rule, which is to take the prior density to be
proportional to the square-root of the determinant of the Fisher information matrix. The
purpose of this note is to clarify these concepts.

Let y be a vector of observations and let L,(.) be the likelihood function on a real
one-dimensional parameter space ®. According to Box & Tiao (1973, eqn (1-3-13)), the
likelihood function is data translated if it may be written in the form

L,(¢)=f{d—1(y)} (1-1)

for some real-valued functions f(.) and #(.), with the definition of f(.) not depending
on y. When (1-1) is satisfied, Box & Tiao recommend the use of the uniform prior on ®
because two different samples y and y* will then produce posteriors that differ only with
respect to location. That is, the uniform prior does not produce posterior densities with
different shapes for different samples. This feature of the uniform prior is, for Box &
Tiao, what makes it ‘noninformative’.

For a likelihood to be approximately data translated, Box & Tiao require it to be
‘nearly independent of the data y except for its location’. Operationally, they discuss
samples of size n consisting of independent and identically distributed observations and
begin with the normal approximation to the likelihood

L,(6)=n(6; 6, 32), (1-2)

where n(x; u, o) is the normal density with argument x, mean x and variance o2, and
63 ={ni(8)}", the inverse of the expected Fisher information evaluated at the maximum
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likelihood estimate . They then take ¢ to be a variance-stabilizing parameterization,
that is, i(¢) = ¢ for some constant ¢, so that

L(¢)=n(¢; ¢, c/n). (1:3)

The normal approximate likelihood of (1-3) has the form (1-1), so that the likelihood
itself is, in a sense Box & Tiao do not make explicit, approximately data translated.
Based on the analogy with (1-1), they recommend the use of a prior that is uniform on
¢, and they note that this prior is the one determined by Jeffreys’s general rule.

The first and most basic question, arising from the determination of a uniform prior
based on (1-1), is whether it amounts to the selection of an invariant prior under a group
action. In § 2 it is shown that (1-1) applies only in restricted cases, but a simple
modification of (1-1) applies to general group transformation models. In § 3, it is shown
that (1-1), or a modification of it, holds locally to order O(n™"'), even though (1-3) is
only accurate to order O(n?). The results may be considered additional motivation for
Jeffreys’s general rule.

2. EXACT DATA-TRANSLATED LIKELIHOOD

From (1-1) it follows that the likelihood functions based on alternative data y and y*
are translated images of one another in the sense that

L,(¢)=L,(¢¥) (2-1)

for ¢™* = ¢ +{t(y*)—1t(y)}. Clearly, if (2-1) holds, the translation group may be defined
on ® and on the image of ¢(.) so that the likelihood function is invariant under its action.
With the requirement that f(.) is independent of y, however, t(y) becomes a sufficient
statistic, which is restrictive. For instance, when & is the real line, the only translation
families having support independent of ¢ for which there exists a one-dimensional
sufficient reduction of n independent and identically distributed observations are the
normal and logged gamma families (Dynkin, 1951; Ferguson, 1962). Thus, for example,
the Cauchy location family does not satisfy (2-1).

It is easy to modify (1-1), however, so as to obtain a version of (2-1) that holds for
general location families. The modification is to allow the definition of f(.) to depend
on the value of an ancillary statistic a = a(y). That is, the likelihood becomes data
translated in an extended sense if

L,(¢)=f{¢ —t(y)}, (2-2)

where f,(.) depends on the data only through a. A well-known argument, for example,
Cox & Hinkley (1974, p. 221), shows that this extended notion covers general location
families: consider the configuration statistic @ = (y2)— yq), - - - » Y(n) ~ Yin-1)), Where y(;) is
the ith order statistic, let ¢ be the maximum likelihood estimate of the location parameter
¢, and note that (i) a is distribution-constant, and (ii) (d), a) is sufficient. That i is, a is
ancillary in conjunction with d) Furthermore, (iii) the conditional distribution of ¢ given
a is again of location type. From (ii), the likelihood function based on y is equal to the
likelihood function based on (¢>, a) apart from an arbitrary multiplicative constant; i.e.

L,(¢)/Ly(6) = Lij.a($)/ Lig.a(b)-

From (iii) the conditional density of ¢ given a may be written p(q,'>|a ¢)= pa(d> b)
and, using this together with (i), p(d), al¢)= pa(¢ ¢)h(a), where h(a) does not depend
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on ¢. Therefore, L(qg,a)(rb)/L((,;,a)(dA)) =pa(d; — @), so that
Lija(#)/ Lijar(#) = Lig a)($*)/ Lige.a(6*) (2:3)
for ¢p* = ¢+(d>* $), which generalizes (2-1).

The choice of the statistic a is irrelevant to the definition (2-2) as long as a is ancillary
in conjunction with q,'> Furthermore, (2-2) holds for all values a of the ancillary statistic,
except possibly on a set of Lebesgue measure zero. In words, we may choose any statistic
a satisfying (i) and (ii); then, for two alternative data vectors y and y* such that
a(y)=a( y*)A, the likelihood functions L,(¢) and L,«(¢) will be identical apart from the
translation ¢ - ¢*.

The extended definition (2-2) may be recognized as essentially group-theoretic, and a
version of (2-3) will hold for quite general transformation models. For simplicity, suppose
that a group G acting on the sample space ¥ generates the family of densities, with G
being in one-to-one correspondence with the family, and further suppose there exists a
sufficient statistic of the form (g, a), where g is the maximum likelihood estimate and a
is invariant; that is a(gy) = a(y) for all g€ G and y € . It may be shown (Fraser, 1968,
Ch. 2), that the conditional density of g given a is again transformational. Furthermore,
taking g*=§*¢ 'g, we have

L;(8)/ Lg(8) = Lg+(8%)/ Lg=(8%) (2-4)
as the generalization of (2-3). See the Appendix for details.

3. APPROXIMATE DATA-TRANSLATED LIKELIHOOD
3-1. Local approximation

Approx1mat10n (1-3) has a multiplicative error of order O(n*) for ¢ such that
é—¢ =0(n"?). It will now be shown that by arguing locally in a neighbourhood of
some parameter value ¢,, the order of error may be improved to O(n™"), thereby including
a nonnormal factor that can account for some skewness in the likelihood on the variance-
stablllzlng parameter. For §>0, the local argument compares the likelihood at ¢ =
¢>+6n : based on data with a maximum likelihood estimate ¢, to the likelihood at
¢*= q’>*+8n * based on data with a maximum likelihood estimate q.’>* where both ¢>
and q.’>* differby O(n~ %) from ¢,, as would maximum likelihood estimates from alternative
samples under the true parameter value ¢,.

Consnder first the exponential family case, for which observed information I,( 0) =
—l”(0) and expected information at the max1mum likelihood estimate agree; that is
I (0) = m(0) For 0 such that =0+ O(n™?), the log likelihood may be expanded as

1,(0) = 1,(6) +317(8)(6 — 6)>+1(Eq {I%(80)} + [ 17 (8)— Eq {1%(86)}1)(6 — 6)* + O(n ™)
=1,(6)+317(6)(0 — 6)*+LE, {I(0:)}(6— 6)°+ O(n™"),

the latter equality holding when 6,— 6= O(n™?%). For an exponential family, y may be
replaced by the maximum likelihood estimate since it is sufficient. For a variance
stabilizing parameter ¢, with maximum likelihood estimates

b=do+0(n), $*=¢o+0(n?),
we obtain

Li(@)_Ls@™) | o0 ,
Li(@) " Logn OO Gy
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where ¢ — $ =0(n ) and ¢p* = +( $* - d;). Approximation (3-1) shows that likelihoods
based on independent and identically distributed samples of observations from exponen-
tial families are locally approximately data translated to order O(n~'). Note that, if we
let

f(8n ) =L, (¢o+n"Y)/ Ly (bo),

where L, (.) is the likelihood function that would be obtained if ¢, were the maximum
likelihood estimate, and we continue to let 4) be the maximum likelihood estimate based
on y, then we have

L($)/L($)=f(¢—$)}{1+0(n™")} (3:2)
for ¢ —d; =0(n?) and $ — o= O(n"?), which may be compared with (1-1).

For the nonexponential family case, the maximum likelihood estimate is no longer
sufficient and an approximation analogous to (2-2) must replace (3-2). Let A= a be the
value of the locally ancillary statistic based on observed information,

a =n{ni(8)y($)} {L,(6)—ni(6)}

(Efron & Hinkley, 1978), where y(6) is the statistical curvature at 6. The statistic (5, A)
is approximately locally sufficient in the sense that

L(é,a)(e) — Ly(e)

L(é,a)(e) Ly(e)
for — 6 = O(n™), for example, Michel (1978). Furthermore, for the variance stabilizing
parameter ¢ for which i(¢)=1 there is

L($)=y(¢o) 'nta+n+{y(d)-y(¢o)}n'a,

which is independent of d> to order O(1). Thus, the argument leading to (3-1) may be
used with (¢>, a) and (q,'>* a) replacing d) and qS* to obtain

{1+0(n™")} (3-3)

Lia)(®) _ Liga(d™) . |
Lija(d) L((,;*,a)(d;*){l"‘o(" )}, (3-4)

where
¢*=¢+(d* =), ¢=$=0(n"), $-do=0(n, $*—go=0(n™).
To extend (3-2), for 6§ >0 we may define
Ja(8n74) = Ligy.a)(bo+ 817/ Liyy (o)
and obtain
L,($)/L,($)=f(¢ = $){1+O0(n™")} (3-5)

for ¢ — $ =0(n™?) and d; —¢o=O(n?). Thus, for general independent and identically
distributed samples, likelihood functions are locally approximately data translated to
order O(n™"), in the sense of (3-5), analogously to (2-2).

3-2. Approximate posterior densities

The approx1mate normal density of the maximum likelihood estimate 6 has a value
of {ni(0)/(27)}* at its peak 6 = 6. This was mentioned by Jeffreys (1961, p. 192), attributed
to Diananda, as an alternative motivation for Jeffreys’s genc ral rule, which is to take the
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prior proportional to {i(8)}:. Perks (1947) made a similar argument. If the prior of
Jeffreys’s general rule is ased, then the posterior on the variance-stabilizing parameter ¢
based on the normal approximation to the distribution of the maximum likelihood
estimator will have a constant value n*/(27)* for its peak density, regardless of the
observed value of the maximum likelihood estimate ¢.

In fact, a somewhat stronger statement is also true. By Laplace’s method (Bleistein &
Handelsman, 1986, Ch. 5),

f L,(¢) dp =(2m) L, () L($) H1+0(n ")},

so that the posterior density using Jeffreys’s general rule satisfies

p(61) =) 1,31 28 oy, (3-6)
L,()
For an independent and identically distributed sample from an exponential famlly,
1 (4;) n and the value of the posterior density at its peak is approximately n Y (2mr)}
with an error of order O(n™"), regardless of the value of d) This improves on the order
O(n™?) error provided by the normal approximation.
Furthermore, combining (3-6) with (3-1) and absorbing (27/n)? into the definition of

f we obtain
p(31y)=f(¢—$)H{1+0(n™")} (37)
for '
$=6+0(n™), é=¢o+0(n™).
That is, the posterior density of ¢ may be considered locally asymptotically data-translated
to order O(n~') when the uniform prior on ¢ is used.
The nonexponential family case may be treated as in §3-1 by noting that, for fixed

values of the locally ancillary statistic A, I, (d)) is locally independent of q.’> to order
O(n™"). This provides a weakened version of (3 7) in which f is replaced by f, as in (3-5).

3-3. Multiparameter local approximation

In multiparameter families, variance-stabilizing parameterizations need not exist, and
the argument leading to (3-2) and (3-5) does not go through. There is, however, a
generalization of equations (3-1) and (3-4). It may be obtained by suitably identifying
points 6 at which the likelihood based on g is evaluated, with points 6* at which the
likelihood based on 6* is evaluated. The identification is made using geodesics defined
by the information metric. See Kass (1989) for a discussion of the information metric
and related concepts used below.

Again, for simplicity, consider the exponential family case, and let M be an m-
dimensional regular exponential family structured as a Riemannian manifold with the
information metric. Let 6, be a point in a parameter space ®, and let 6 and 6* be two
maximum likelihood estimate values in an order O(n"?) neighbourhood of 6y. Given a
point # near 6 at which L; will be evaluated, a corresponding point 8* near f* may be
defined as follows. Letting 7o, o, be parallel transport with respect to the information
metric along the geodesic from 6, to 0,, take

0* = exps+ (7o,.0:[75.0,{€XP3" (0)}]),
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where exp, is the exponential map on the tangent space at 6. Now, letting s be arc length
along the geodesic connecting 6 with 6, with s =0 corresponding to 6, we may write
0 = 6(s) and expand /;{6(s)} as a function of s at s =0.

To carry this out, let F(s)=1;{0(s)}. Since s is arc length we have (d6/ds, d0/ds)=1,
using the information metric, so F"(0) = —n. Thus,

A 1 1[d’F
l§(0)-lé(e)=—§ ns2+g [F] 3+ O(S4),
s=0

and, with F*(s) = lp{0*(s)},

A 1 1[d’F*
lg*(G)—lg*(0)=—5 ns2+g[ ds3
Notice that in the above expansions s = d (6, 8) = d(0*, 6*), the latter equality holding
due to the definition of 6*; thus, the value of s appearing in the two expansions is the same.
To arrive at the generalization of (3-1) we need only note that

1 d°F 1 d’F* i
e T

as 0 and 6* converge to 6, at the rate O(n"*). Thus, on exponentiating the geodesic log
likelihood expansions,

] s+ 0(sh.

Ls(0) _ Ls(67)

Ls(@)  L(6%)
which may be compared with (2-1). The interpretation of (3-8) is that the likelihood is
locally approximately data-translated to order O(n™') along geodesics defined by the
information metric. If used to motivate a choice of prior, it suggests choosing the prior
to be uniform in the information-metric geometry, i.e. to use Jeffreys’s general rule. The
uniformity of Jeffreys’s rule is discussed by Kass (1989).

{1+0(n™ ")} (3-8)

4. CONCLUSION

One-parameter likelihoods are exactly data translated in the sense of Box & Tiao (1973)
only in the normal and logged-gamma location families, among families having fixed
support independent of the parameter value. In § 2 it was shown that when the concept
is extended to general location families, it becomes group-theoretic; i.e. it may also be
extended to general transformation families. The derivation was based on results that
are well known in the theory of conditional inference, though the focus here is quite
different. In § 3 it was shown that one-parameter likelihoods are locally data translated
to order O(n~"'). The derivation there was based on a Taylor-series expansion in a form
used by Hinkley (1980), and is closely related to results of Welch & Peers (1963), which
show that one-parameter families may be considered local location families in the
variance-stabilizing parameterization. An extension to multiparameter families was given
using the geometry of the information metric, but it takes a weakened form, considering
local data-translation separately along each geodesic, rather than simultaneously along
arbitrary local paths.

The arguments given here, like those of Box & Tiao (1973) provide some heuristic
motivation for using Jeffreys’s rules for selecting a reference prior. To the extent that
data translation of the likelihood captures an intuitive notion of what is ‘noninformative’
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about the uniform prior on ® of (1-1), one might wish to say that invariant priors,
generally, provide ‘constant information’ on orbits. On the other hand, a less sanguine
view of (2-4) would be that it simply shows Box & Tiao’s concept to be based on symmetry.
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APPENDIX
Derivation of (2-4)
With e being the identity of G and J;(g) being the Jacobian determinant of the transformation
80~ 88 at &,
p(€la, g)p(a)=p(g alg)=p(g ' ale)ls(g™")
=p(g '&la, e)p(a)le(g™),
so that p(¢|a, g)=p(g 'g|a, e)Js;(g)"", which shows that the conditional distribution of g given
a again forms a transformation family under the action of G. The likelihood function may be written
Ly(g)=p(g '&la, e)Js(g™). (A1)
Using the chain rule
Too(8281) = Jg,0,(82) (1), (A-2)
we get
Jo(g ) =Je(g 887 ") =J(g7'8)Jo(87)).
g, another application of (A-2) gives
Je(g7'88* ) = J(g 7 8) (8%,

and putting these Jacobian expressions in (A-1), we have (2-4).

This argument goes through under weaker conditions, as well: the sample space % must be a
locally compact Hausdorff space, and G must be a locally compact, o-compact Hausdorff group
acting properly on %, as given by Barndorfi-Nielsen et al. (1982). The derivation of (2:4) in the
general case would take the dominating measure for the family to be left-invariant measure, rather
than Lebesgue measure; this simplifies the argument slightly, but Lebesgue measure was used
here because it is more familiar.

% A—1

Taking g*=g*g~
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