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Mathematical models of neurons are widely used to improve understand-
ing of neuronal spiking behavior. These models can produce artificial
spike trains that resemble actual spike train data in important ways, but
they are not very easy to apply to the analysis of spike train data. In-
stead, statistical methods based on point process models of spike trains
provide a wide range of data-analytical techniques. Two simplified point
process models have been introduced in the literature: the time-rescaled
renewal process (TRRP) and the multiplicative inhomogeneous Markov
interval (m-IMI) model. In this letter we investigate the extent to which
the TRRP and m-IMI models are able to fit spike trains produced by
stimulus-driven leaky integrate-and-fire (LIF) neurons.

With a constant stimulus, the LIF spike train is a renewal process,
and the m-IMI and TRRP models will describe accurately the LIF spike
train variability. With a time-varying stimulus, the probability of spiking
under all three of these models depends on both the experimental clock
time relative to the stimulus and the time since the previous spike, but it
does so differently for the LIF, m-IMI, and TRRP models. We assessed the
distance between the LIF model and each of the two empirical models in
the presence of a time-varying stimulus. We found that while lack of fit
of a Poisson model to LIF spike train data can be evident even in small
samples, the m-IMI and TRRP models tend to fit well, and much larger
samples are required before there is statistical evidence of lack of fit of
the m-IMI or TRRP models. We also found that when the mean of the
stimulus varies across time, the m-IMI model provides a better fit to the
LIF data than the TRRP, and when the variance of the stimulus varies
across time, the TRRP provides the better fit.

1 Introduction

The leaky integrate-and-fire (LIF) model is one of the fundamental build-
ing blocks of theoretical neuroscience (Dayan & Abbott, 2001; Gerstner
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& Kistler, 2002; Koch, 1999; Tuckwell, 1988). Its use in examining spike
train data is limited, however, because its full parameter vector cannot be
estimated uniquely from spike trains in the absence of subthreshold mea-
surements, and estimation of a reduced set of parameters is somewhat
subtle (Iyengar & Mullowney, 2007; Paninski, Pillow, & Simoncelli, 2004).
An alternative is to use likelihood methods based on the conditional inten-
sity function λ(t|Ht), where Ht is the complete history of spiking preceding
time t (Kass, Ventura, & Brown, 2005 and references therein). The stimulus-
driven LIF model depends on only the experimental clock time t, relative
to stimulus onset, and the elapsed time t − s∗(t) since the preceding spike
s∗(t), that is, it satisfies

λ(t|Ht) = λ(t, t − s∗(t)). (1.1)

Models of the general form of equation 1.1 have been called inhomogeneous
Markov interval (IMI) models by Kass and Ventura, 2001 (following Cox &
Lewis, 1972) and 1-memory point processes by Snyder and Miller (1991).
Two special cases of equation 1.1 have been considered in the literature:
multiplicative IMI models (Kass & Ventura, 2001, and references therein)
and time-rescaled renewal-process models (Barbieri, Quirk, Frank, Wilson,
& Brown, 2001; Koyama & Shinomoto, 2005; Reich, Victor, & Knight, 1998).
We label these, respectively, m-IMI and TRRP models. Both models separate
the dependence on t from the dependence on t − s∗(t), but they do so
differently. The purpose of this letter is to investigate their relationship
to the stimulus-driven LIF model. Specifically, given a joint probability
distribution of spike trains generated by an LIF model, we ask how close
this distribution is to each of the best-fitting m-IMI and TRRP models, where
closeness is measured using Küllback-Leibler divergence. This quantifies
the extent to which the m-IMI and TRRP models can capture the dynamics of
a stimulus-driven LIF neuron. It also provides an interpretative distinction
between the m-IMI and TRRP models themselves.

2 Method

2.1 Leaky Integrate-and-Fire Model. The LIF model is the simplest
model that retains the minimal ingredients of membrane dynamics (Dayan
& Abbott, 2001; Gerstner & Kistler, 2002; Koch, 1999; Tuckwell, 1988). The
dynamics of the model are represented by the equation,

τ
dV(t)

dt
= −V(t) + I (t), (2.1)

where V(t) is the membrane potential of the cell body measured from its
resting level, τ is the membrane decay time constant, and I (t) represents an
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input current. When the membrane potential reaches the threshold, vth , a
spike is evoked, and the membrane potential is reset to v0 immediately.

By suitable scale transformation, the original model can be reduced to a
normalized one,

d X(t)
dt

= −X(t) + I (t). (2.2)

The threshold value and reset potential are given by xth and x0, respectively.
While I (t) represents an external input, xth and x0 could be interpreted
as “intrinsic” parameters of the neuron model and are directly related to
biophysical properties (Lansky, Sanda, & He, 2006). In this letter, we con-
sider stimuli that have the form

I (t) = µ(t) + σ (t)ξ (t), (2.3)

where ξ (t) is gaussian white noise with E[ξ (t)] = 0, V(ξ (t)) = 1, and
Cov(ξ (t), ξ (t′)) = 0, for t �= t′.

2.2 Probability Models of Spike Trains. A point process can be fully
characterized by a conditional intensity function (Daley & Vere-Jones, 2003;
Snyder & Miller, 1991). We consider two classes of models. First, the condi-
tional intensity function of the m-IMI model has the form

λ(t, s∗(t)) = λ1(t)g1(t − s∗(t)). (2.4)

Here, λ1(t) modulates the firing rate only as a function of experimental
clock, while g1(t − s∗(t)) represents non-Poisson spiking behavior.

Second, the TRRP model has the form

λ(t, s∗(t)) = λ0(t)g0(�0(t) − �0(s∗(t))), (2.5)

where g0 is the hazard function of a renewal process and �0(t) is defined as

�0(t) =
∫ t

0
λ0(u)du. (2.6)

In this letter, we call λ0 and λ1 excitability functions to indicate that they
modulate the amplitude of the firing rate, and we call g0 and g1 recovery
functions to indicate that they affect the way the neuron recovers its ability
to fire after generating an action potential. The fundamental difference be-
tween the two models is the way the excitability interacts with the recovery
function. In the m-IMI model, the refractory period represented in the re-
covery function is not affected by excitability or firing rate variations. In the
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TRRP model, however, the refractory period is no longer fixed but is scaled
by the firing rate (Reich et al., 1998).

Note that in both the m-IMI and the TRRP models, the excitability and
recovery functions are defined only up to a multiplicative constant: replac-
ing λ1(t) and g1(t − s∗(t)) cλ1(t) and g1(t − s∗(t))/c, for any positive c, leaves
the model unchanged, and similarly for λ0 and g0. This arbitrary constant
must be fixed by some convention in implementation.

2.3 Küllback-Leibler Divergence. We use the Küllback-Leibler (KL) di-
vergence to evaluate closeness between the LIF model and the two empirical
models. The KL divergence is a coefficient measuring a nonnegative asym-
metrical “distance” from one probability distribution to another, and the
model distribution with a lower value of the KL divergence approximates
the original probability distribution better. For two probability densities p f

and pq of a spike train {t1, . . . , tn} in the interval [0, T ′), the KL divergence
per spike between the two densities is given by

D(p f ||pq ) = lim
T ′→∞

1
E[n]

∞∑
n=1

∫ T ′

0

∫ T ′

t1
· · ·

∫ T ′

tn−1

p f (t1, . . . , tn)

× log
p f (t1, . . . , tn)
pq (t1, . . . , tn)

dt1dt2 · · · dtn, (2.7)

where E[n] is the mean spike count in the interval [0, T ′), the expectation
being taken over replications (trials). For simplicity, in considering first µ(t)
and then σ (t) to be time-varying functions, we will assume in each case
that they are periodic with period T , so that spike train segments across
time intervals of the form [kT, (k + 1)T) for nonnegative integers k may
be considered replications (in other words, the spike train generated from
the LIF neuron becomes periodically stationary). Let θ (t) = t mod T be the
phase of the periodic stimulus where we take the phase of the stimulus to
be zero at t = 0 and λ(t, s∗) be a conditional intensity of an IMI model. The
conditional interspike interval density given the previous spike phase θ ,
q (u|θ ), is obtained as

q (t − s∗|θ (s∗)) = λ(t, s∗) exp
(

−
∫ t

s∗
λ(x, s∗)dx

)
. (2.8)

Since the LIF model belongs to the class of IMI model, it is completely
characterized by a conditional interspike interval density, f (u|θ ). Then,
as shown in appendix A, under the condition of E[n] = ∫ T ′

0 λ0(t)dt → ∞
as T ′ → ∞, where λ0(t) is the instantaneous firing rate given by λ0(t) =
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E[λ(t, s∗(t))], equation 2.7 is reduced to

D(p f ||pq ) =
∫ T

0

(∫ ∞

0
f (u|θ ) log

f (u|θ )
q (u|θ )

du
)

χ(θ )dθ, (2.9)

where χ(θ ) ≡ p{spike at θ |one spike in [0,T )} is a stationary spike phase
density. Under the periodic stationary condition, the KL divergence
between two probability densities of spike trains of IMI models (see
equation 2.7) is reduced to the KL divergence between the conditional in-
terspike interval densities (see equation 2.9). Note that the KL divergence of
the conditional interspike interval density is averaged over the spike phase
distribution, χ(θ ), since spikes are distributed by χ(θ ) over time.

For calculating the KL divergence given by equation 2.9, we need to
calculate f (u|θ ) and χ(θ ), which can be obtained as follows. Since the mem-
brane potential of the LIF model is a Markov diffusion process, f (u|θ )
satisfies the renewal equation (van Kampen, 1992),

p(x, t|x0, 0; θ ) =
∫ t

0
f (t′|θ )p(x, t|xth, t′; θ )dt′, x ≥ xth, (2.10)

where p(x, t|x1, t1; θ ) is the conditional probability density that the voltage
is x at time t if it is x1 at time t1 < t. This conditional probability density can
be obtained by solving the stochastic differential equation 2.2 as

p(x, t|x1, t1; θ ) = 1√
2πη(t)

exp
[
− (x − γ (t))2

2η(t)

]
, (2.11)

where

γ (t) = x1et1−t +
∫ t

t1
et′−tµ(t′ + θ )dt′, (2.12)

and

η(t) =
∫ t

t1
e2(t′−t)σ 2(t′ + θ )dt′, (2.13)

(see van Kampen, 1992). Inserting equations 2.11 to 2.13 into equation 2.10,
we can solve equation 2.10 numerically to obtain f (u|θ ). (See Burkitt &
Clark, 2001, for numerical solution of the integral equation.)

The stationary spike phase distribution χ(θ ) can be obtained as follows.
The phase transition density, which is the probability density that a spike
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occurs at phase θ ′ given the previous spike at phase θ , is given by

g(θ ′|θ ) =
∫ ∞

0
f (u|θ )δ([u + θ ]modT − θ ′)du. (2.14)

Following the standard theory of Markov processes (see van Kampen, 1992),
the stationary spike phase distribution χ(θ ) is obtained as a solution of

χ(θ ′) =
∫ T

0
g(θ ′|θ )χ(θ )dθ. (2.15)

The stationary phase distribution χ(θ ) is the eigenfunction of g(θ ′|θ ) cor-
responding to the unique eigenvalue 1. In practice, the spike phase dis-
tribution χ(θ ) can be calculated by discretizing the phase and calculating
the eigenvector corresponding to eigenvalue 1 of the transition probability
matrix using standard eigenvector routines (Plesser & Geisel, 1999).

2.4 Fitting the IMI Model. We fit the m-IMI and TRRP models to spike
trains derived from the LIF model via maximum likelihood.

2.4.1 Fitting the m-IMI Model. We follow Kass and Ventura (2001) to fit
the m-IMI model to data. For fitting m-IMI model in equation 2.4, we use
the additive form:

log λ(t, s∗(t)) = log λ1(t) + log g1(t − s∗(t)). (2.16)

We first represent a spike train as a binary sequence of 0s and 1s by dis-
cretizing time into small intervals of length �, letting 1 indicate that a spike
occurred within the corresponding time interval. We represent log λ1(t) and
log g1(t − s∗(t)) with cubic splines. Given suitable knots for both terms,
cubic splines may be described by linear combinations of B-spline basis
functions (de Boor, 2001),

log λ1(i�) =
M∑

k=1

αk Ak(i�), (2.17)

log g1(i� − s∗(i�)) =
L∑

k=1

βk Bk(i� − s∗(i�)), (2.18)

where M and L are the numbers of basis functions that are determined
by the order of splines and the number of knots. Note that the shapes of
B-spline basis functions {Ak} and {Bk} also depend on the location of knots.
Fitting of the model is accomplished easily via maximum likelihood: for
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fixed knots, the model is binary generalized linear model (McCullagh &
Nelder, 1989) with

log λ(i�, s∗(i�)) =
M∑

k=1

αk Ak(i�) +
L∑

k=1

βk Bk(i� − s∗(i�)), (2.19)

where {Ak(i�)} and {Bk(i�)} play the role of explanatory variables. The
coefficients of the spline basis elements, {αk} and {βk}, are determined via
maximum likelihood. This can be performed by using a standard software
such as R and Matlab Statistics Toolbox.

In the following simulations we chose the knots by preliminary exami-
nation of data. We conducted the fitting procedure for several candidates
of knots and then chose the one that minimizes the KL divergence between
the estimate and the LIF model.

2.4.2 Fitting the TRRP Model. We begin by noting that λ0(t) is a con-
stant multiple of the trial-averaged conditional intensity (see appendix B).
To fix the arbitrary constant, we normalize so that the constant multiple
becomes 1. We may then first estimate λ0(t) from data pooled across trials
(effectively smoothing the PSTH), which we do by representing it with a
cubic spline and using a binary regression generalized linear model. Then
we apply the time-rescaled transformation given by equation 2.6 to spike
train {ti } to obtain a rescaled spike train, {�0(ti )}. Finally we determine an
interspike interval distribution of {�0(ti )} by representing the log density
with a cubic spline and again using binary regression.

3 Results

3.1 Time-Varying Mean Input. We first considered the case that the
input to the LIF neuron was

I (t) = a sin
t
τs

+ ξ (t), (3.1)

where a and τs are amplitude and timescale of the mean of the input, respec-
tively. We took (xth, x0) = (0.5, 0) and τs = 5/π . In the following simulation,
we used the Euler integration with a time step � = 10−3. We first simulated
the LIF model over the time interval 107� to generate a spike train and
fitted the m-IMI and TRRP models to data. For each model we used 4 knots
for fitting the excitability function and 3 knots each for fitting the recovery
function and the interspike interval distribution. Then we calculated the
KL divergence between the LIF model and those fitted probability models
as described in section 2.3. We repeated this procedure 10 times to calculate
the mean and the standard error of the value of the KL divergence.
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Figure 1: Results for the case that the mean input is varying in time. (a) The KL
divergence as a function of the amplitude of the mean input, a . The solid line,
dotted line, and dashed lines represent the KL divergence of the m-IMI model,
the TRRP model, and the inhomogeneous Poisson process, respectively. The
mean and the standard error at each point were calculated with 10 repetitions.
The KL divergence of the inhomogeneous Poisson process is much larger than
that of the m-IMI model and the TRRP model. (b) The instantaneous firing rates
of the LIF neuron for various values of a . Thin solid lines represent the instan-
taneous firing rates of the LIF model, and the thick gray lines are raw traces.
The amplitude of the instantaneous firing rate is increasing as a is increasing.
(c) The solid lines represent rescaled interval distributions of the m-IMI model
for various values of a , which are obtained from the recovery function by equa-
tion 3.2. The gray dashed line is the interval distribution of the LIF model for
a = 0. (d) Same as c for the TRRP model. The rescaled interval distributions in
both c and d are departing from the interval distribution of the LIF model as a
is increasing, but the LIF model shows less variation for the m-IMI model than
for the TRRP model.

Figure 1a depicts the KL divergences as a function of the amplitude of the
mean of the input. We also show in this figure the KL divergence between
the LIF model and the inhomogeneous Poisson process for comparison. As
shown in this figure, the KL divergence of the m-IMI model is the smallest
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among three models. When the amplitude of the mean input is increased,
the KL divergences of these models get increased. It is remarkable that
even when the firing rate is highly modulated, as seen in Figure 1b, the KL
divergence of the m-IMI model remains small.

Figures 1c and 1d display rescaled interval distributions, which are cal-
culated from recovery functions of the m-IMI and the TRRP models, respec-
tively, as

p(t) = ĝ(t) exp
(

−
∫ t

0
ĝ(u)du

)
, (3.2)

where ĝ(t) denotes the fitted recovery function. Note that this is not the
actual interval distribution of spike trains, but the one that is extracted
from a spike train after removing the effects of the stimulus. (Here we
show p(t) but ĝ(t) since the shape of p(t) is more stable in the tail of the
distribution: the tail of p(t) converges to zero as t → ∞, while the estimation
of the tail of ĝ(t) is rather variable because there are few spikes at large t in
data.) The gray dashed line in Figures 1c and 1d represents the interspike
interval distribution of the LIF model with a = 0. The interval distribution
plot shows less variation for the m-IMI model than for the TRRP model
as the amplitude of the stimuli is increased, especially in the range of the
short timescale of the refractory period. This indicates that the dynamics of
LIF model in the range of the short timescale is not affected by the stimuli,
and the recovery function of the m-IMI model can capture the stimulus-
independent spiking characteristics of the LIF model.

Figure 2 displays the results for various values of τs and fixed value of a .
Parameter values of the LIF model were taken as (xth, x0) = (0.5, 0) and a =
1. The results are qualitatively the same as in Figure 1: the m-IMI model fits
better than the TRRP model, and the interval distibution of the m-IMI model
shows less variation than that of the TRRP model. These results depicted
in Figures 1 and 2 suggest that for various amplitudes and timescales of a
stimulus, the fitted m-IMI model is closer than the TRRP model to the true
LIF model when a stimulus is applied to mean of the LIF model.

3.2 Statistical Interpretation of the KL Divergence. The scale of KL
divergence is, by itself, somewhat difficult to interpret. However, in general
terms, the value of the KL divergence is related to the probability that a
test will reject a false null hypothesis: as the KL divergence increases, the
probability of rejecting the hypothesis increases. We used the Kolmogorov-
Smirnov (K-S) test to provide a statistical interpretation of the KL diver-
gence, and we obtained corresponding K-S plots (Brown, Barbieri, Ventura,
& Kass, 2002) to provide visual display of fit in particular cases.

The K-S plot begins with rescaled interspike intervals,

yi = �(ti ) − �(ti−1), (3.3)
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Figure 2: Results for various values of the time constant of the time-varying
mean input, τs . (a–d) The same as Figure 1.

where �(t) is the time-rescaling transformation obtained from the estimated
conditional intensity,

�(t) =
∫ t

0
λ̂(u, s∗(u))du. (3.4)

If the conditional intensity were correct, then according to the time-rescaling
theorem, the yi s would be independent exponential random variables with
mean 1. Using the further transformation,

zi = 1 − exp(−yi ), (3.5)

zi s would then be independent uniform random variables on the interval
(0, 1). In the K-S plot, we order the zi s from smallest to largest and, denoting
the ordered values as z(i), plot the values of the cumulative distribution
function of the uniform density, that is, bi = i− 1

2
n for i = 1, . . . , n, against the

z(i)s. If the model were correct, then the points would lie close to a 45 degree
line. For moderate to large sample sizes the 95% probability bands are well
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Figure 3: The probability of rejecting probability models as a function of the
number of ISIs. The solid line, dotted line, and dashed lines represent the m-IMI
model, the TRRP model, and the inhomogeneous Poisson process, respectively.
The mean and the standard error at each point were calculated with 10 repeti-
tions. With relatively small sample sizes, it can be easy to reject the hypothesis
of Poisson firing but very hard to distinguish m-IMI models from TRRP models.

approximated as bi ± 1.36/n1/2 (Johnson & Kotz, 1970). The K-S test rejects
the null-hypothetical model if any of the plotted points lie outside these
bands.

Using this procedure, we first generated spike trains from the LIF model
with parameter values (xth, x0) = (0.5, 1) and (a , τs) = (1.4, 5/π) (the same
as in Figure 1) and fitted the empirical models to the data. The integral
in the time-rescaling transformation (see equation 3.4) was computed with
discrete time step, � = 10−3. We also confirmed that the results did not
change with the temporal precision � = 10−4. In order to calculate the rate
at which the empirical models are rejected by the K-S test, we generated
100 sets of repeated spike train trials, with varying numbers of trials—and
thus varying total numbers of spikes (ISIs).

Figure 3 displays the rate of rejecting the models as a function of the
number of spikes. The probability of rejecting the inhomogeneous Poisson
process rises very fast, while it takes much larger data sets to reject the m-IMI
model and the TRRP. Figures 4a and 4b depict examples of K-S plots. With
only 200 ISIs (see Figure 4a), there is clear lack of fit of the Poisson model.
With 7000 ISIs (see Figure 4b), lack of fit of the TRRP becomes apparent,
though the m-IMI model continues to fit the mean-modulated LIF data.
From Figure 3, in this example, roughly 104 ISIs are necessary to reject the
TRRP with probability 0.8.
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Figure 4: (a) The Kolmogorov-Smirnov plot using 200 ISIs showing the Poisson
model does not fit but the two other models do. (b) Same as a using 7000 ISIs
showing that the m-IMI model fits, but the two other models do not.

3.3 Time-Varying Input Variance. Next we considered the input whose
variance varies across time,

I (t) = σ (t)ξ (t), (3.6)

where

σ 2(t) = 1 + a sin
t
τs

. (3.7)
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Figure 5: Results for the case that the input variance is varying in time. (a–d)
The same as Figure 1. Only the raw trace of the firing rate for a = 0.9 is shown
in b. In this case, the KL divergence of the TRRP model is the smallest among
the three models, and the interval distribution for the TRRP model shows less
variation than for the m-IMI model.

This form could be interpreted as a signal in the variance of the in-
put, of which Silberberg, Bethge, Markram, Pawelzik, and Tsodyks (2004)
considered the possibility in the cortex. We set the parameter values
of the LIF neuron to (xth, x0) = (0,−4) and τs = 10/π . We simulated
the LIF model over the time interval 107� to generate a spike se-
quence, fit the three probability models to data, and calculate the KL
divergence.

The result of the KL divergence is displayed in Figure 5a. In contrast
to the case of time-varying mean input, the TRRP model best fits the LIF
neuron for this case. The value of the KL divergence of the TRRP model
remains small even when the firing rate varies largely (see Figure 5b).

Figures 5c and 5d depict the rescaled interval distributions of the m-IMI
model and the TRRP model, respectively. The interval distributions of the
TRRP model are almost identical even when the amplitude of the variance
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Figure 6: Results for the various values of the time constant of the time-varying
variance of the input, τs . (a–d) The same as Figure 5. Only the raw trace of the
firing rate for τs = 4/π is shown in b.

modulation is changed, whereas interval distributions of the m-IMI model
show variation.

Figure 6 displays the results for various values of τs and fixed value of a .
The parameter values of the LIF model in this figure are (xth, x0) = (0,−4)
and a = 0.8. It is confirmed from this figure that the results are qualitatively
the same as Figure 5. That is, the time-rescaled renewal process shows the
best agreement with the LIF neuron, and the best fitted interval distribution
of the TRRP model is invariant for different values of τs .

3.4 Another Example. So far we have examined the ability of the statis-
tical models to accommodate data from the LIF model driven by sinusoidal
stimuli. We performed another simulation to confirm that the results are
robust against different stimuli. In this example, we took f (t) to be a stimu-
lus with the form represented in Figure 7a. Two cases were considered: the
mean of the input to the LIF neuron varies across time, I (t) = f (t) + ξ (t), and
the variance of the input varies across time, I (t) = f (t)ξ (t). The parameter
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Figure 7: (a) The shape of the stimulus, f (t). (b) Kolmogorov-Smirnov plot
using 6000 ISIs showing that the m-IMI model fits, but the two other models do
not for the mean-modulated stimulus. (c) Same as b using 1000 ISIs showing that
the TRRP model fits but the two other models do not for the variance-modulated
stimulus.

values of the LIF neuron were taken to be (xth, x0) = (0.5, 0). We simulated
the LIF model to generate sequences of spikes; fitted the m-IMI, TRRP, and
the Poisson model to data; and conducted the KS test. Figures 7b and 7c
depict examples of K-S plots. For the mean-modulated case (see Figure
7a), the lack of fit of the TRRP model becomes apparent, though the m-
IMI model continues to fit the LIF model with 6000 ISIs. For the case of
the variance-modulated version (see Figure 7b), however, the m-IMI model
shows lack of fit with 1000 ISIs, while the TRRP model continues to fit the
LIF model.

4 Discussion

Our results examined the extent to which regularity and variability in spike
trains generated by a stimulus-driven LIF neuron could be captured by
two empirical models, the m-IMI model and the TRRP. Although the LIF
model involves a gross simplification of neuronal biophysics, it remains
widely applied in theoretical studies. This is one reason we investigated the
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performance of statistical models for stimulus-driven LIF spike trains. Our
more fundamental motivation, however, was that LIF spike trains serve
as a vehicle for quantifying the similarity and differences between the m-
IMI and TRRP specifications of history effects. For a constant stimulus,
the LIF model becomes stationary, generating a renewal process of spike
trains, and the m-IMI and TRRP models become identical. The qualitative
distinction between the m-IMI and TRRP models in the nonstationary case
may be understood by considering the way the refractory period is treated:
if, during an interval of stationarity, for which the neuron has a constant
firing rate, there is a refractory period of length δ, then when the firing rate
changes, the TRPP model will vary the refractory period away from δ while
the m-IMI model will leave it fixed. More complicated effects, described
under stationarity by a renewal process, will, similarly, according to the
two empirical models, either vary in time with the firing rate or remain
time invariant. Thus, it is perhaps not surprising that when a stimulus
was applied to the mean of the LIF model, the fitted m-IMI model was
closer than the TRRP model to the true LIF model that generated the data.
The interval distribution plots in Figures 1 and 2 are consistent with this
interpretation.

On the other hand, when the variance in the LIF model is temporally
modulated, the renewal effects, such as the refractory period, become dis-
torted in time. In this case, we observed that the TRRP model fits better
than the m-IMI model, and the interval distribution plot in Figure 5 shows
less variation for the TRRP model than for the m-IMI model.

We also computed the power of the K-S test as a function of the number
of spikes. We found that with relatively small sample sizes, it can be easy
to reject the hypothesis of Poisson firing but very hard to distinguish m-
IMI from TRRP models. This is demonstrated in the K-S plot of Figure
3b. For the very large data set used in the K-S plot of Figure 3c, the m-IMI
model provided a satisfactory fit, while the TRRP did not. Overall we would
conclude, first, that in most practical circumstances, it is unlikely to matter
much whether one uses the m-IMI model or the TRRP to produce empirical
fits to spike train data, but, second, m-IMI models would be preferred when
a mean-modulated LIF conception might be thought to represent reality
better than the variance-modulated version, and vice versa.

Statistical models used to characterize such things as a receptive field, or
the effect of an oscillatory local field potential, must account for spike history
effects. A successful approach has been to include m-IMI or TRRP terms in
a log-linear model for the conditional intensity (Brown, Frank, Tang, Quirk,
& Wilson, 1998; Okatan, Wilson, & Brown, 2005; Paninski, 2004; Truccolo,
Eden, Fellows, Donoghue, & Brown, 2005). As special cases of equation 1.1,
the m-IMI and TRRP models studied here may be considered simplified
versions of the more realistic models used in the literature. Because we
are focusing on history effects, we would anticipate that results for more
complicated settings would be similar to those reported here.
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Appendix A: Derivation of the KL Divergence

In this appendix we derive equation 2.9 from equation 2.7 under the condi-
tions that p f and pq are periodically stationary with period T and E[n] → ∞
as T ′ → ∞. Let {t1, . . . , tn} be a sequence of spikes, θi = θ (ti ) be the phase
of spike time ti , and ui = ti − ti−1 be the ith interspike interval. The proba-
bility density of a spike sequence {t1, . . . , tn} in the time interval [0, T ′) for
T ′ → ∞ whose conditional ISI density is f (u|θ ) is given by

p f (t1, . . . , tn) = Q(n)χ(θ (t1)) f (t2 − t1|θ (t1)) · · · f (tn − tn−1|θ (tn−1))

= Q(n)χ(θ1) f (u2|θ1) · · · f (un|θn−1), (A.1)

where Q(n) is a probability distribution of spike count in the interval [0,∞).
Equation A.1 satisfies the normalization condition:

Q(0) + lim
T ′→∞

∞∑
n=1

∫ T ′

0

∫ T ′

t1
. . .

∫ T ′

tn−1

p f (t1, . . . , tn)dt1dt2 · · · dtn

= Q(0) +
∞∑

n=1

Q(n)
∫ T

0
χ(θ1)dθ1

∫ ∞

0
f (u2|θ1)du2 · · ·

∫ ∞

0
f (un|θn−1)dun

=
∞∑

n=0

Q(n) = 1. (A.2)

In equation 2.7, taking the limit of T ′ → ∞,

∫ T ′

0

∫ T ′

t1
· · ·

∫ T ′

tn−1

p f (t1, . . . , tn) log
p f (t1, . . . , tn)
pq (t1, . . . , tn)

dt1dt2 · · · dtn

→ Q(n)
∫ T

0

∫ ∞

0
· · ·

∫ ∞

0
χ(θ1)

(
n∏

i=2

f (ui |θi−1)

)

×
n∑

j=2

log
f (u j |θ j−1)
q (u j |θ j−1)

dθ1du2 · · · dun

= Q(n)
n∑

i=2

∫ T

0
χ(θ1)


i−1∏

j=2

∫ ∞

0
f (u j |θ j−1)du j


 dθ1

×
(∫ ∞

0
f (ui |θi−1) log

f (ui |θi−1)
q (ui |θi−1)

dui

) (
n∏

k=i+1

∫ ∞

0
f (uk |θk−1)duk

)
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= Q(n)
n∑

i=2

∫ T

0

∫ ∞

0
χ(θi−1) f (ui |θi−1) log

f (ui |θi−1)
q (ui |θi−1)

dθi−1dui

= Q(n)(n − 1)
∫ T

0

∫ ∞

0
χ(θ ) f (u|θ ) log

f (u|θ )
q (u|θ )

dθdu, (A.3)

where we use

∫ T

0
χ(θ1)


i−1∏

j=2

∫ ∞

0
f (u j |θ j−1)du j


 dθ1 =

∫ T

0
χ(θi−1)dθi−1. (A.4)

Substituting equation A.3 into equation 2.7 leads to

D(p f ||pq ) = lim
T ′→∞

1
E[n]

∞∑
n=1

Q(n)(n−1)
∫ T

0

∫ ∞

0
χ(θ ) f (u|θ ) log

f (u|θ )
q (u|θ )

dθdu

= lim
T ′→∞

(
1 − 1 − Q(0)

E[n]

) ∫ T

0

∫ ∞

0
χ(θ ) f (u|θ ) log

f (u|θ )
q (u|θ )

dθdu

=
∫ T

0

∫ ∞

0
χ(θ ) f (u|θ ) log

f (u|θ )
q (u|θ )

dθdu. (A.5)

Appendix B: TRRP Model

In this appendix we show that the rescaling function of the TRRP model,
λ0(t), corresponds to the trial-averaged conditional intensity function, up
to an arbitrary multiplicative constant. Let g0(u) be the hazard function of a
renewal process, and, to avoid transient start-time effects, suppose that the
renewal point process starts from u = −∞. Let e∗(u) be the event time prior
to u. By the renewal theorem (theorem 4.4.1 in Daley & Vere-Jones, 2003),
the expectation of g0(u − e∗(u)) is constant,

Eg0(u − e∗(u)) = c, (B.1)

for some positive c. Now transform time from u to t with a monotonic time-
rescaling function t = �−1

0 (u), where �0(t) is given by equation 2.6. By the
change-of-variables formula, the conditional intensity as a function of time
t is given by equation 2.5. Taking expectations of both sides and applying
equation B.1, we get

E[λ(t, s∗(t))] = λ0(t)c. (B.2)
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If we replace g0(t) with h(t) = g0(t)/c, then λ0(t) becomes the expected (trial-
averaged) conditional intensity function. This is convenient because λ0(t)
may then be estimated by pooling data across trials, that is, by smoothing
the PSTH.
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