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Change-point detection of cognitive states
across multiple trials in functional
neuroimaging
F. Spencer Koerner,a,b*† John R. Anderson,a,c,d Jon M. Finchamc

and Robert E. Kassa,b,e

Many functional neuroimaging-based studies involve repetitions of a task that may require several phases, or
states, of mental activity. An appealing idea is to use relevant brain regions to identify the states. We developed
a novel change-point methodology that adapts to the repeated trial structure of such experiments by assuming
the number of states stays fixed across similar trials while allowing the timing of change-points to change across
trials. Model fitting is based on reversible-jump MCMC. Simulation studies verified its ability to identify change-
points successfully. We applied this technique to data collected via functional magnetic resonance imaging (fMRI)
while each of 20 subjects solved unfamiliar arithmetic problems. Our methodology supplies both a summary
of state dimensionality and uncertainty assessments about number of states and the timing of state transitions.
Copyright © 2016 John Wiley & Sons, Ltd.
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1. Introduction

A major use of functional neuroimaging is to describe brain activity, while subjects perform cognitive
tasks carried out repeatedly across multiple trials. The object of this imaging is often diagnostic, some-
times relating functional activity to characteristics that can help identify or characterize diseases [1], but
most applications aim to gain psychological insight into the processes that produce task-related behavior.
Many tasks may be decomposed, intuitively, into discrete stages such as planning and execution, and a
natural question is whether it is possible to identify discrete states of brain activity that might correspond
to these discrete stages of task performance. To address the question, we developed a Bayesian change-
point detection method in the context of multiple repeated trials of subjects solving arithmetic problems,
where the trials may be clustered into groups having similar series of brain activity recordings. These
clusters would be interpreted as trials on which the subject proceeded via the same sequence of brain
states, with some variation in timing.

Statistical change-point detection methods have been studied thoroughly [2] and applied in a variety
of biomedical contexts (e.g., [3]), including neuroimaging [4]. Much of the previous work in the field of
change-point detection requires stringent assumptions, like the true number of change-points, in order to
estimate distributions on the locations of the change-points. A recent contribution [5] treats the number of
change-points as a random variable, the distribution of which is estimated using sequential Monte Carlo.
In our situation, the data come in multiple trials, and there is substantial variation across trials, as may be
seen in Figure 1. As the figure indicates, change-point detection in this context is challenging because of
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Figure 1. Activity of a voxel central within one subject’s left horizontal intra-parietal sulcus for the duration of
14 similar arithmetic problems. Trials are substantially discrepant.

both noise and the natural variation in the way the task is performed across trials. Our approach uses a
hierarchical model to leverage the information from multiple, similar trials while allowing the location of
the change-points to vary across these similar trials. We implemented the method using reversible-jump
MCMC [6] while incorporating a step to cluster the trials based on number of change-points. In addition
to segmenting each trial into a small number of brain activity states, this method provides uncertainty
in the form of posterior probability. In this article, we formulate two models, piecewise constant and
continuous piecewise linear, derive the reversible-jump algorithms, and report results from a numerical
simulation study showing that the method can correctly identify underlying states from reasonably sized
data sets. We then illustrate the methodology by applying it to fMRI data collected during an experiment
on solving algebraic problems [7, 8].

We first explain the experimental context for the fMRI data in Section 2, before we present the models
and their implementations in Section 3. We describe our use of functional principal components to reduce
dimensionality in Section 4 and report results from our simulation study in Section 5. We then analyze
the original data in Section 6, and Section 7 provides our overall conclusions about the utility of the
methodology.
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2. The motivating problem and experiment

The adaptive character of thought-rational (ACT-R) model of cognition, as detailed and motivated in [9]
and [10], accounts for the brain’s progression through cognitive tasks as an optimal decision-theoretic
production system. It also serves as the foundation for currently implemented technology. Cognitive
tutors, as detailed in [11], help teach techniques like arithmetical manipulation; they automatically track a
student’s likely reasoning through an exercise via user input at each step. For effective use with problems
allowing for more lateral thinking, we need to be able to determine with greater accuracy where in the
problem-solving process the student is, in order to track effectively and provide appropriate feedback.
Through functional imaging, we hope to be able to infer and/or verify the evolution of more general
problem-solving processes and, through change-point detection, identify discrete states within the task
that relate to concrete steps in arriving at an answer. As addressed in [12], models detecting discrete
change-points can be used effectively for ‘model tracing’, that is, inferring a student’s current progression
and intentions based on his or her actions. However, many existing methods do not include probabilistic
statements on the number and location of these changes. The methods proposed here specify where a
change occurs in each trial’s progression while capturing structure common to groups of similar problems.

In exploring how both familiar and unfamiliar problems are solved, the Anderson lab has used a novel
type of arithmetic task based on what they call pyramid problems. These problems were developed for
their facility in testing both cognitive processes and, mainly through exception problems, metacognitive
processes, which are more abstract, and associated with higher order concepts, like reflection and incor-
porating current information to strategize [7]. In these problems, the subject solves for a variable in an
equation involving the $ operator. An expression of this form is evaluated as follows:

x$y = x + (x − 1) +… + (x − y + 1).

Subjects are given a problem of the form: z = x$y and are asked to solve for one of the variables (which
have been deemed the value, base, and height of the problem, respectively). So, for example, given

z = 4$3,

the solution would be

4 + 3 + 2 = 9.

This would be referred to as a value problem, whereas base and height problems would be those in which
the question posed has the respective term given as a variable. Together, these three problem subtypes
are called regular problems. On occasion, a subject may be given a slightly different type of problem
termed exception problems. These problems are more difficult, as they might involve a larger number of
terms, a larger magnitude of the terms, negative terms, fractional bases, or repeated variables. Each of
the following three problems would be an example of an exception problem.

z = 127$ − 3,

z = −9.5$4,

z$4 = z.

It would be particularly interesting to infer where change-points occur in these problems. The probable
number of change-points and their locations could both reflect the differing strategies adopted by sub-
jects in varying problem types. We consider both correctly solved regular and exception problems in our
analyses.

The data were collected from 20 subjects each solving 120 problems in six blocks of 20 problems
each. We have variables characterizing the nature of each problem solved: the subject, block, type of
problem, the given base and height, whether the subject correctly solved the problem, and its starting and
ending positions in a sequence of 41,635 scans. The imaging was performed via gradient echo planar
image acquisition, using a Siemens 3T Allegra scanner with a standard radiofrequency head coil (quadra-
ture birdcage). Repetition time was 2 s (30-ms echo time, 70° flip angle, and 20-cm field of view). The
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experiment acquired 34, 64, and 64 (horizontal, coronal, and sagittal) slices per repetition time resulting
in voxels of size 3 1

5
mm × 3 1

8
mm, ×3 1

8
mm, respectively. The anterior commissure–posterior commis-

sure line was on the 11th slice from the bottom scan slice. Functional images were motion corrected
using the six-parameter 3D automated image registration, as via [13]. Images were co-registered to a
common reference structural MRI via a 12-parameter 3D registration and smoothed with a 6mm full-
width-half-maximum 3D Gaussian kernel. Each subject’s entire sequence of scans was independently
deconvolved with the canonical statistical parametric mapping (SPM) hemodynamic response function
(a difference of four gamma densities), for each voxel independently, as there is no natural foothold for
more rigorous stimulus-response-based hemodynamic response function (HRF) estimation. Each scan
was down-sampled to 408 mega-voxels spanning the brain, a much lower spatial resolution than fMRI is
capable of (for reference, about 47,000 voxels are active given the more canonical original resolution);
however, the smoothing within mega-voxels can reduce noise and has been useful in relating ACT-R to
brain activity (see [8] for a previous analysis of the data examined here, and more details of the data col-
lection, as well as [14] for related background, including demarcations of the areas ACT-R implicates).
The data have been deconvolved with a canonical HRF.

3. Change-point models

To segment out substantial changes in neural activity, we need to make precise what, if any, assumptions
might be made about the relationships between trials. We could neglect the possibility of any shared
information and treat each trial independently. However, determining change-points would then be sub-
ject to the sizable magnitude of noise within a single set of trajectories of BOLD over the course of one
problem-solving process. Even within the same task-related megavoxel, as shown in Figure 1, trials elicit
very different temporal activation. Instead, we use a functional version of principal components analysis
to reduce the original 408-dimensional time series to much lower-dimensional series, maintaining a large
proportion of variability across regions. An example of the first mode of variability in such a projection is
shown in Figure 2, for 14 trials. We take advantage of the similarity in profiles across repetitions (trials)
made apparent by this reduction. Rather than making strong assumptions about the relationship of each
trial to prototypical functional forms, we allow trials to cluster into groups exhibiting similar temporal
progressions.

First, we define some notation. Given a set of N univariate time series (of possibly differing lengths),

we denote the observed value corresponding to trial i at time t by X(i)(t), and we let
{
𝜏 (i)j

}k

j=1
be the set

of k values of t that define change-points,
{
𝜏 (i)j + 1

2

}k

i=1
, where the distribution of X(i)(t) changes. The

collection of k change-points, T (i), segments the series into k + 1 states. We use the convention 𝜏0 = 0
and define l(i) to be the length (in images) of trial i. As we will require at least two data points occupy any
state, we then know 𝜏 (i)j ∈ {2, 3,… , l(i) − 2}, for all i and j. To take a hierarchical approach, we write the

mean functions, E[X(i)(t)], as f (i)j (t), for the jth state, and take them to be piecewise linear between change-

points and continuous at change-points, with normal priors on the slope coefficients, 𝛽(i)j , and a normally
distributed additive constant for each trial, 𝛾 (i). For the purposes of model fitting, each trial belongs to
one of C disjoint collections of trials, specified by C1,… , CC. We allow unique sets of priors on slopes,
specific to each collection. Thus, parameters of trial i will be assumed generated by parameters of the
cluster indicated by ci ∈ {C1,… , CC}. That is, trial-level slopes will be normally distributed around 𝛽

(ci)
j ,

which are, in turn, assumed distributed via a Gaussian hyperprior. For cluster h, a Poisson prior is placed
on the number of change-points, nCh

, a Dirichlet prior is placed on their locations with concentration
parameters specified by the vector 𝜶 ∶= {𝛼1,… , 𝛼nCh

}, and for each trial, cluster membership is uniform,
a priori. These clusters of trials allow us to fit models of differing dimensions across the entire set of
trials. We, therefore, have the following model:
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X(i)(t) ∼ N
(

f (i)j (t), 𝜎2
)

for t ∈
{
𝜏j−1 + 1,… , 𝜏j

}
,

f (i)j (t) = 𝛾 (i) +
j−1∑
k=1

𝛽(i)k

(
𝜏 (i)k − 𝜏 (i)k−1

)
+ 𝛽(i)j

(
t − 𝜏 (i)j−1 +

1
2

)
,(

𝜏 (i)1 ,… , 𝜏 (i)nci

) | nci
∼ l(i) ⋅ Dir

(
𝛼1,… , 𝛼nci

)
,

𝛽(i)j | 𝛽(ci)
j ∼ N

(
𝛽
(ci)
j , 𝜙2

)
,

𝛾 (i) ∼ N
(
0, 𝜓2

)
,

𝛽
(Ch)
j ∼ N

(
0, 𝜒2

)
,

nCh
∼ Pois(𝜆),

ci ∼ Unif(C1,… , CC),

(1)

Figure 2. The first non-trivial functional principal component of the same 14 regular trials shown in Figure 1.
Note that potential change-points are more readily apparent than in the much noisier raw data in Figure 1.
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where for our purposes, 𝜎,𝜶, 𝜙, 𝜒, 𝜓, 𝜆, and C will be fixed; heuristics for finding appropriate hyperpa-
rameters will be discussed in Section 3.3. Given this hierarchy, if an estimated cluster contains multiple
trials, we can leverage information between them to better estimate change-point locations, in isolation
from other clusters.

In higher dimensions, continuity between states is a restrictive assumption. A geometric argument can
reduce a model of piecewise hyper-planes that are continuous at change-points to a combination of a
dimensionality reduction problem and fitting the continuous piecewise linear model to a one-dimensional
projection, hence the importance of model (1). A useful generalization arises when we no longer require
continuity; we can then specify hyper-planes that vary much more meaningfully. To be computationally
tractable, we simplify to the constant case in higher dimensions, instead specifying f (i)j (t) = 𝛾 (i)j and
retaining the same priors on change-point locations, number of states, and cluster membership, and now
assuming multivariate Gaussian priors, where applicable:

X⃗(i)(t) ∼ N
(
𝛾 (i)j ,Σ

)
for t ∈ {𝜏j−1 + 1,… , 𝜏j},

𝛾 (i)j | 𝛾 (ci)
j ∼ N

(
𝛾
(ci)
j ,Φ

)
,

𝛾
(ci)
j ∼ N(0,Ψ).

(2)

Note that we do not allow for dependence between parameters at the state level within a trial except
through the intermediating cluster-level parameters, where the dependence arises through posterior sam-
pling from the combination of change-point distributions, which may necessarily allocate observations
from bordering states to a given state of interest, as well as through cluster membership distributions.
While we do not offer explicit quantifications of theoretical biases induced by the likely forms of mis-
specification our models may suffer, we do attempt to verify they are not too deleterious via simulations
in Section 5 and Appendix D.

3.1. Model fitting

The complexity of either model’s full posterior distribution precludes analytically calculating any statis-
tics of interest. We turn to reversible-jump Markov chain Monte Carlo, a stochastic method for sampling
from an arbitrary distribution on a support that may change in dimension with the parameter values.
Convergence of the chain’s stationary distribution to the target distribution requires the construction of a
reversible transition kernel for potential jumps between parameter sets, as [6] originally details (see also
[15–17]). Transitions that retain the parameter space of the chain’s current state may be attempted via the
usual methodology, for example, vanilla Metropolis–Hastings or Gibbs sampling. However, as we treat
the number of change-points in a model as random, we must specify a one-to-one transition kernel in
transdimensional steps, allowing us to choose a positive dominating measure on an augmented parameter
space (which will be determined in the process) to facilitate dimension matching.

The subtlety in rjMCMC algorithms often lies in the construction of jump proposals that can both
maintain reversibility and explore the posterior in a computationally efficient manner. Various ways to
track and reincorporate information about the progression of the chain and its successful jumps into new
proposals have been explored by [18]. Alternatively, we proceed to tailor a transformation to the prob-
lem’s structure, because gains to computational efficiency can be substantial with effective transitions.
Let 𝜃′ represent a potential set of values for the parameter 𝜃 to take. For model (1), we need to be able to
propose the following:

• 𝛽(i)j → 𝛽′(i)j ,

• 𝛽
(Ch)
j → 𝛽

′(Ch)
j ,

• 𝛾 (i) → 𝛾 ′(i),
• T (i) → T ′(i),
• ci → c′i ,
• nCh

→ n′Ch
.

Proposals of all but the last two types are implemented through standard Metropolis–Hastings steps, as
well as ci → c′i , when nci

= nc′i
. We need to implement reversible-jump methods in the transdimensional
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cases: when proposing a change in the model generating a trial, if the current and proposed models exhibit
different numbers of states, or when proposing a new number of change-points in a cluster. In either of
these transdimensional cases, we must define an invertible transformation that takes the current state of
the chain and a number of random samples equal to the difference in dimensionalities of original and
proposed model spaces. (In the case of decreasing the number of states, this function will allow calculation
of the draws that would have been necessary to generate the analogous reverse jump, i.e., that of the
proposal of increasing the number of states; while both directions can be functions of random draws,
it is often simpler to make one direction deterministic, if possible.) We then include the corresponding
densities at these draws, relative forward and backward probabilities of these moves, and the Jacobian of
the transformation as factors in the acceptance probability.

We provide detail about one proposal type in Appendix A, that of an increment to the number of
states in a sub-model (the model specified by the parameters inherent to a cluster), and the similarly
implemented transition ci → c′i in Appendix C. Transitions for model (2) are simplifications of those for
model (1) and are clear upon disregarding the irrelevant parameters in the discussion of the Jacobian of
the last enumerated transition type in Appendix B. Section 8 includes information on publicly available
code for implementation.

3.2. Initialization and estimation

We can design simple heuristics for initialization of parameters near local maxima in the posterior. How-
ever, depending upon hyperparameter values, without proper tuning of the proposal distributions, the
dimensionality of the data can be large enough that the information locally is sufficient to keep the chain
near these local optima for many more iterations than is computationally reasonable. With sufficient tun-
ing, acceptance probabilities can be large enough to allow arbitrary starting values for all parameters.
Naturally, subsequent burn-in will be required.

When the chains have unambiguously reached their limiting distribution, we rely on exploring the
parameter space through a sequence of conditioning steps. As C-level estimates are not only subject to
varying in dimension, but also theoretically identically distributed between clusters, attributing any defi-
nite psychological interpretation to an individual cluster may be misguided. To make assertions exclusive
to a cluster of trials, one would first identify whether the group is unique among clusters locally in
the chain, as the cluster may have other likely member trials. (For C large enough to computationally
efficiently run the rjMCMC, it will often be the case that multiple clusters will have similar parameter
estimates. With fewer clusters allowed, the necessarily increasing heterogeneity among trials in a clus-
ter will eventually, effectively prohibit model-level transdimensional jumps.) Therefore, to find stable
estimates of remaining parameters, we first maximize posterior probability over the marginals pi(ci, nci

),
for each trial, to find jointly the estimates {ĉi}i and {n̂ci

}i. This makes possible further inference (i.e.,
estimates of the remaining parameters are not well defined over differing numbers of states); we then
estimate, via conditional maximum a posteriori (MAP) estimates, T (i) | ĉi, n̂ci

and via the state-specific

conditional posterior means, 𝛽(i), 𝛾 (i) | T̂ (i), ĉi, n̂ci
. Only the clusterings, number of states, and locations

of change-points have a clear meaning, and only locally within the chain, rather than indefinitely once
converged to the limiting distribution, as in many applications.

3.3. Hyperparameters

The model requires a priori specification of 𝜎,𝜶, 𝜙, 𝜒, 𝜓, 𝜆, and C. Using plausible estimates of these
values in real data leads to much more stable fits and useful discriminability between overtly differing
groups of trials. As will be seen via the constraints in 4, the nature of the data-reduction process results
in input time series s.t. ∀i, ∫ (X(i))2(t)dt = 1. The heuristics used generalize well to any X(i)(t) that
are standardized, unit length under the 𝓁2 norm, or have a similar magnitude scaling (and deteriorate
especially, with the magnitudes of the differenced time series or probable ratio of change-points to time
points). We let 𝜒, 𝜓 specify very uninformative hyperpriors (both 0.5 in our analyses), along with 𝜶,
which we take to be the concentration vector of 1s. Estimates are not especially sensitive to 𝜆; as results
are largely indistinguishable over the range of 𝜆 ∈ (1, 10), we set it to 2.5.

We take the number of clusters to be C = 6 for the simulated experiments and C = 9 for fitting
real data. With too small a C, we are guaranteed overly heterogeneous cluster membership, and thus
highly biased estimates of change-point location (in an unpredictable manner), as well as upward biased
estimates of the number of states. Given sufficiently large C, similarity between trial collections will
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fall out into overtly similar cluster-level parameter estimates, but neglecting to merge models does not
adversely affect estimates of the number of change-points. We can use the algorithm to approximate
the number of clusters in the most parsimonious set of distinct functional models as well, simply by
repeatedly reducing C by 1 (a naturally agglomerative clustering method on the most similar collections
of trials) until the algorithm converges to a stable set of ĉi (indicating that no two clusters are effectively
modeling the same set of trials).

Estimates are most sensitive to the remaining hyperparameters, 𝜎 and 𝜙. We use the sample variances
of the series after removing conservative smoothing spline fits, averaged over all trials, for 𝜎2. Lastly, we
will tend to overfit with very poor values of the hyperparameter 𝜙; with limited C, underspecifying 𝜙 will
greatly penalize trial-level deviations from model-level parameters and increase split probability, even
with a good partitioning of trials; likewise, overstating 𝜙 will lead to otherwise marginal trials moving
to the sub-model, also facilitating more splits. We find that 𝜙 an order of magnitude less than 𝜎 tends to
perform well for similar time series (in length, and the smoothness and scaling inherent to the functional
principal components analysis (fPCA) basis). In any case, erring on the side of caution (noninformativity)
is wise, in application.

4. Reducing the data

Dimensionality reduction techniques rely upon the concept of the data being generated in some low-
dimensional space of interest, before being projected to a higher-dimensional space in which we observe
it. Redundancy in the information conveyed by the covariates measured in most complex systems makes
these methods effective. The brain is no exception, and fMRI data, in particular, have been conducive to
these attempts at making low-dimensional analysis tractable [19] while ameliorating the non-negligible
multicollinearity problems inherent to modeling the unreduced data. We adopt one such approach,
namely, a functional PCA-based representation. The large variability in the BOLD response of a single
voxel, even across identical tasks and an ostensibly similar solution progression, is not likely due merely
to additive noise and requires a method treating it as salient.

Functional principal component analysis is a natural extension of PCA to functional data. In our con-
text, the imaging times would correspond to covariates, and voxels to samples or observations. The fPCA
approach presumes images are taken from a smooth underlying function of blood oxygenation over time,
and therefore, the limit as the number of covariates (times at which we interpolate) becomes dense is
computationally tractable. This limit can be formalized as an eigendecomposition of the analog to the
usual sample covariance matrix Σ̂, the temporal covariance surface [20]:

�̂�(s, t) =
V∑

v=1

(Xv(s) − X̄(s))(Xv(t) − X̄(t)),

where Xv represents the vth voxel’s hypothetical continuous time BOLD response. Just as multivari-
ate principal components, 𝜉j = (𝜉j1,… , 𝜉jT ) would maximize projected variability across voxels:
max
𝜉j

V(𝜉jX
′), where X is the V by T data matrix, these functional principal components, 𝜉j(t), are similarly

meant to explain variability across voxels over time:

max
𝜉j(t)

V

(
∫ 𝜉j(t)X′(t)dt

)
,

subject to the usual orthogonality and unit L2-norm constraints, and are what will be used to summa-
rize a trial. In doing so, the components capture what are generally conceptualized as temporal modes of
variability, manifesting as the smooth trajectories of somewhat consistent deviations (in either direction)
from mean activity, that upon projection, elicit (explain) the most variability across voxels. Again, by
contrast to PCA, wherein researchers often interpret components by looking for relatively large loadings
and characterize them as the low-dimensional, predominant feature groups explaining variability across
observations, sustained departures from 0 in the fPCs would correspond to epochs of the trial duration
during which perturbations from mean neural activity by some subset of regions explain substantial pro-
portions of voxel-wise variability. Alternatively, consider a set of fPCs as a set of smooth, constrained
functions which, when allowing the linear combinations thereof, optimally reconstruct the original data.
In finding these functions, we automatically diminish the impact of voxels that generally vary little from
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mean, or measure mostly noise (with no discernable temporal structure), and weight more heavily those
with some apparent signal in determining a mode.

Dependence between trials is, fortunately, of no concern until change-point detection, as trials are
reduced independently. Treating voxels as independent, however, is an assumption that should be made
very tenuously. Some features of physiology, like low-frequency changes in heart-rate or respiration, will
manifest obviously via the BOLD mean processes and would then be accounted for via the fPCA pre-
processing. However, despite voxels in disparate regions of the brain representing processing performed
in the service of transforming differing inputs in very different ways, substantial spatial correlations,
usually attenuating with distance, underlie all recorded activity. Whether other subtler effects could be
even more damaging to suitable low-dimensional representations is unclear, but the spatial correlation
alone should be a primary consideration. Reference [21] even considers a change-point problem on the
(one-dimensional) space on which functional observations are then sampled. Given the abrupt changes in
function exhibited on the space of the brain (specific types of processing are known to be very localized),
this would be an appropriate problem to consider in determining regions of interest. Generalizations to
arbitrary higher-dimensional spaces are, however, non-trivial. Reference [22] studies the effects of non-
linear temporal dependencies in great detail. Specifically, they consider the effects of reasonably general
dependence structure on the estimation of functional principal components. In fact, one example in their
examination is of change-point detection, and the biases potentially introduced by disregarding estima-
tion of long-run covariance in place of the standard covariance. They also propose a test statistic for
change-point detection in a process’s expectation with appealing properties. However, they do not explic-
itly examine most results’ performances (including that of the change-point test) under very short time
series, where functional data analysis is less commonly employed. They do show that estimation of fPCs
can be performed consistently and is somewhat robust to dependence. As expected, though, the fPC
reduction cannot then capture all of the process’s structure. For example, complex systems might admit
effective low-dimensional representations that change over time. One appropriate step in modeling might
be, therefore, adding a level of dynamicality to the basis. Reference [23] offers a powerful solution in the
case of a one-dimensional underlying space, via dynamic functional principal component analysis. While
perhaps spatially dynamic functional principal component representations would be more appropriate,
these methods have not been explored nor would it be clear how to test for arbitrary classes of change-
surfaces. To limit complexity of preprocessing, we proceed as if an fPCA representation is sufficient and
examine reconstruction performance in our example incorporating some spatial dependence.

As this projection is performed for each trial individually (bearing in mind each component is unique
only up to itself and its negation), trials with naturally similar sources of variability will be represented
by similar basis functions. This is evidenced by the fact that identical projections of only voxels within
areas such as the posterior superior parietal lobule, angular gyrus, and lateral inferior prefrontal cortex
elicit similar basis functions, whereas subsets of the majority of the remainder of cortex provide more
erratic projections that are dissimilar across trials.

It should be noted that further preprocessing prior to fPCA is often implemented in attempts to achieve
stationarity. Model (2) does not allow for underlying trends; however, under model (1), a trial-wise lin-
ear background trend will be fit automatically. Nonetheless, for consistency, a mean process is always
removed prior to eigendecomposition. Detrending could be crucial for resting state analyses in fMRI, or
experiments in which trials are long. Likewise, in other neural recording modalities, like EEG or ECoG,
MEG, or LFP, detrending will become necessary, as background or low-frequency non-stationarity could
be irrelevant to the intent of the study. We, however, do not assume any temporal structure underlies the
individual series (e.g., additive autoregressive noise processes), beyond the piecewise linear dependence,
nor do we implement detrending schemes as complex as those considered by similar examinations, such
as [5]. This is purely because it would be very difficult not to overfit, for example, a discrete cosine basis
detrending, on such short time series.

We use the R package fda to perform the functional principal components analysis (functions are
available online via [24]), as detailed in [20]. Calculating fPCs can be performed in a variety of ways, but
the most intuitive is to interpolate on a much finer grid of time points than is actually sampled from, often
through the use of some smooth basis, and then use standard PCA routines to proceed on the augmented
data (where again, timepoints function as what would normally be the covariates). The smoothness of
our function estimate (as represented by the integrated square of its second derivative) will be penalized
in combination with the reconstruction error, in a proportion chosen by generalized cross-validation.
Therefore, our assumption of smoothness over time in the original space will translate to smoothness
over time in the bases.
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Figure 3. The variability captured by the next seven functional principal components (after the mean activation
component) for all of one subject’s trials. The red line is the average over trials.

In our analyses on fMRI data, we discard the first fPC, as it is almost exactly constant over time,
capturing the widely varying mean BOLD signal across voxels. We then consider the non-trivial fPCs,
that is, from the second component onward, evaluated at the time points of imaging. Figure 2 shows an
example of such a projection, 14 trials in which the same subject correctly solved a regular problem. The
trials in Figure 2 are the same as those in Figure 1. In both cases, we include four scans (8 s) before the
problem-solving period, consisting of approximately 5 s of repetition detection followed by 3 s of fixation,
as well as four scans after the problem-solving period, which encompass about 5 s of feedback and 3 s of
repetition detection. The orthogonality constraint and near linearity of the first component result in fPCs
resembling (approximately) polynomials of subsequently increasing order. In Figure 3, we see that the
first non-trivial principal component (on average) captures about half of the variability remaining after
accounting for the mean component. This component X2(t) in the projection of trial i will be the X(i)(t)
upon which we assumed to operate in Section 3.

Returning to Figure 2, we see that modes of maximal variability of equal order are heterogeneous.
Some exhibit very similar structure, up to what might be thought of as a time dilation (a linear scaling
of time to stretch or compress the same effects to a different trial length). However, a constant location
or number of change-points across all trials does not appear reasonable in a one-dimensional projection.
We therefore use a model that clusters trials into groups that exhibit similar structure, that is, the same
number of change-points, as well as similar temporal progressions given the number of change-points in
that group. Trials that repeat the same problem, for example, are not required to be modeled identically
and can therefore exhibit differing cluster membership.

5. Simulation study

To assess ground truth performance, we simulated a variety of datasets that were similar to projections of
observed fMRI trajectories. We will display the most in-depth example, an instance of performance under
an extreme misspecification of the piecewise linear modeling process (1). Three more studies exhibit-
ing much better performance on more amenable simulated datasets can be found in Appendix D. Two
of which (D.1 and D.2) were generated according to the piecewise linear model (1) and then fitted by
the same model, while the other (D.3) is an example of data generated via the higher-dimensional piece-
wise constant model (2), specifically in five dimensions, and the corresponding model fit. The following
simulation incorporates more features of real data, and of the full data analytic process. We take care
to include features like varying trial lengths, and small numbers of aberrant trials in their number of
states (relative to the majority of trials) prior to projection to high dimensions, where we enforce voxel-
specific hemodynamic response functions, spatial correlations, and disparate scalings before using fPCA
to extract trajectories of the form that are used in real data analysis.
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5.1. Simulation 1

Seventy-five trials were simulated, each with probabilities of being generated by a zero, one, two, or three
change-point models of 0.05, 0.1, 0.75, and 0.1, respectively. Trial lengths approximated the distribution
later seen in the real fMRI data: uniform between 14 and 24, inclusive, and change-points were placed
uniformly and rounded to the nearest half-integer (rejecting change-points directly adjacent to, or coinci-
dent with, trial end-points or other change-points). Within each trial, we took 𝛾 (i) and 𝛽(i)1 to be normally

distributed (and
{
𝛽(i)j

}k

j=2
specified conditionally upon the previous state parameter, 𝛽 i

j−1, otherwise iden-

tical to 𝛽(i)1 , but such that all mass in
[
𝛽 i

j−1 − 0.3, 𝛽 i
j−1 + 0.3

]
is removed), with means zero and 𝛽(Ch), and

standard deviations 𝜙 = 0.6 and 𝜓 = 0.2, respectively. IID Gaussian noise is added (𝜎 = 0.02) before
these series are normalized to have L2 norms of 1. We then generate 100-dimensional series, more akin
to the dimensionality encountered in megavoxel-based whole-brain analyses, with the given trial-wise
mean process subjected to a random (Gaussian, mean 0 s, standard deviation 0.5 s) temporal shift for each
dimension (interpolation is performed by simple two internal knot regression spline fits), and the multi-
variate normal correlation structure imposed by ∀i, t, 𝜎(Xi(t)) = 0.075, and for 1 ⩽ i ⩽ 100, i − 2 ⩽ j ⩽
i + 2, i ≠ j, 𝜎(Xi(t),Xj(t)) = 0.015, across the dimensions. This is analogous to a set of voxels lying on a
line, and the structurally explicit spatial correlations only extending to the four other nearest voxels. Each
dimension is then scaled via AXi + B, where A ∼ N(0, 0.32) and B ∼ Unif(−50, 50), before finally being
subjected to the fPCA preprocessing described in Section 4 to extract components, to which the piecewise
linear model is fit. As detailed in 4, each trial is reduced independently and performed so agnostically to
any information about its generation. This setup implies model misspecification on many levels, as well
as serving to evaluate performance on fPC outputs, which are, by definition, smooth. The preprocessing
method should also demonstrate robustness to spatial correlations, albeit those implemented here with
subtlety only befitting a toy example. The most striking form of misspecification is in the nature of the
clusters, which do not exist. Trials could be considered bound to one of four clusters, sharing only the
number of change-points or each trial occupying its own cluster, although an obvious identifiability issue
would arise if inferences on cluster membership were of interest to us. The modeling process will also
inevitably be subjected to variable hemodynamic responses throughout the brain, also approximated here.

Figure 4. Simulated data at various stages. (a) Three trials of simulated mean functions, with zero, three, and
two change-points, respectively. (b) Three of the one hundred projected dimensions corresponding to the third
mean function in (a). Very little original structure appears to be maintained. (c) The fPCA reconstructed functions
corresponding to the three functions in (a). Noting that these components are only unique up to a negation makes
their similarity apparent. (d) The sample mean function across (all one hundred) dimensions in (b). The result is a
function very dissimilar from the original. (e) The sample variance function across (all one hundred) dimensions

in (b). Again, the function of interest is not reflected well in these simple summary statistics.
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Figure 5. Posterior probability of the number of states by trial, for all 75 trials (one more than the number of
change-points), sorted by posterior mean in the number of states.

5.2. Results

Naturally, the original mean functions are only identifiable, at best, up to a linear transformation. It would
therefore be unwise to draw scientific inferences from parameter estimates other than the number and
location of change-points. Figure 4 shows the estimated second fPCs down-sampled to the original data
frequency (panel (c)) along with their corresponding original mean functions (panel (a)). Also shown are
exemplar high-dimensional projections (panel (b)), corresponding to voxel-space data, from which very
little about the underlying structure can be detected by eye. Very simple summary statistics, for example,
the sample mean (panel (d)) and variance (panel (e)) across the full set of dimensions shown (in part) in
panel (b), would not serve reconstruction purposes well. Figure 5 shows reasonable performance in the
estimated posterior densities of the numbers of change-points by trial, where we find that ≈ 76% of trials
have posterior probability of greater than 0.75 of their being generated via exactly 2 change-points. While
the smaller number of ‘distractor’ trials can technically influence the posterior densities for quantities of
interest in the majority of three-state trials, the effect is minimal. Another statistic of fundamental interest
is the estimated marginal (over trial) distribution of states, which takes mass (0.02, 0.11, 0.81, 0.06) at
zero, one, two, and three change-points, respectively.

5.3. Conclusions

With mixtures of trials generated from models of varying numbers of states, we find we can reliably
recover clusterings of the functional forms used in simulation, as well as the nature of the effects gov-
erning the majority of trials, corresponding to the regular trials exhibiting usual behavior, under realistic
noise conditions. Even with gross model misspecification, stronger covariability (homogeneity) within
groups of trial-level parameters allows us to maintain the quality of change-point location estimates under
increasing top-level additive noise conditions; in simulation D.2, the addition of trials with low signal-
to-noise ratio (SNR) essentially inflates the variability in the estimates within the remainder of trials,
although this is dependent on how similar the distractors are to the ‘real’ trials relative to how similar the
informative trials are to each other (as with any discriminative task).

Extracting the greater information in multivariate series, as in simulation D.3, comes at the expense of
computational time scaling approximately linearly with the number of dimensions. Even the correlated
measurements of fMRI data would reinforce the ability to detect states, and without requiring assumptions
on how the correlation structure might change from state to state, but the benefits would be increasingly
marginal. Fitting model (2) to noisy data, such as that of D.3, required much greater than an order of mag-
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nitude increase in iterations of Monte Carlo, for just five dimensions. Therefore, we have used piecewise
linear models in the fMRI data analysis.

6. Data analysis

We analyzed the imaging data by first applying fPCA, as described in Section 4, and then fitting model
(1) to the resulting univariate time series.

6.1. Whole-brain results

Figure 6 shows posterior probabilities on the number of states for regular and exception problems cor-
rectly solved by one subject. Models with three states (two change-points) are preferred for the majority

Figure 6. Posterior probability, with magnitude shown on the legend, of the number of states by trial, for all
correctly solved problems by one subject. The three-state fit is most probable for the majority of trials.

Figure 7. Posterior densities of change-point locations given ĉi and n̂ci
, for all data from the subject in Figure 6.

Red ticks are now MAP estimates of change-point locations. Trials for which two-state, three-state, and four-state
models are posteriorly modal have densities in green, black and blue, respectively. Time is in scans.
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of trials, although rarely with high probability. After conditioning on regular problem height (only prob-
lems with heights 2–5 were posed among the value-type regular problems), one might expect a shift in
probability mass upward with the height of the problem being solved, but we did not observe this. Figure 7
shows the estimates of change-point locations by trial for the same set of problems shown in Figure 6.
In both figures, trials are partitioned according to the type of problem being solved, where in the case
of value problems, the height of problems for which value is being solved is specified. The densities of
change-point locations of trials for which a two-state, three-state, and four-state solution was estimated
as maximal a posteriori are shown in green, black, and blue, respectively, with the corresponding MAP
estimates of the change-points shown in red.

The resulting state durations are similar to those found in [8]. The study inferred state durations that
were consistent with change-points approximately coincident with the beginning and end of the problem-
solving period. Our estimated states regularly segment the fixation and response/feedback phases in the
problem (recall these are of a fixed, four-scan durations), as shown in Figure 8. The problem-solving
phase itself varies linearly with trial length and, as such, is the most variable in duration. The trials with
two, three, and four-state MAP estimates are shown in the same colors as in Figure 7. The lines represent
the aggregated densities of the first change-point location for the set of trials with the given estimated
number of states on the left, and the duration until end of trial from the last change-point for the same

Figure 8. Density estimates of the locations of the first change-point (unaligned) and last change-point (relative
to end of trial) for all data from the subject in Figures 6 and 7. Trials for which two-state, three-state, and four-state
models are posteriorly modal have densities in green, black and blue, respectively. Lines correspond to posterior

modes. Time is in scans.

Figure 9. Posterior probability, with magnitude shown on the legend, of the number of states by trial, for all
correctly solved problems by all 20 subjects. The three-state fit remains most probable for the majority of trials,

across subjects and problem types.
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Figure 10. Likely regions of interest. Bilateral reductions may encompass two fairly similar areas, such as for
angular gyrus, or blur two areas encoding different information across hemispheres, such as horizontal intra-

parietal sulcus.
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sets of trials on the right. Models with more than two states generally pick out approximately where the
problem-solving period itself starts and ends, whereas two-state models are posteriorly modal at a point
less cognitively well-defined, toward the middle of the trial. Because the functional preprocessing tends
to smooth over the neighborhood around any moderate deflection of the problem-solving phase, there
may be slight overestimation of this phase (underestimation of the fixed length end phases). However, the
problem-solving period in exception problems though is much more poorly delineated, which indicates
that during the time the problem is presented, there are more scans in which the subject is performing
some cognitive task other that which would be represented by the problem-solving period as segmented
out of a regular problem.

In Figure 9, we see the posterior estimates of the number of change-points for all trials over all 20
subjects, where a three-state solution (2 change-points) is often preferred in regular problems albeit
with less consistent results in exception problems. In fact, in approximately 45% of trials, we have a
posterior probability of at least 0.75 of exactly three discernable states, given this temporal resolution.
For approximately 74% of trials, again across all subjects, there is greater than or equal to 0.75 posterior
probability of at least three segmentable states. As 0.75 probability corresponds to 3:1 posterior odds in
favor of the tested hypothesis, this may be considered non-negligible evidence [25]. Only one of the 20
subjects had a posterior distribution on MAP number of states for exception trials with mean significantly
greater than that of regular, when corrected for multiple comparisons under level 𝛼 = 0.05

20
(permutation

test; p ≈ 10−4). Note that while height is strongly correlated with trial length (Pearson’s 𝜌 = 0.53, p ≈
10−16, on 429 df ), neither height nor trial length is overwhelmingly covariable with posterior mean
estimates of the number of states (𝜌 = 0.04, −0.12, p ≈ 0.39, 0.01, respectively, on 429 df ). This is
evidence against both a consistent effect across value problems of different heights and artificial change-
points due merely to longer trials. Additional manipulations due to greater problem height are manifested
only through the problem-solving state duration (also similarly to [8]).

6.2. Region of interest results

All whole-brain analyses point to a majority of trials being segmentable up to the preparatory or fixat-
ing, problem solving, and feedback phases, using only a one-dimensional projection. However, the more
complicated temporal progressions (those that exhibit less canonical activation) are not shared by many
trials. They will therefore not be effectively estimated in this small subset. Within specific regions of inter-
est however, using the same dimensionality reduction process as when addressing whole-brain activity,
it is often the case that different phases are segmentable than those dominating the whole brain repre-
sentation. Within angular gyrus, for example, we see estimated posterior distributions on the number of
change-points in Figure 10 with moments similar to those of the whole brain for left, right, and bilateral
reductions. In the horizontal intra-parietal sulcus though, while the right hemisphere exhibits a maximally
probable three-state segmentation for most trials, left horizontal intraparietal sulcus (HIPS) only shows
probable two-state solutions, possibly indicating a greater disparity in the tasks lateralized via HIPS.
The horizontal intra-parietal sulcus, an area usually associated with visual processing, has also been tied
to numerical processing [14]. It elicits a much more consistent response across the majority of trials
and reaffirms the generally stronger (larger magnitude) responses often seen at the ACT-R-implicated
areas of the left hemisphere, as has been observed previously in [7]. Interestingly, the lack of specifically
lateralized responses in angular gyrus also reaffirms the results of [14].

7. Discussion

Replications across many related trials offer the substantial information needed for reliable change-point
detection from short, noisy neuroimaging time series. However, even when the task remains fixed across
trials, a subject’s behavior and neural activity will change. Thus, brain activity across trials can be con-
sidered similar, but not the same. We therefore began this investigation with the assumption that the
number of change-points (corresponding to brain states) would remain constant across trials, while their
locations in time would vary across trials. We discovered that it was too restrictive to assume the num-
ber of change-points remained constant across all the trials and instead incorporated into the model the
assumption that trials formed clusters sharing a given number of change-points. This complicated the
implementation but made it much more flexible.

The models we developed provide probabilistic results on the number of states. Within single voxels,
the piecewise constant activity model is plausible, but for analyses involving regions of interest or whole
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brain, the piecewise linear model is preferable. We developed a reversible-jump sampler that correctly
identified change-points in simulations, where the clustered trial structure was enforced. We then re-
analyzed the arithmetic pyramid problem-solving data [8] and were able to provide substantial statistical
support for conclusions drawn previously by other methods. By analyzing both one-dimensional projec-
tions of fMRI trajectories and trajectories within individual regions of interest, we were able to show that
the data provide evidence for several states, corresponding to pre-problem solving, problem solving, and
post-problem solving, but that some brain regions may participate only in a subset of these states.

While we have here applied the methodology to fMRI data, the combination of low signal-to-noise
ratio, relatively short trial lengths, and high-dimensionality make change-point detection especially diffi-
cult in this context. In fact, the methods we developed could be applied to any data consisting of repeated
multivariate time series, including those produced by magnetoencephalography, electroencephalogra-
phy, electrocorticography, or multi-electrode recordings of local field potentials. The far superior time
resolution of these modalities should provide much more information about change-point locations.

8. Software

Rj-MCMC-based algorithms for the implementation of posterior sampling in both the piecewise linear
and piecewise multivariate constant models are available publicly on Bitbucket, along with all simulations
and scripts to generate visualizations of posterior statistics, including (but not limited to) those displayed
in the article. Implementations of (1), of the scale featured in Section 5, require on the order of 1 h per
20,000 samples, on a single 2.3 GHz core, but vary substantially, especially in proportion to the average
estimated dimensionality. All code is written in R. Code can be accessed at: ‘bitbucket.org/SKoerner1/
change-point-detection’

Appendix A: Transitions in the number of states

Henceforth, 𝜃′ and 𝜃′′ will refer to the parameters of the states adjacent to the inserted change-point
(before and after, respectively) of a proposed split, as all other state parameters remain unchanged (barring
𝜏′ itself, which is the only newly proposed change-point in the split). We use ΘK to refer to a space at
least encompassing that of both the current and proposed parameter spaces, Θk and Θk+1, respectively. In
this case, the augmented parameter space ΘK will simply be Θk+1. Analogously to the usual Metropolis–
Hastings MCMC, we accept a proposal of k = nCh

→ nCh
+ 1 = k + 1 where the set of trials currently

generated by cluster h is denoted Ah, with probability max(1, 𝛼), where

𝛼 =
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of which the second and third factors will be expanded as follows:
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(A.1)
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where bk and dk+1 represent the probabilities of birth and death of a new interval, respectively, and (omit-
ting the densities at draws of change-point locations, which are uniform on the unit interval, and would
thus be represented by a product of #(Ah) ones, prior to scaling; this scaling is then incorporated through
the Jacobian factor) |J| (as formulated in (B.1) within Appendix B) is the absolute value of the determi-
nant of the Jacobian of the proposed transformation, which is defined by the deterministic parts of the
sequence:

• Pick new change-points by drawing uniformly over the possible change-point locations in the chosen
interval for each trial. Let this proposal for trial i be denoted 𝜏′(i). We enforce at least two images
between potential subsequent change-points and/or the boundaries of the trial.

• Draw a normally distributed u𝜃 specifying an angle that defines the potential transformation of the
underlying slopes (let 𝛽(Ch)

j =∶ tan(𝜃(Ch)), when splitting state j):

𝛽′(Ch) = tan
(
𝜃(Ch) + u𝜃

)
and

𝛽′′(Ch) =
𝛽
(Ch)
j

∑
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(
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)
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(
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)
∑

i∈Ah

(
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) .

• Draw a set of normally distributed u𝜃(i) , with mean u𝜃 to split the chosen 𝛽(i)j

(
=∶ tan

(
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))
into the

following:
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The mean angle of deviation, u𝜃 , is drawn from a N
(
0, 𝜎2

𝜃

)
. Similarly, u𝜃(i) is drawn from a N

(
u𝜃, 𝜎

2
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)
normal. This is a geometrically intuitive approach to constructing this type of jump, as visualized
in Figure A.1. By automatically rejecting the proposal if

(
𝜃(Ch) + u𝜃

)
∉

(
−𝜋

2
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2
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or if any(
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+ 𝜖, 𝜋

2
− 𝜖

)
, we are essentially sampling from an appropriately truncated density to

keep temporal derivatives of the projection from crossing a singularity in 𝛽. In all applications, the auto-
matic rejection procedure is never employed, as tuning 𝜎𝜃 and 𝜎𝜃(i) is sufficient. This is, in part, because

Figure A.1. Proposing a split of one state into two within a trial: u𝜃 , the perturbation to the original model-level
slope (solid vector), is the new mean angle of deviation from trial-level slopes, to generate proposals. The current
𝛽
(Ch)
j , the set of all trials’ current and proposed change-points in the cluster, and the new draw, u𝜃 , determine both

of the two proposed model-level slopes (the first given by the dashed vector), which have no geometric constraint,
as there is no notion of continuity maintained by cluster-level parameters. The perturbation to the trial-level mean
function, u𝜃(i) , is distributed around u𝜃 and specifies the individual trial’s deviant angle. Given the location of the

proposed change-point within a trial, parameters of the second proposed state are then fully specified.
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some form of regularization will be necessary prior to analyzing measurements on inherently different
scales, which tends to bound absolutely the likely magnitude of 𝛽. In the case of merging, we invert
the relevant ratios that would be generated by treating the current state as a hypothetical jump from the
proposal, analogously to the split case. We would instead combine these parameters via the following:
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Appendix B: Jacobian of the change to number of states

For the split/merge step in the piecewise linear case, as given by expression (A.1), the Jacobian J takes
the form:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝛿T
𝛿T

𝛿T
𝛿uT

𝛿T
𝛿𝛽

𝛿T
𝛿u𝜃

𝛿T
𝛿𝛾

𝛿T
𝛿u𝛾

𝛿T
𝛿B

𝛿T
𝛿uΘ

𝛿T ′

𝛿T
𝛿T ′

𝛿uT

𝛿T ′

𝛿𝛽

𝛿T ′

𝛿u𝜃

𝛿T ′

𝛿𝛾

𝛿T ′

𝛿u𝛾

𝛿T ′

𝛿B
𝛿T ′

𝛿uΘ
𝛿𝛽

𝛿T
𝛿𝛽

𝛿uT

𝛿𝛽

𝛿𝛽

𝛿𝛽

𝛿u𝜃

𝛿𝛽

𝛿𝛾

𝛿𝛽

𝛿u𝛾

𝛿𝛽

𝛿B
𝛿𝛽

𝛿uΘ
𝛿𝛽′

𝛿T
𝛿𝛽′

𝛿uT

𝛿𝛽′

𝛿𝛽

𝛿𝛽′

𝛿u𝜃

𝛿𝛽′

𝛿𝛾

𝛿𝛽′

𝛿u𝛾

𝛿𝛽′

𝛿B
𝛿𝛽′

𝛿uΘ
𝛿𝛾

𝛿T
𝛿𝛾

𝛿uT

𝛿𝛾

𝛿𝛽

𝛿𝛾

𝛿u𝜃

𝛿𝛾

𝛿𝛾

𝛿𝛾

𝛿u𝛾

𝛿𝛾
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𝛿𝛽
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𝛿B
𝛿𝛾

𝛿B
𝛿u𝛾

𝛿B
𝛿B

𝛿B
𝛿uΘ
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𝛿T
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𝛿𝛽
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𝛿𝛾
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𝛿u𝛾

𝛿B′

𝛿B
𝛿B′
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

which then reduces to a matrix of the following form, where − indicates the entry does not exist (𝛾 is
unaffected) and X indicates a non-zero set of entries, which is not necessarily square.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 − 0 0
X X 0 0 0 − 0 0
0 0 1 0 0 − 0 0
X X X X 0 − 0 0
0 0 0 0 1 − 0 0
− − − − − − − −
0 0 0 0 0 − 1 0
X X X X 0 − X X

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

However, each sub-matrix on the diagonal of the form:[
1 0
X X

]

is square, hence the simple expression for the full determinant:

|||| 𝛿T ′

𝛿uT

|||| ⋅ |||| 𝛿𝛽
′

𝛿u𝜃

𝛿𝛽′

𝛿𝛽

|||| ⋅ |||| 𝛿B′

𝛿uΘ

𝛿B′

𝛿B

|||| ,
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where each multiplicand is the determinant of a square matrix. This simplifies to the following:

∏
i∈Ah

(
𝜏 (i)j+1 − 𝜏 (i)j − 3

)
×

∏
i∈Ah

𝜏 (i)j − 𝜏 (i)j−1

t(i)j − 𝜏′(i)
sec2

(
arctan

(
𝛽(i)j

)
+ u𝜃(i)

)

×

∑
i∈Ah

(
𝜏 (i)j − 𝜏 (i)j−1

)
∑

i∈Ah

(
t(i)j − 𝜏′(i)

) sec2
(

arctan
(
𝛽
(Ch)
j

)
+ u𝜃

)
.

(B.1)

Note that we can observe from the positivity of |J| that our transformation will be identifiably reversible
from the inverse function theorem, under all possible draws not rejected given geometric infeasibility.

Appendix C: Cluster membership transitions

When fitting model either model (1) or (2), in order to propose a jump of the type ci → c′i , we proceed
similarly to the jump with acceptance probability detailed in (A.1), but in an iterated manner. A trial
jumping from model to model is performed by proposing a sequence of split/combine moves on the
individual trial, with the important distinction that original underlying 𝛽(Ch) is not retained throughout the
entire proposal nor are the transdimensional jumps targeted to 𝛽(C

′
h). In the case of proposing a jump to a

model of higher dimension, we define g ∶= nc′i
− nci

and accept with probability min(1, 𝛼), where

𝛼 = p
(
ci → c′i

)
= p

(
𝛽

(
c(g)i

)
→ 𝛽(c′i) | c(g−1)

i → c(g)i

)
×

p
(

c(g−1)
i → c(g)i | c(g−2)

i → c(g−1)
i

)
×

p
(

c(g−2)
i → c(g−1)

i | c(g−3)
i → c(g−2)

i

)
× · · · ×

p
(

c(0)i → c(1)i | ci → c(0)i

)
× p

(
𝛽(ci) → 𝛽

(
c(0)i

))
.

Here, the first proposal (last term) lets 𝛽(ci) assume the values of 𝛽(c
(0)
i ) ∶= 𝛽(i), while the last proposal

(the first term) is that the model-level slopes jump to those of the target model’s 𝛽(c
′
i ) (from 𝛽(c

(g)
i )). Each

transdimensional jump is proposed as in the model split example, with u(i)
𝜃

= 0. The c(k)i represent tem-
porary nci

+ k state intermediary models. The joint proposal is either accepted or rejected in full, and this
simplifies ensuring reversibility, as none of these intermediaries can remain non-empty after a proposal,
so the birth and death probabilities of these empty models, as are commonly made explicit in related treat-
ments employing reversible-jump schemes, are required to cancel. Noting again that the intermediaries
in propositions of these types are completely agnostic to the target model, we expect these jumps to have
relatively low acceptance, although for pre-proposal sub-models with only one more or fewer change-
point than the proposition, we find that aggregated acceptance rates are about 5% for our simulation, up
to ∼ 15− 25% acceptance on recorded sets of fMRI trials, as often many iterations are spent with mostly
similar sub-model dimensionalities, thus more relatively likely proposed sub-model parameter sets. The
constraint to probable model dimensionalities via the trial lengths makes even the maximum number of
intermediaries necessarily low (four at most), which keeps this sampling regime plausible computation-
ally. For applications with a larger viable range of the number of change-points, leaving g unconstrained
will quickly result in computational infeasibility. We reduce the number of sub-jumps proposed within a
proposed cluster to cluster move by allowing a larger C and simply bounding g. For

nc′i
− nci

= g = 1,

P
(
ci → c′i

)
= P

(
𝛽(ci) → 𝛽

(
c(0)i

)
= 𝛽(i)

)
×P

(
c(0)i → c(1)i | 𝛽(ci) → 𝛽

(
c(0)i

))
×P

(
𝛽

(
c(1)i

)
→ 𝛽(c′i) | c(0)i → c(1)i

)
.
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If deterministically specifying the intermediary cluster-level parameters for a proposal seems coun-
terintuitive to the usual Metropolis architecture, recall steps of this type are constructed such that the
stationary distribution is on the support of C1,… , CC, for each trial (not, e.g., 𝛽(Ch)). Our symmetric
proposal distribution is as follows, in theory (that is, without constraining g):

c′i ∼ DiscUnif({Cj}j∖ci).

Appendix D: Additional simulation studies

To assess ground truth performance, we simulated a variety of datasets sharing similarities with projec-
tions of observed fMRI trajectories. We will display three examples: two of the piecewise linear modeling
process (1) and one of the higher-dimensional piecewise constant model (2).

D.1. Simulation 1

Fifty trials were simulated, each with 0.5 probability of being generated by a one or two change-point
sub-models, with normally distributed 𝛽(Ch) values. Within each trial, we took 𝛾 (i) and 𝛽(i) to be normally
distributed, with means zero and 𝛽(Ch), and variances 𝜙 = 0.5 and 𝜓 = 0.5, respectively. Change-points
approximately followed a Dirichlet distribution law, with 𝜶 = 1⃗, up to the constraint that more than one
scan must have separated them from another, or a trial start/end point. One change-point (randomly cho-
sen) was moved an additional time point away when they occurred between adjacent scans. Before fitting,
we standardized all time series to have mean 0 and sample variance 1. This creates model misspecifica-
tion on the simulated data, because the trial-level slopes are no longer normally distributed nor centered
at the original cluster-level parameters. The original parameters cannot easily be recovered, although nor
can the scale of original BOLD data from the regularized basis functions.

D.2. Simulation 2

We constructed a simulation identically to D.1, but with four clusters of only 15 trials, generated by 0,
1, 2, and 2 change-points, respectively, fit simultaneously with 15 large magnitude white noise trials (not
shown in figures of parameter estimates). In this case, the noise trials tested how strongly exclusive the
signal clusters tended to be, and, by extension, how invariant the parameter estimates for trials of these
clusters were to the distractors.

D.3. Simulation 3

A simulation was also constructed for employing and testing model (2). It was similar to D.1, except that
five-dimensional multivariate normally distributed piecewise constant 𝛾 (i) around 𝛾 (Ch) (also multivariate
normal) were sampled, dimensions at all levels were independent (analogously to the univariate cases,
𝜙 = 𝜓 = 0.5 × I5), and there were four entirely nested sub-models in the experiment, with parameters
for additional states being appended to the beginning or end of the parameter set belonging to the model
with one fewer state. We therefore had 15 trials of each 0, 1, 2, and 3 change-points.

D.4. Results

Figure D.1 is a visualization of the fitted estimates of (1) to D.1, indicated by solid lines, on four of
the simulated time series having truly piecewise linear mean functions, with the locations of the true
change-points indicated by dashed lines. Shrinkage toward sub-model-level parameters is evident in the
first state of trials A and C, compared with the better-fit example trials B and D from the same true
clusters, respectively. Otherwise, fits are as one would expect, with minimal misestimation of change-
point locations. Figure D.2 shows posterior probabilities on the number of change-points (one less than
the number of states) for all trials ordered such that true two change-point generated trials are above
the dashed line. No probability mass exists outside the two-state or three-state solutions, and the four
misclassified trials are the result of change-points occurring near the start or end of the series.

Figure D.3 shows the posterior densities of change-point locations given the estimates of ĉi and n̂ci

for all trials in D.1, with the true change-point locations shown as teal lines superimposed. Each strip
represents one of the fifty trials, with the bottom 27 being generated by truly two-state sub-models; the
top 23 have three states. Trials are ordered within cluster by the true mean change-point location and
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normalized to show change-points and their estimates as proportions of trial length. Trials for which the
number of change-points is misestimated have posterior densities shown in red.

Even in more complex simulations (not shown), with strong heteroskedasticity in top-level variability
between clusters, we find that distractor trials (the noise trials similar in magnitude to the signal tri-
als) have little influence on estimates, so long as clusters of trials with signal maintain their coherence.
Figure D.4 displays estimates of change-point locations for the data simulated in D.2. Estimates of num-
ber of change-points for truly one-state trials were most noticeably affected by the noise trials. Four of

Figure D.1. Four trials of the simulated piecewise linear data with fitted parameters overlaid as solid lines; the true
change-point locations are indicated by dashed lines. Trial A shows the influence of the cluster-level parameters,
which behave more similarly to the trial-level parameters of trial B. The same effect is apparent in the three-state
cluster containing trials C and D. Estimates of change-point locations are quite accurate; when the number of

states is correctly estimated, they have a mean absolute error of approximately 0.42.

Figure D.2. Posterior probability of the number of states by trial, for all fifty trials (one more than the number
of change-points). Trials truly generated from two states are below the dashed line; above it are three-state trials.
The four trials shown in Figure D.1 are indicated. Misclassifications come from cases where a true change-point
occurs toward the boundary of a trial, and top-level additive noise happens to continue the trend of the adjacent

interval.
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these trials were misclassified, as well as two truly two-state trials, for a total misclassification rate of
10%. Here, correctly segmented one-state trials are indicated by a dashed line through the duration.

In simulation D.3, we find that change-point estimates fitted from model (2), as shown in Figure D.5,
are much better than the piecewise linear case with similar per-covariate variability, even under the gen-
erally difficult case of similar cluster-level parameters (in this case, clusters with larger number of states
were generated to have sequential interior states with identical parameters to clusters with smaller num-
bers of states.) In this simulation, 6.7% of trials were misclassified (four out of 60), again with the least
prototypical trials of the clusters suffering, as well as those with change-points very near trial end-points.
Of course, methods of fitting are always tuned without knowledge of the generating parameters.

Figure D.3. Posterior densities of change-point locations given ĉi and n̂ci
. Trials are ordered such that the first

(bottom) 27 truly have two states, while the next (top) 23 are generated from three-state prototypes. The true
change-point locations are marked in teal; trials with incorrectly estimated numbers of states have densities shown

in red.

Figure D.4. Posterior densities of change-point locations given ĉi and n̂ci
. Trials are ordered such that all within

each block of 15 have the same true number of change-points: 0, 1, 2, and 2, by block. The true change-point
locations are marked in teal; trials with incorrectly estimated numbers of states have densities shown in red.
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Figure D.5. Posterior densities of change-point locations in the five-dimensional regime, given ĉi and n̂ci
. Trials

are ordered such that each block of 15 have the same true number of change-points: 0, 1, 2, and 3, by block. The
true change-point locations are marked in teal; trials with incorrectly estimated numbers of states have densities

shown in red.
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