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Brockwell, A. E., A. L. Rojas, and R. E. Kass. Recursive Bayesian
decoding of motor cortical signals by particle filtering. J Neurophysiol
91: 1899–1907, 2004; 10.1152/jn.00438.2003. The population vector
(PV) algorithm and optimal linear estimation (OLE) have been used to
reconstruct movement by combining signals from multiple neurons in
the motor cortex. While these linear methods are effective, recursive
Bayesian decoding schemes, which are nonlinear, can be more pow-
erful when probability model assumptions are satisfied. We have
implemented a recursive Bayesian algorithm for reconstructing hand
movement from neurons in the motor cortex. The algorithm uses a
recently developed numerical method known as “particle filtering”
and follows the same general strategy as that used by Brown et al. to
reconstruct the path of a foraging rat from hippocampal place cells.
We investigated the method in a numerical simulation study in which
neural firing rate was assumed to be positive, but otherwise a linear
function of movement velocity, and preferred directions were not
uniformly distributed. In terms of mean-squared error, the approach
was �10 times more efficient than the PV algorithm and 5 times more
efficient than OLE. Thus use of recursive Bayesian decoding can
achieve the accuracy of the PV algorithm (or OLE) with �10 times
(or 5 times) fewer neurons. The method was also used to reconstruct
hand movement in an ellipse-drawing task from 258 cells in the
ventral premotor cortex. Recursive Bayesian decoding was again
more efficient than the PV and OLE methods, by factors of roughly
seven and three, respectively.

I N T R O D U C T I O N

Information from multiple motor cortical neurons, each
broadly tuned to hand velocity, may be combined to predict
movement (Georgopoulos et al. 1988). This “population cod-
ing” of movement parameters is of interest partly for its pos-
sible role in the neural basis of action and also for its potential
use in controlling robotic devices (Black et al. 2003; Chapin et
al. 1999; Taylor et al. 2002). Decoding of the population signal
has been accomplished successfully with the population vector
(PV) algorithm (Georgopoulos et al. 1988, 1989; Taylor et al.
2002). The PV method characterizes each neuron’s activity by
preferred direction and firing rate and performs optimally when
the tuning functions are linear and the set of preferred direc-
tions are uniformly distributed (e.g., Zhang et al. 1998). To
improve performance from a set of neurons the preferred
directions of which are not uniformly distributed, Salinas and
Abbott (1994) suggested a more general method, which they
called optimal linear estimation (OLE). The PV method may
be considered a special case of least-squares estimation (re-
verse regression) when the preferred directions are uniformly
distributed. OLE uses least-squares without this restrictive
assumption and furthermore can take account of the correlation
between firing rates of the many different neurons. OLE esti-
mates can be an order of magnitude better than PV estimates in

terms of mean-squared error. However, they are still unable to
account for the inherent dynamic behavior of the underlying
signal of interest. An arm-velocity signal, for instance, cannot
change by a large amount instantaneously—it must change
gradually as the arm accelerates or decelerates. Furthermore,
both the PV or OLE method assume the firing rates are linearly
related to the underlying movement direction.

Bayesian decoding (Brown et al. 1998; Gao et al. 2002;
Oram et al. 1998; Sanger 1996; Shoham 2001; Zhang et al.
1998), which is based on specification of a formal statistical
model for neuronal spike trains (or spike counts) and its rela-
tionship to the behavior of interest (e.g., hand velocity), is
much more flexible: it can accommodate not only correlated
firing rates (as OLE does) but also nonlinear relationships
between the signal and neuron firing rates. Bayesian methods
make optimal use of the information available in the data when
their modeling assumptions are satisfied (DeGroot 1970),
which, in this context, translates into greater decoding accuracy
using smaller numbers of neurons (e.g., Oram et al. 1998).
Furthermore, using a recursive formulation, they offer a natural
framework for a sequence of predictions, as is needed in
neuroprosthetic and other dynamically evolving behavioral
applications (Brown et al. 1998, 2001; Gao et al. 2002). In the
past, recursive Bayesian methods have been difficult to imple-
ment without making restrictive assumptions, but a recently
developed technique known as “particle filtering” (PF) (see,
e.g., Doucet et al. 2001) has largely addressed this problem.
We have implemented a particle filter for recursive Bayesian
decoding, and investigated it in two studies. The first used
numerical simulation where probability modeling assumptions
were known to be valid. The second study involved analysis of
data collected from monkey motor cortical neurons during
ellipse-tracing experiments.

M E T H O D S

We consider three classes of methods for decoding velocities:
population vector methods, optimal linear estimation methods, and
recursive Bayesian methods. Throughout the paper, velocities are
taken to be either two- or three-dimensional vectors encoding both
direction and speed (magnitude).

Linear decoding methods

The population vector method predicts velocity at time t as v̂t
(PV),

given by

v̂t
�PV� � �

j�1

N

wt, j dj (1)
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where N is the number of neurons used, dj denotes the “preferred
direction” of the jth neuron, that is, the unit-magnitude vector whose
direction maximizes the tuning function rj(�), and wt, j represents a
weight determined by the firing rate of the jth neuron at time t. The
weights in Eq. 1 are determined by a formula such as

wt, j � �yt, j � y� j�/�yj
�max� � yj

�min�� (2)

where y�j, yj
(max), and yj

(min) represent the average, maximum, and
minimum firing rates of the jth neuron, respectively, over some time
window. A scaling transformation must then be applied to the esti-
mates v̂t

(PV) to convert them to physical units of measurement, such as
meters per second.

The optimal linear estimation method generalizes the PV method
for the case where preferred directions are not uniform; the OLE
estimates are given by

v̂t
�OLE� � �

j�1

N

wt, j d*j (3)

where the vectors d*j are chosen so that the mean-squared error E[(vt �
v̂t)

T(vt � v̂t)] is minimized. Salinas and Abbott (1994) showed that the
vectors d*j can be obtained as the solution of a particular linear system
of equations. Computational details are given in APPENDIX B.

Recursive Bayesian decoding and PF

Recursive Bayesian decoding, described in more detail in APPENDIX

A, relies on formal specification of a statistical model, consisting of
two parts: a state model, for a process {vt}, describing the evolution
of the state we are trying to predict (here, velocity), and an observa-
tion model specifying the probability distribution of the data yt given
the underlying state vt.

The state model should capture probabilistic features of the state
(velocity) process. In this paper, we use state models that constrain the
sequence of states {vt, t � 0, 1, 2, . . .} so that they are likely to evolve
with some degree of smoothness from one time to the next. Although
we here restrict attention to either two- or three-dimensional velocity
vectors, more generally the states could involve position, acceleration,
or other movement parameters, and the framework may be extended
to more sophisticated models, taking into account momentum, rela-
tionships between path-curvature and acceleration, etc.

We take yt � (yt
(1), . . . , yt

(N)) to be the vector of spike counts for the
complete set of N neurons, in the tth time bin, and �i(x) to be the
tuning function specifying the average firing rate for the ith neuron
when the hand velocity is equal to x. We then specify the observation
model by assuming the spike counts yt

(i) have Poisson distributions

yt
�i��vt�lagi

� Poisson��i�vt�lagi
�� i � 1, 2, . . . , N (4)

where lagi is an integer-valued neuron-dependent lag measured in
time bins. [Note that alternative observation models, such as those
developed in Shoham (2001) may be specified.]

The decoding algorithm computes the conditional expectation of vt,
given observations y1, y2, . . . , yt. The underlying theory and our
particle-filter implementation are described in APPENDIX A. Note that
although we considered velocity in the studies described in this paper
and obtained position simply by integrating decoded velocity, it would
also be possible to adopt a more sophisticated approach and include
position in the state variables {vt} as well as velocity. The conditional
expectation of vt would then include information about both velocity
and position.

Simulation study

To examine the performance of the particle filtering algorithm, we
simulated spike trains for 200 neurons, assuming the two-dimensional
velocity vt traces out the path shown in Fig. 2A over the course of 12 s.

(The path was defined by xt � 6 cos (�t/6), yt � 2 sin (�t/2), for t �
[0, 12], with velocity being defined by the respective derivatives.) The
12 s in the experiment were divided into 400 time bins, each of length
30 ms. The tuning functions

�i�v� � max �ki � miv � di, 0�

were used, where ki and mi are positive constants determining, re-
spectively, base firing rate, and directional sensitivity of the neuron,
and di is a unit-vector representing the preferred direction of the ith
neuron. Each of the 200 neurons was assigned a random preferred
direction di as well as random values of ki and mi. Parameters were
chosen so that the maximal firing rate over the simulation was �100
Hertz. These rates are roughly consistent with the ventral premotor
cortex data studied in the next section, and also (for instance), with
rates shown in Fig. 2 of Kakei et al. (2001).

Given the velocities, the spike counts were taken to have probabil-
ity distributions specified by Eq. 4, with all lags lagi equal to zero.
Following Brown et al. (1998), we took the state model to be a
random walk, meaning that velocity at time t is assumed to equal
velocity at time (t � 1) plus noise, that is

vt � vt�1 � �t (5)

where {�t} is an independent and identically distributed sequence of
bivariate Gaussian random variables with means 0 and covariance
matrices 0.03 times the identity matrix. [This is similar to the conti-
nuity constraints used in Zhang et al. (1998).] Choice of the coeffi-
cient of the covariance matrix here is important. Making it too large
reduces the smoothing benefit of the recursive Bayesian decoding
scheme, whereas choosing it too small can distort the decoded trajec-
tory by over-smoothing it. The value 0.03 is chosen to give a model
for velocity which is somewhat “realistic”—see APPENDIX A for more
details. In this case, it means that the change in velocity (in 1 of the
2 dimensions) from one time bin to the next is �95% likely to lie in
the range between plus and minus 1.96�0.03 � 0.34. In fact, this is
conservatively large because in the simulated trajectory, the greatest
difference between successive values is �0.14. However, because the
true trajectory is not generally known in advance, there is always an
element of subjective judgment involved in selecting this parameter.

To investigate the ability of the OLE and PF methods to handle
nonuniformly distributed preferred directions, we concentrated half of
the preferred directions uniformly in the angular range from 0 to �/2,
and the other half uniformly in the range from �/2 to 2�. The
simulation was repeated to generate a total of 60 independent data
sets. From the 60 replications, we computed statistical summaries to
evaluate the PV, OLE, and PF methods according to criteria described
in the following text.

We implemented the PF using 2,500 particles at each time point
(see APPENDIX A for details). For the PV method, we chose the linear
scaling function to minimize the sum of squared differences between
the decoded and actual trajectories. This optimal scaling function
would not be possible to determine if the actual trajectory was
unknown (as in the application to brain-controlled robotic devices) but
was used here to give an additional advantage to the PV method.

Motor cortex data

To investigate the performance of Bayesian decoding in a realistic
situation, we considered spike trains from 258 neurons in the subre-
gion of ventral premotor cortex referred to by Gentilucci et al. (1998)
as “region F4,” collected individually in 258 separate experiments
from four rhesus monkeys (described in more detail in Reina and
Schwartz 2003). In each experiment, the monkey carried out multiple
repetitions of a center-out task followed by multiple repetitions of an
ellipse-tracing task.

For each repetition of the center-out task, the monkey reached to the
eight corners of a virtual cube. Each of the eight reaching motions was
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subdivided into 100 equal-length time bins, which were �10 ms long,
and spike counts for the time bins, as well as hand-position at the
beginning and end of each time bin, were recorded. In each repetition
of the ellipse-tracing task, monkeys continuously traced five elliptical
loops. After each entire repetition was successfully completed, the
monkey was rewarded. For each repetition of each experiment, neuron
spike times and three-dimensional hand positions were recorded. The
ellipses were traced in the x-y plane, with the z-component capturing
relatively insignificant deviations of the hand from this plane. The
recorded data were then processed as follows. For each repetition, the
duration of each of the five loops was divided into 100 equal-sized
time bins, yielding 500 measurements of hand-position along with
corresponding spike counts. Average time bin width was �15 ms. We
defined “hand-velocity” to be the difference between hand-position in
successive bins.

We used PV, OLE, and PF methods to decode the fifth loop of the
first repetition of the ellipse-tracing experiment. As is common in the
population vector literature, we treated the data from the 258 exper-
iments as if they were collected in a single experiment measuring 258
neurons simultaneously. This raised the problem of deciding what to
compare decoded trajectories with because in reality there were 258
with similar but slightly different trajectories. We compared decoded
velocities with “actual velocity,” which we defined to be the average
of observed hand-velocities over the 258 individual experiments.

Preferred directions for the neurons were obtained by analyzing the
center-out data, while additional parameters were estimated using
only the first three loops of the first repetition of the ellipse-tracing
experiment. Thus we maintained strict separation of the data used to
determine decoding parameters and the data used to evaluate the
performance of the decoding schemes.

Decoding details for the motor cortex data

In implementing the PF for the motor cortex data, we used tuning
functions

�i�v� � exp�ki � miv � di � si �v ��

where ki and mi, as in the simulation study, represent base firing rate
and directional sensitivity, and the additional parameter si represents
nondirectional sensitivity of the neuron to speed. (see, e.g., Schwartz
1992 for discussion of the importance of speed in this context.) The
three-dimensional preferred directions di were estimated from center-
out data only, and scalar parameters ki, mi, and si, for neurons i � 1,
2, . . . , 258, were estimated based on the first three loops of the first
repetition of the ellipse-tracing ex periment, using standard Poisson-
family generalized linear models (McCullagh and Nelder 1989), with
the restriction that mi � 0. This restriction was imposed to prevent the
preferred direction from effectively being reversed. Because the task
involved tracing in the x-y plane, with only minimal movement in the
z-direction, it would also have been possible to reduce the data and
model to only these two dimensions. However, for the sake of testing
the algorithm more thoroughly, we chose to develop the full three-
dimensional model.

For each neuron, a range of lags from �40 to �40 time bins
(corresponding to a range of approximately �600 to �600 ms) was
used, and the lag yielding the best-fitting generalized linear model, as
determined by comparing deviances of models, was selected. A his-
togram of the resulting lags for 80 of the neurons is shown in Fig. 1.
These neurons were selected as those which spiked �10 times during
the first five-loop tracing trial, and also had mi � 0.05 (mi can be
regarded as a parameter defining directional sensitivity of the neuron,
and 0.05 was approximately the median fitted value of mi over the 258
neurons).

We imposed smooth acceleration on the hand motion by using the
state model

vt�1 � vt � �vt � vt�1� � �t�1 (6)

where {�t, t � 1, 2, . . .} is a sequence of independent Gaussian
disturbances with mean zero and 3 	 3 diagonal covariance matrix
with entries {0.006, 0.006, 0.001}. These values were chosen, as in
the simulation example, with the aim of giving a realistic model for
the evolution of the velocity over time. In this case, the values can be
interpreted as meaning that a 95% confidence interval for the change
in the change in x and y components of velocity over successive time
bins is approximately between 
1.96 [racical]0.006, which is roughly
consistent with the actual trajectories. (Note that the 0.001 value
corresponds to the z axis, which is orthogonal to the plane in which the
ellipse is traced.) This is a slightly stronger smoothness constraint than
used in the simulation exercise—we chose this constraint because in
this case we knew a priori that the ellipse tracing experiment would
generate trajectories with smoothly varying acceleration. As in the
simulation study, we used 2,500 particles at each time point in our
implementation of the PF. Furthermore, to cast the state model in the
form required in APPENDIX A (State model), we defined six-dimensional
vectors v*t � (vt, vt�1)T, and worked with the equivalent representa-
tion of Eq. 6 given by

v*t�1 � �2I �I
I 0 �v*t � ��t�1

0 �
where I denotes the 3 	 3 identity matrix. The algorithm was then
implemented exactly as described in APPENDIX A but with vt replaced
by v*t.

For PV decoding, preferred directions were taken to be normalized
version of the vectors di obtained for PF decoding, and lags were
taken to be the same as those used for PF decoding. To determine the
weights used in Eq. 1, we computed, for each neuron, average,
minimum, and maximum counts over the time bins in the first three
loops of the first repetition of the ellipse-tracing experiment. Weights
were then computed using Eq. 2. After decoding, results were scaled
and offset so as to minimize mean-squared error between the first
three loops of the trajectory and the decoded trajectory.

To determine vectors d*j (recall Eq. 3) in the OLE method, we used
a Monte-Carlo procedure, described in detail in APPENDIX B.

Comparison of algorithms

For both the simulation study and the ventral premotor cortex data
analysis, we assessed quality of decoded signals by two measures: the
integrated squared error (ISE) and the maximum squared error

FIG. 1. Histogram of the lags, measured in time bins, of 80 neurons in the
ventral premotor cortex data. Neurons were selected as those which spiked
�10 times during the ellipse-tracing task and for which directional sensitivity
was above the median directional sensitivity.
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(MaxSE). For a particular data set, the ISE is the squared difference
between the decoded and actual velocities, averaged over all time
bins, and the MaxSE is the largest squared difference between de-
coded and actual velocity among all time bins. Because ISE and
MaxSE will vary from data set to data set, it is customary in the
statistical literature to use the averages of such criteria across multiple
simulated data sets, the averages being estimates of their theoretical
expected values. For the simulation study, we computed the averages
(arithmetic means) of ISE and MaxSE across the 60 simulated data
sets and refer to them as MISE and MMaxSE, respectively. For
typical statistical methods of estimation, these measures will tend to
decrease proportionally to the inverse of the number of neurons. In
this context squared error thus has the following very useful interpre-
tation: the accuracy of PF based on NPF neurons will be comparable
to the accuracy of PV based on NPV neurons when NPV � NPF 	 R
and R is the ratio of the MISE for PV to the MISE for PF.

R E S U L T S

Simulation study

For the simulation study, the MISE and MMaxSE for each
of the three methods is given in Table 1. In this nonuniform
and nonlinear case, OLE performs better than the PV algo-
rithm, and the PF is clearly superior to both: the MISE for the
PF is �10 times smaller than that for the PV algorithm and �5
times smaller than that for OLE. In large samples, expected
squared error is inversely proportional to sample size. There-
fore these results may be interpreted as saying that �10 times
more neurons would be needed when using the PV algorithm
(5 times when using OLE) to obtain the same error, averaged
across time, as the PF (e.g., 250 neurons would be needed with
PV to obtain the same accuracy as the PF based on 25 neu-
rons).

Figure 2 displays decoded velocity for 1 of the 60 data sets
in the simulation study. It may be seen that PF reduces both the
bias and the noise in the PV reconstruction, and it is much less
noisy than OLE. Due to the nonuniformity of preferred direc-
tions, there are particular regions of the velocity trace where
the PV algorithm is especially inaccurate. This produces the
MMaxSE of 3.000 reported in Table 1.

To further illustrate how the PF method works, Fig. 3 shows
the first 100 particles x̂t

( j ), j � 1, 2, . . . , 100 (see APPENDIX A,
Algorithm, for details), at times t � 100 (3 s) and t � 300 (9
s), along with the entire velocity trajectory, for a typical run of
the decoding algorithm. The actual decoded velocity at each
point in time is taken to be the average of the corresponding
“cloud” of particles.

It is also worth noting that the algorithm was relatively fast
to execute. For this simulation study, a single run of the PF

algorithm with 2,500 particles, over all 400 time points, took
approximately three minutes on a Pentium-4 machine. (The
algorithm was implemented using programs written in C��.)

Motor cortex data

Results are shown in Fig. 4. Again, the PF is much less noisy
than the PV algorithm, and its improved accuracy is apparent
especially from the squared errors displayed in Fig. 4C. Sum-
maries of the squared errors are given in Table 2.

Again, as in the simulation study, particle filtering performs
better than the PV and OLE methods, increasing efficiency by
factors of approximately seven and three, respectively.

D I S C U S S I O N

We have specified an implementation of particle filtering for
Bayesian decoding and shown that the algorithm can substan-
tially outperform the PV and OLE methods. The improved
accuracy of velocity prediction was due to the Bayesian algo-
rithm’s ability to adapt to both nonuniformly distributed pre-
ferred directions and nonlinear tuning functions and, by virtue
of its recursive sequential formulation, to smooth the predic-
tions across neighboring time points. Note that it may be
possible to improve the performance of PV and OLE methods
by altering the bin size, thereby effectively altering the degree
of smoothing, but compared with the recursive Bayesian ap-
proach, in which smoothing is implicitly controlled by speci-
fication of the state model, this would be a relatively ad hoc
procedure with limited flexibility and effectiveness. Our results
support the general arguments of Oram et al. (1998) and
supplement the work on recursive methods by Brown et al.
(1998, 2001), Gao et al. (2002), and Shoham (2001), demon-
strating the power of the Bayesian sequential formalism in
creating effective decoding schemes.

Recursive Bayesian decoding of cortical signals uses a prob-
ability model for the firing rate as a function of relevant
behavioral parameters and a probability model for the evolu-
tion of those parameters. When these probability models pro-
vide a reasonable approximation to the phenomena under
study, we may expect the approach to produce superior results.
It is worth emphasizing a key distinction between our two
studies: in the simulation study, the assumed probability model
for the relationship between velocity and the spike trains
matched perfectly the actual relationship because this was
under our control. As a consequence, the Bayesian decoding
scheme performed extremely well as theoretical arguments say
it should. On the other hand, with the ventral premotor cortex
data, we implemented an imperfect probability model, hoping
that it would provide a reasonable approximation to reality.
Although the PF algorithm remained clearly superior to the PV
and OLE algorithms, the gain was slightly reduced from the
10-fold (resp. 5-fold) increases in efficiency seen in the simu-
lation study. It is worth noting the wide spread of estimated
lags obtained for the ventral premotor cortex data as shown in
Fig. 1. Due to the repetitive nature of the ellipse-tracing task,
it is possible that neurons with higher magnitude lags are in
fact coding aspects of behavior that are only indirectly con-
nected with motor coordination of the task. In this case, one
might expect the methods to be less effective for less repetitive
tasks. However, the relative performances of the different
methods we consider should remain roughly the same because

TABLE 1. Mean-integrated squared error (MISE) and mean
maximum squared error (MMaxSE) for population vector (PV),
optimal linear estimation (OLE), and particle filtering (PF)
methods in the simulation study

PV OLE PF

MISE 0.712 
 0.023 0.327 
 0.003 0.068 
 0.001
MmaxSE 3.000 
 0.081 2.328 
 0.069 0.530 
 0.017

MISE averages, while MMaxSE maximizes, squared error over time. Values
(from the 60 data replications) means 
 SE. In terms of MISE, PF is �10
times more efficient than PV.
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the same advantage is conferred on all three methods we
consider.

In considering the distinction between the simulation and
real-data studies, it should be kept in mind that the premotor
cortical neurons were not recorded simultaneously, and the
“actual velocity” was taken to be an average across 258 very
similar experimental trials. It is possible that the motor cortical
signal contains information about small time-locked trial-to-
trial fluctuations in hand velocities, in which case, it would be
reasonable to expect further benefit from the PF algorithm
when predictions are compared with contemporaneous behav-
ior. More fundamentally, the improvement for simulated data
underscores the essential challenge of probabilistic decoding:

gains in performance will likely accrue as additional features
are built into the probability models. For example, the flexible
framework of recursive Bayesian decoding allows it to accom-
modate such things as variable time lags between neuronal
activity and movement, fine-scale time resolution, and corre-
lation structure, all of which could lead to much better perfor-
mance in driving prosthetic devices.

The framework we have used here is based on the full,
sequential form of Bayes’ Theorem, aided by its simple recur-
sive structure (see APPENDIX A). This follows the general ap-
proach of Brown et al. (1998) and Gao et al. (2002) but should
be contrasted with the static versions of Bayes’ Theorem
discussed by Oram et al. (1998), Sanger (1996), and Zhang et

FIG. 2. Results for 1 of the 60 simulated 200-neuron data sets, with nonuniformly distributed preferred directions. A: the actual
position trajectory from time 0 to time 12; B: the corresponding velocity trajectory; C: population vector (PV)-decoded velocity
trajectory; D: optimal linear estimation (OLE)-decoded velocity trajectory; E: particle filtering (PF)-decoded velocity trajectory;
F–I: x and y components of decoded velocity as a function of time for both PV and PF methods with actual velocity shown (- - -).
Due to nonuniformity of preferred directions, the PV-decoded trajectory misses its target noticeably (C) in several places; in terms
of x and y components the error is greatest near times of peak x and y velocity (F and G). The PF is highly accurate throughout.
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al. (1998). It is also important to distinguish the general Bayes-
ian analysis formalism from its implementation. APPENDIX A of
this paper presents the simplest form of the particle filtering
algorithm, which is easily implemented. The method worked
well, but it is important to keep in mind that it may sometimes
suffer from a problem known as “particle depletion,” which
arises typically when the probability model is poor, the state

vector is high dimensional, or large outliers occur in the data.
Further discussion of this topic is beyond the scope of this
paper, but many more details of the problem and a number of
proposed solutions can be found in Doucet et al. (2001). In
addition to particle filtering, alternative methods have been
proposed for implementation of recursive Bayesian schemes.
Brown et al. (1998, 2001) and have used Gaussian approxima-

FIG. 3. Typical “particle clouds” obtained using the PF Al-
gorithm, superimposed on the actual velocity trajectory. A: the
1st 100 particles at time t �100 (3 s); B: the 1st 100 particles
at time t � 300 (9 s). Decoded velocities at times t � 3 s and
t � 9 s are obtained by averaging the values of the respective
particle clouds.

FIG. 4. Decoding of x and y components of 5th loop of the ellipse-tracing task, based on 258 neurons in the ventral premotor
cortex. A: actual position trajectory along with decoded trajectories obtained by integrating decoded velocity; B: actual velocity over
the 100 time bins in the 5th loop; C: squared errors of decoded velocities for the 3 decoding methods, smoothed with a moving
average smoother to make them easier to distinguish; D: decoded velocity (both x and y components) for the PV method; E: decoded
velocity for the OLE method; and F: decoded velocity for the PF method.
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tions, effectively employing Laplace’s method (e.g., Kass
1997), which in many situations furnishes highly accurate
approximations with a substantially smaller computational cost
than simulation-based methods such as the particle filter. Our
own preliminary work suggests that in the context of motor
cortical signal decoding, with substantial numbers of neurons
and smoothly varying movements, Gaussian approximations
can be nearly as accurate as particle filtering. A number of
variations can be considered, along the lines of Gao et al.
(2002). These, and related alternatives to the particle filtering
algorithm used here, including Gaussian approximations, are
subjects for future investigation.

A P P E N D I X A : D E T A I L S O F B A Y E S I A N D E C O D I N G

A N D P A R T I C L E F I L T E R I N G

In Bayesian decoding, the object is to find, for each time t, the
distributions of the unobserved signal vt, given observations {y1,
y2, . . . , yt}. [In this paper, vt has been used to represent the velocity
of a monkey’s arm during the tth time bin with the 2- or 3-dimensional
vector encoding both speed (magnitude) and direction, while the
observations yt represented vectors of spike counts during the respec-
tive time bins.] The mean of the distribution of vt given {y1,
y2, . . . , yt} can then be used as a point estimate of vt.

The fundamental components of any recursive Bayesian decoding
scheme are two statistical models that must be specified: a “state
model” and an “observation model.” The general approach to recur-
sive Bayesian decoding consists of the following steps. 1) Specify a
state model. 2) Specify an observation model. 3) Implement the
particle filter, or a suitable alternative scheme, to estimate the unob-
served sequence {vt}.

In what follows, we use the (standard) notation p(x) to denote the
density function of a generic random variable x, and we denote the
conditional density of x given another random variable y by p(x�y).

State model

The state model describes the distribution of the unobserved signal
one step in the future, vt�1, given the current value of the signal vt. In
other words, the state model specifies

p�vt�1�vt�

In many cases, a random walk can be used here. For instance, choosing
p(vt�1�vt) � (2�)�dim(vt)/2 det (�)�1/2 exp{�(vt�1 � vt)

T ��1(vt�1 �
vt)/2} specifies that given vt, vt�1 has a Gaussian distribution with
mean vt and covariance matrix �. This simple random walk model
effectively imposes a continuity constraint on the underlying signal
process {vt}. The covariance matrix should be chosen so that the
model for unobserved signal is not unrealistic. One way to do this
would be to construct a number of “typical” paths for the unobserved
signal, compute the sample covariance matrix of all the steps (vt�1 �
vt) in all the paths, and use this as �.

The initial distribution p(v0) must also be specified. If v0 was
known exactly, this distribution would be concentrated on one point
(the starting point). However, in many cases, v0 is unknown, and this

distribution is chosen to represent an initial guess of the signal. A
common choice would be to take p(v0) to be multivariate Gaussian,
with mean equal to a “best guess” at the starting value v0, and variance
reflecting uncertainty (higher variance corresponding to higher uncer-
tainty). Roughly speaking, a (say) 95% confidence interval for the
initial value based on this distribution should correspond to a region
in which an individual would be 95% certain that the true initial value
actually lies.

Observation model

The observation model specifies the relationship between the un-
observed signal vt and the observation yt, that is, it specifies p(yt�vt).
For the problems considered in this paper, this model is based on the
assumptions that 1) in a time bin, a neuron generates a Poisson-
distributed spike count, with mean specified by a tuning-function
relating arm velocity, adjusted by some neuron-dependent time lag, to
the average spike count. 2) Given arm velocity, the spike counts are
independent of each other.

This leads to the relationship

p�yt�vt� � �
i�1

N exp���i�vt����i�vt�
yt
�i�

yt
�i�!

where �i(vt) is the tuning-function for the ith neuron, evaluated with
velocity equal to vt, and yt

(i) represents the spike count for the ith
neuron, in the tth time bin. Lags can be accounted for by time shifting
each one of the components of yt according to the respective neuron’s
lag.

Other models could be used. In particular, one might propose
alternatives to the Poisson distribution (as in Shoham 2001), which
take into account position as well as velocity (this would require the
position at time t to be included in the vector vt) or any number of
other possible models. As a general rule, more appropriate models
lead to better decoding.

Recursions for posterior distributions

The distribution of vt given the observations {y1, . . . , yt} up to and
including the one in the tth time bin is referred to as a posterior
distribution, and the set of these posterior distributions, for t � 1,
2, . . . , is determined by the recursive relationships

p�vt�y1, . . . , yt� � p�yt�vt�p�vt�y1, . . . , yt�1� (A1)

and

p�vt�y1, . . . , yt�1� �� p�vt�vt�1�p�vt�1�y1, . . . , yt�1�dvt�1 (A2)

We start with p(v0) already specified (as part of the state model).
Equation A1 is then used to obtain p(v0�y0). Then Eq. A2 gives us
p(v1�y0). At this point, we go back to Eq. A1 with t � 1 to get
p(v1�y0, y1). The process continues in this manner indefinitely.

While this looks like a straightforward procedure, it is typically
impossible to find analytical solutions to these recursions. Further-
more, because each iteration of the equations adds an integration
operation, we end up with a high-dimensional integral for which
standard numerical integration methods are too slow. However, the
particle filtering algorithm given in the following text provides a
simple way of approximating the desired posterior distributions.

Algorithm

The PF algorithm computes numerical approximations to the dis-
tributions in the recursions (Eqs. A1–A2). Let m denote a “number of
particles,” often chosen to be on the order of m � 1,000. The
algorithm is as follows.

TABLE 2. Decoding errors for ventral premotor cortex data
summarized across time

PV OLE PF

ISE 6.245 2.362 0.886
MaxSE 33.978 9.349 4.904

ISE averages, while MaxSE maximizes, squared error across time. In terms
of ISE, the PF offers a roughly sevenfold improvement over the PV algorithm.
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1) Create a population of particles x̃ 1
( j), j � 1, 2, . . . , m, by

repeatedly drawing from the initial distribution specified for the state
model. Set t � 1.

2) Compute weights wt
( j), j � 1, 2, . . . , m using the formula

w t
� j� � p�yt�vt � x̃ t

� j��

where yt � (yt
(1), . . . , yt

(N)) is the observed set of spike counts at time
t. If neurons are conditionally independent, given velocity, then this
expression further reduces to

w t
�j� � �

i�1

N

p�yt
�i��vt � x̃ t

� j��

3) Normalize the weights wt
( j) so that they sum to one and then draw

a sample of size m, with replacement, from the set of particles {x̃ t
(1),

x̃ t
(2), . . . , x̃ t

(m)}, where each draw picks x̃ t
( j) with probability w t

( j).
Define this sample to be x̂ t

( j), j � 1, 2, . . . , m. The estimate of the state
at time t is then

v̂t �
1

m
�
j�1

m

x̂ t
� j�

4) For each particle x̂ t
( j), j � 1, 2, . . . , m, simulate one step forward

in the state equation, and define the simulated value to be x̃ t�1
( j) . In

other words, draw x̃ t�1
( j) from the distribution

p�vt�1�vt � x̂ t
�j��

5) Replace t by t�1 and go back to step 2.
Intuitively, the algorithm can be thought of as follows. It starts with

a collection of particles which can be thought of as initial guesses of
v1. Weights are then assigned to each guess (step 2), according to how
likely y1 is, given the particular guess. By resampling (step 3), we
obtain a set of particles that is in a certain sense consistent with y1; this
set of particles in fact can be regarded as a draw from the posterior
distribution p(v1�y1). A good set of guesses for v2, given y1, can then
be obtained by simulating one-step forward in time (step 4). By
weighting proportionally to the likelihood of y2 given these guesses
(step 2 again) and resampling (step 3), we obtain an approximate draw
from the distribution p(v2�y1, y2). This process repeats itself until we
have scanned through all time points for which observations are
available.

The desired estimates v̂t obtained in step 3 of the algorithm are
approximations to the means of the corresponding posterior distribu-
tions p(vt�yt, . . . , y1). If desired, one can also estimate the variances of
these distributions by the sample variances of the particles x̂ t

( j) to
construct, for instance, predictive confidence intervals for the recon-
structed velocities.

In this form, the algorithm does not apparently account for lags
between the velocities {vt} and the observations {yt}. However, this is
fairly easy to do. We can assume that the ith neuron has an associated
lag denoted lagi, and that

yt
�i��vt�lagi

� Poisson��i�vt�lagi
� (A3)

(That is, given vt � lagi
, yt

(i) has a Poisson distribution with parameter
�i(vt � lagi

).) Then to implement the particle filtering algorithm, we
can simply replace the vector yt used in step 2 with y*t �
(yt � lagi

(1) , . . . , yt � lagN

(N ) ), so that the weights become

w t
� j� � �

i�1

N

p�yt�lagi

�i� �vt � x̃ t
� j��

A P P E N D I X B : C O M P U T A T I O N A L M E T H O D

F O R O L E

For decoding by OLE, it is necessary to determine the vectors d*1,
d*2, . . . , to be used in Eq. 3. Salinas and Abbott (1994) showed that
these vectors satisfy the system of equations

D � Q�1L (B1)

where D is the N 	 d matrix with rows d*1, d*2, . . . , d*N, L is an N 	
d matrix with rows L1, . . . , LN given by

Li � E�wt,ivt (B2)

where E[�] denotes the standard statistical “expectation” (or averag-
ing) operator, Q � [Qij]i, j�1, . . . , N is an N 	 N matrix with elements

Qij � E�wt,iwt, j (B3)

and d is the dimension of the velocity vector. Typically d � 3, but
sometimes experiments restrict attention to movement in a plane, in
which case we would use d � 2. (Note that wt,i depends indirectly on
vt because the distribution of yt,i depends on vt.) In computing L and
Q, the expectation is taken over some distribution of possible veloc-
ities vt.

In general, for an arbitrary distribution of vt, the expected values in
the matrices L and Q do not have a closed-form solution. However,
they can be estimated by Monte-Carlo simulation. To be specific, one
can draw a large set of “possible velocities” vt

(k), k � 1, 2, . . . , m (in
this paper we used m � 100,000), and then approximate Li by

1

m
�
k�1

m

w*t,ivt
�k�

where for each component of the sum, w*t,i is a simulated value of the
weight (Eq. 2), assuming that vt � v t

(k). Similarly, Qij can be approx-
imated by

1

m
�
k�1

m

w*t,iw*t, j

Once L and Q have been estimated, Eq. B1 can be solved for D
using standard routines available in mathematical software packages.
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