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Approximate Methods for State-Space Models
Shinsuke KOYAMA, Lucia CASTELLANOS PÉREZ-BOLDE, Cosma Rohilla SHALIZI, and Robert E. KASS

State-space models provide an important body of techniques for analyzing time series, but their use requires estimating unobserved states.
The optimal estimate of the state is its conditional expectation given the observation histories, and computing this expectation is hard when
there are nonlinearities. Existing filtering methods, including sequential Monte Carlo, tend to be either inaccurate or slow. In this paper,
we study a nonlinear filter for nonlinear/non-Gaussian state-space models, which uses Laplace’s method, an asymptotic series expansion,
to approximate the state’s conditional mean and variance, together with a Gaussian conditional distribution. This Laplace Gaussian filter
(LGF) gives fast, recursive, deterministic state estimates, with an error which is set by the stochastic characteristics of the model and is, we
show, stable over time. We illustrate the estimation ability of the LGF by applying it to the problem of neural decoding and compare it to
sequential Monte Carlo both in simulations and with real data. We find that the LGF can deliver superior results in a small fraction of the
computing time. This article has supplementary material online.
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1. INTRODUCTION

The central statistical problem in applying state-space mod-
els is that of filtering, that is, estimating the unobserved state
from the observations. For nonlinear or non-Gaussian models,
considerable effort has been devoted to devising approximate
solutions to the filtering problem, based mainly on simulation
methods such as particle filtering and its variants (Kitagawa
1987, 1996; Doucet, de Freitas, and Gordon 2001). In this ar-
ticle we study a deterministic approximation based on sequen-
tial application of Laplace’s method which we call the Laplace
Gaussian filter (LGF), and we illustrate the approach in the
context of real-time neural decoding (Serruya et al. 2002; Eden
et al. 2004; Brockwell, Schwartz, and Kass 2007). In this con-
text we find the LGF to be far more accurate, for equivalent
computational cost, than particle filtering.

Suppose we have a stochastic state process {xt}, t = 1,2, . . . ,

and a related observation process {yt}. Filtering consists of esti-
mating the state xt given a sequence of observations y1, y2, . . . ,

yt ≡ y1:t, that is, finding the posterior distribution p(xt|y1:t) of
the state, given the sequence. It is common to assume that the
state xt is a first-order homogeneous Markov process, with ini-
tial density p(x1) and transition density p(xt+1|xt), and that yt

is independent of states and observations at all other times
given xt, with observation density p(yt|xt). Bayes’s Rule gives
a recursive filtering formula,

p(xt|y1:t) = p(yt|xt)p(xt|y1:t−1)∫
p(yt|xt)p(xt|y1:t−1)dxt

, (1)

where

p(xt|y1:t−1) =
∫

p(xt|xt−1)p(xt−1|y1:t−1)dxt−1 (2)
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is the predictive distribution, which convolves the previous fil-
tered distribution with the transition density. In principle, Equa-
tions (1) and (2) give a complete, recursive solution to the fil-
tering problem for state-space models: the mean-squared opti-
mal point estimate is simply the mean of the posterior density
given by Equation (1). When the dynamics are nonlinear, non-
Gaussian, or even just high dimensional, however, computing
these estimates sequentially can be a major challenge.

One approach to Bayesian computation is to attempt to simu-
late from the posterior distribution. Applying Monte Carlo sim-
ulation to Equations (1)–(2) would let us draw from p(xt|y1:t),
if we had p(xt|y1:t−1). The insight of particle filtering is that the
latter distribution can itself be approximated by Monte Carlo
simulation (Kitagawa 1996; Doucet, de Freitas, and Gordon
2001). This turns the recursive equations for the filtering dis-
tribution into a stochastic dynamical system of interacting par-
ticles (Del Moral and Miclo 2000), each representing one draw
from that posterior. While particle filtering has proven itself to
be useful in practice (Doucet, de Freitas, and Gordon 2001;
Brockwell, Rojas, and Kass 2004; Ergün et al. 2007), like any
Monte Carlo scheme it can be computationally costly; more-
over, the number of particles (and so the amount of computa-
tion) needed for a given accuracy grows rapidly with the di-
mensionality of the state space. For real-time processing, such
as neural decoding, the computational cost of effective particle
filtering can quickly become prohibitive.

The primary difficulty with the nonlinear filtering equations
comes from their integrals. We use Laplace’s method to obtain
estimates of the mean and variance of the posterior density in
Equation (1), and then approximate that density by a Gaussian
with that mean and variance. This distribution is then recur-
sively updated in its turn when the next observation is taken.

There are several versions of Laplace’s method, all of which
replace integrals with series expansion around the maxima of
integrands. An expansion parameter, γ , measures the concen-
tration of the integrand about its peak. In the simplest version,
the posterior distribution is replaced by a Gaussian centered at
the posterior mode. Under mild regularity conditions, this gives
a first-order approximation of posterior expectations, with er-
ror of order O(γ −1). Several papers have applied some form
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of first-order Laplace approximation sequentially (Brown et al.
1998; Eden et al. 2004). In the ordinary static context, Tierney,
Kass, and Kadane (1989) analyzed the way a refined procedure,
the “fully exponential” Laplace approximation, gives a second-
order approximation for posterior expectations, having an error
of order O(γ −2). In this paper we provide theoretical results
justifying these approximations in the sequential context. Be-
cause state estimation proceeds recursively over time, it is con-
ceivable that the approximation error could accumulate, which
would make the approach ineffective. Our results show that, un-
der reasonable regularity conditions, this does not happen: the
posterior mean from the LGF approximates the true posterior
mean with error O(γ −α) uniformly across time, where α = 1
or 2 depending on the order of the LGF.

We specify the LGF in Section 2, and give our theoretical
results in Section 3. Section 4 introduces the neural decod-
ing problem and reports comparative results both in simulation
studies and with real data. We provide additional comments in
Section 5. Proofs are collected in the Appendix, and some im-
plementation details in the online supplemental material.

2. THE LAPLACE GAUSSIAN FILTER

Throughout the paper, xt|t and vt|t denote the mode and vari-
ance of the true filtered distribution at time t given a sequence of
observations y1:t, and similarly xt|t−1 and vt|t−1 are those of the
predictive distribution at time t given y1:t−1, respectively. Hats
ˆand tildes ˜on variables indicate approximations; in particular,
x̂ denotes the approximated posterior mode, and x̃ the approx-
imated posterior mean. The transpose of a matrix A is written
AT . Bold type of a small letter indicates a column vector.

2.1 Algorithm

The LGF procedure for a one-dimensional state is as follows.
(The multidimensional extension is straightforward; see below.)

1. At time t = 1, initialize the predictive distribution of the
state, p(x1).

2. Observe yt.
3. (Filtering) Obtain the approximate posterior mean x̃t|t and

variance ṽt|t by Laplace’s method (see below), and set
p̂(xt|y1:t) to be a Gaussian distribution with the same mean
and variance.

4. (Prediction) Calculate the predictive distribution,

p̂(xt+1|y1:t) =
∫

p(xt+1|xt)p̂(xt|y1:t)dxt. (3)

5. Increment t and go to step 2.

We consider first-order and second-order Laplace’s approx-
imations. In the first-order Laplace approximation the poste-
rior mean and variance are x̃t|t = x̂t|t ≡ argmaxxt

l(xt) and ṽt|t =
[−l′′(x̂t|t)]−1, where l(xt) = log p(yt|xt)p̂(xt|y1:t−1).

The second-order (fully exponential) Laplace approxima-
tion is calculated as follows (Tierney, Kass, and Kadane
1989). For a given positive function g of the state, let k(xt) =
log g(xt)p(yt|xt)p̂(xt|y1:t−1), and let x̄t|t maximize k. The pos-
terior expectation of g for the second-order approximation is
then

Ê[g(xt)|y1:t] ≈ |−k′′(x̄t|t)|−1/2 exp[k(x̄t|t)]
|−l′′(x̂t|t)|−1/2 exp[l(x̂t|t)] . (4)

When the g we care about is not necessarily positive, a sim-
ple and practical trick is to add a large constant c to g so that
g(x) + c > 0, apply Equation (4), and then subtract c. The pos-
terior mean is thus calculated as x̃t|t = Ê[xt + c] − c. [In prac-
tice it suffices that the probability of the event {g(xt) + c > 0}
is close to one under the true distribution of xt. Allowing this
to be merely very probable rather than almost sure introduces
additional approximation error, which however can be made ar-
bitrarily small simply by increasing the constant c. See Tierney,
Kass, and Kadane 1989 for details.] The posterior variance is
set to be ṽt|t = [−l′′(x̂t|t)]−1, as this suffices for second-order
accuracy (see Remark A.1 in the Appendix).

To use the LGF to estimate a state in d-dimensional space,
one simply takes the function g to be each coordinate in turn,
that is, g(xt) = xt,i + c for each i = 1,2, . . . ,d. Each g is a
function of R

d → R, and |−l′′(x̂t|t)|−1/2 and |−k′′(x̄t|t)|−1/2 in
Equation (4) are replaced by the determinants of the Hessians of
l(x̂t|t) and k(x̄t|t), respectively. Thus, estimating the state with
the second-order LGF takes d times as long as using the first-
order LGF, since posterior means of each component of xt must
be calculated separately.

In many applications the state process is taken to be a linear
Gaussian process (such as an autoregression or random walk) so
that the integral in Equation (3) is analytic. When this integral is
not done analytically, either the asymptotic expansion (A.13) or
a numerical method may be employed. To apply our theoretical
results, the numerical error in the integration must be O(γ −α),
where γ is the expansion parameter, to be discussed in Sec-
tion 3.1, and α = 1 or 2 depending on the order of the LGF.

2.2 Smoothing

The LGF can also be used for smoothing. That is, given the
observation up to time T , y1:T , smoothed state distributions,
p(xt|y1:T), t ≤ T , can be calculated from filtered and predic-
tive distributions by recursing backwards (Anderson and Moore
1979). Instead of the true filtered and predictive distributions,
however, we now have the approximated filtered and predic-
tive distributions computed by the LGF. By using these approx-
imated distributions, the approximated smoothed distributions
can be obtained as

p̂(xt|y1:T) = p̂(xt|y1:t)
∫

p̂(xt+1|y1:T)p(xt+1|xt)

p̂(xt+1|y1:t)
dxt+1. (5)

We address the accuracy of LGF smoothing in Theorem 5.

2.3 Implementation

Two aspects of the numerical implementation of the LGF call
for special comment: maximizing the likelihood and comput-
ing its second derivatives. One key point is that the Hessian in
Equation (4) may be computed by careful numerical differen-
tiation. Avoiding analytical derivatives saves substantial time
when fitting many alternative models. See the supplemental
material for a brief description of our numerical procedure for
computing the Hessian matrix, and Kass (1987) for full details.

The log-likelihood function can be maximized by an itera-
tive algorithm (e.g., Newton’s method), in which x̂t|t−1 and x̂t|t
would be chosen as a reasonable starting point for maximiz-
ing l(xt) and k(xt), respectively. The convergence criterion also
deserves some care. Writing x(i) for the value attained on the
ith step of the iteration, the iteration should be stopped when
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‖x(i+1) − x(i)‖ < cγ −α , where c is a constant and γ is the ex-
pansion parameter, to be discussed in Section 3.1, and α is the
order of the Laplace approximation. The value of c should be
smaller than that of γ (c = 1 is a reasonable choice in practice).

3. THEORETICAL RESULTS

For simplicity, we state the results for the one-dimensional
case. The extension to the multidimensional case is notation-
ally somewhat cumbersome but conceptually straightforward.
Let p and p̂ denote the true density of a random variable and its
approximation, and let h(xt) be

h(xt) = − 1

γ
log p(yt|xt)p(xt|y1:t−1), (6)

where γ is the expansion parameter, whose meaning will be
explained later in this section.

3.1 Regularity Conditions

The following properties are the regularity conditions that are
sufficient for the validity of Laplace’s method (Erdélyi 1956;
Kass, Tierney, and Kadane 1990; Wojdylo 2006).

(C.1) h(xt) is a constant-order function of γ as γ → ∞, and
is five-times differentiable with respect to xt.

(C.2) h(xt) has an unique interior minimum, and its second
derivative is positive (the Hessian matrix is positive
definite for multidimensional cases).

(C.3) p(xt+1|xt) is four-times differentiable with respect
to xt.

(C.4) The integral∫
p(xt+1|xt) exp [−γ h(xt)]dxt

exists and is finite.

We also assume the following condition which prohibits ill-
behaved “explosive” trajectories in state space:

(C.5) Derivatives of h(xt) up to fifth order and those of
p(xt+1|xt) with respect to xt up to third order are
bounded uniformly across time.

Strictly speaking, h(xt) is a random variable, taking values in
the space of integrable nonnegative functions of R. This random
variable is measurable with respect to σ(y1:t). Therefore, the
stated regularity conditions only need to hold with probability 1
under the distribution of y1:t (Kass, Tierney, and Kadane 1990).

In the following section we will state the theorems that en-
sure that, under conditions (C.1)–(C.5), the LGF does not accu-
mulate error over time, but first we explain the meaning of the
expansion parameter.

Meaning of γ . As seen in Equation (6) and the regular-
ity condition (C.1), for a given state-space model, γ is con-
structed by combing the model parameters so that the log pos-
terior density is scaled by γ as γ → ∞. In general, γ would
be interpreted in terms of sample size, the concentration of the
observation density, and the inverse of the noise in the state
dynamics; we will describe how γ is chosen for a neural de-
coding model in Section 4. From the construction of γ , the sec-
ond derivative of the log posterior density, which determines
the concentration of the posterior density, is also scaled by γ .
Therefore, the larger γ is, the more precisely variables can be

estimated, and the more accurate Laplace’s method becomes.
When the concentration of the posterior density is not uniform
across state dimensions in a multidimensional case, a multidi-
mensional γ could be taken. Without a loss of approximation
accuracy, however, a simple implementation for this case is tak-
ing the largest γ as a single expansion parameter.

3.2 Main Theoretical Results

Theorem 1 (Accuracy of predictive distributions). Under the
regularity conditions (C.1)–(C.4), the α-order LGF approxi-
mates the predictive distribution as

p̂(xt|y1:t−1) = p(xt|y1:t−1) + O(γ −β)

for t ∈ N, where β = 1 for α = 1 and β = 2 for α ≥ 2. Fur-
thermore, if condition (C.5) holds, the error term is bounded
uniformly across time.

The error bound can also be established for the posterior (fil-
tered) expectations in the following theorem.

Theorem 2 (Accuracy of posterior expectations). Under the
regularity conditions (C.1)–(C.4), the α-order LGF approxi-
mates the filtered conditional expectation of a four-times dif-
ferentiable function g(x),

Ê[g(xt)|y1:t] = E[g(xt)|y1:t] + O(γ −β)

for t ∈ N, with β as in Theorem 1. Here E[·|y1:t] and Ê[·|y1:t]
denote the expectation with respect to p(xt|y1:t) and p̂(xt|y1:t),
respectively. Furthermore, if condition (C.5) holds, the error
term is bounded uniformly across time.

Note that the order of the error is γ −2 even for α ≥ 2 both
in Theorem 1 and Theorem 2. That is, even if higher than the
second-order Laplace approximation in Step 3 of the LGF is
employed, the resulting approximation error does not go be-
yond the second-order accuracy with respect to γ −1. This fact
leads to the following corollary.

Corollary 3. The second-order approximation is the best
achievable for the LGF scheme.

The following theorem refers to stability of the LGF. It states
that minor differences in the initially guessed distribution of the
state tend to be reduced, rather than amplified, by conditioning
on further observations, even under the Laplace’s approxima-
tion.

Theorem 4 (Stability of the algorithm). Suppose that two ap-
proximated predictive distributions at time t satisfy

p̂1(xt|y1:t−1) − p̂2(xt|y1:t−1) = O(γ −ν),

where ν > 0. Then, under the regularity conditions (C.1)–(C.4),
applying the LGF u(> 0) times leads to the difference of two
approximated predictive distributions at time t + u as

p̂1(xt+u|y1:t+u−1) − p̂2(xt+u|y1:t+u−1) = O(γ −ν−u).

Theorem 5. Under the regularity conditions (C.1)–(C.4), the
expectation of a four-times differentiable function g(x) with re-
spect to the approximated smoothed distribution Equation (5) is
given by

Ê[g(xt)|y1:T ] = E[g(xt)|y1:T ] + O(γ −β)

for t = 1,2, . . . ,T , with β as in Theorem 1. Furthermore, if
condition (C.5) is satisfied, the error term is bounded uniformly
across time.
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3.3 Computational Cost

Assuming that the maximization of l(xt) and k(xt) is done by
Newton’s method, the time complexity of the LGF goes as fol-
lows. Let d be the number of dimensions of the state, T the num-
ber of time steps, and N be the sample size. The bottleneck of
the computational cost in the first-order LGF comes from max-
imization of l(xt) at each time t. In each iteration of Newton’s
method, evaluation of the Hessian matrix of l(xt) typically costs
O(Nd2), as d2 is the time complexity for matrix manipulation.
Over T time steps, the time complexity of the first-order LGF
is O(TNd2). In the second-order LGF, the time complexity of
calculating the posterior expectation of each xt,i is still O(Nd2),
but calculating it for i = 1, . . . ,d results in O(Nd3). Repeating
over T time steps, the complexity of the second-order LGF is
O(TNd3).

For comparison, take the time complexity of a particle filter
(PF) with M particles. It is not hard to check that the computa-
tional cost across time step T of the particle filter is O(TMNd).
For the computational cost of the particle filter to be comparable
with an LGF, the number of particles should be M = O(d) for
the first-order LGF and M = O(d2) for the second-order LGF.

4. APPLICATION TO NEURAL DECODING

The problem of neural decoding consists in using an or-
ganism’s neural activity to draw inferences about the organ-
ism’s environment and its interaction therewith—sensory stim-
uli, bodily states, motor behaviors, etc. (Rieke et al. 1997). Sci-
entifically, neural decoding is vital to studying neural informa-
tion processing, as reflected by the many proposed decoding
techniques (Dayan and Abbott 2001). Its engineering impor-
tance comes from efforts to design brain-machine interface de-
vices, especially neural motor prostheses (Schwartz 2004) such
as computer cursors, robotic arms, etc. The brain-machine inter-
face devices must determine, from real-time neural recordings,
what motion the user desires the prosthesis to have. Such con-
siderations have led to many proposals, emanating from Brown
et al. (1998), for neural decoding based on state-space models
(Brockwell, Schwartz, and Kass 2007).

In the rest of this section, we introduce a standard model
setup for neural decoding tasks, and identify its Laplace expan-
sion γ . We then simulate the model and apply the LGF, con-
firming the applicability of our theoretical results, and compar-
ing its performance to particle filtering. Finally, we apply the
model and the LGF to experimental data.

4.1 Model Setup

We consider the problem of decoding a “state process” from
the firing of an ensemble of neurons. Here we suppose that neu-
rons respond to a xt ∈ R

d , where d is the number of dimensions.
xt may be interpreted as two or three-dimensional hand kine-
matics for motor cortical decoding (Georgopoulos, Schwartz,
and Kettner 1986; Ketter, Schwartz, and Georgopoulos 1988;
Paninski et al. 2004), or hand posture (about 20 degrees of free-
dom) for dexterous grasping control (Artemiadis et al. 2007).
We consider N such neurons, and assume that the logarithm of
the firing rate of neuron i is (Truccolo et al. 2005)

logλi(xt) = αi + β i · xt. (7)

We let yi,t be the spike count of neuron i at time-step t. We as-
sume that yi,t has a Poisson distribution with intensity λi(xt)�,
where � is the duration of the short time intervals over which
spikes are counted at each time step. We also assume that fir-
ing of neurons is conditionally independent with each other
given xt. Thus the probability distribution of yt, the vector of
all the yi,t, is the product of the firing probabilities of each neu-
ron. We assume that the state model is given by

xt = Fxt−1 + εt, (8)

where F ∈ R
d×d and εt is a d-dimensional Gaussian random

variable with mean zero and covariance matrix W ∈ R
d×d .

The expansion parameter γ for this model is identified as
follows. The second derivative of l(xt) = log p(yt|xt)p̂(xt|y1:t−1)

is

l′′(xt) = −�

N∑
i=1

β iexp(αi + β i · xt)β
T
i − V−1

t|t−1,

where Vt|t−1 is the covariance matrix of the predictive distribu-
tion at time t. Then, from the Cauchy–Schwarz inequality,

‖l′′(xt)‖ ≤ �

N∑
i=1

exp(αi + β i · xt)‖β i‖2 + ∥∥V−1
t|t−1

∥∥.

Since ‖V−1
t|t−1‖ is scaled by ‖W−1‖, we can identify the expan-

sion parameter

γ = �

N∑
i=1

eαi‖β i‖2 + ‖W−1‖. (9)

We see that γ combines the number and the mean firing rate
of the neurons, the sharpness of neuronal tuning curves and the
noise in the state dynamics.

Given our assumptions, the observation model p(yt|xt) and
the state transition density p(xt+1|xt) are strictly log-concave
and have an unique interior maximum in xt, and their deriv-
atives up to fifth order are uniformly bounded if the state is
bounded. Furthermore, h(xt) is a constant-order function of γ

as γ → ∞, which can be seen from the construction of γ . Thus,
the regularity conditions (C.1)–(C.5) are satisfied if the initial
distribution satisfies them.

In what follows, we took the initial value for filtering to be
the true state at t = 0. Note that when there is no information
about the initial distribution, we could use a “diffuse” prior den-
sity whose covariance is taken to be large (Durbin and Koop-
man 2001). Either type of initial condition would satisfy the
regularity conditions. We can thus construct LGFs according to
Section 2.

4.2 Simulation Study

We performed numerical simulations to study first and
second-order LGF (labeled by LGF-1 and LGF-2, respectively)
approximations under conditions relevant to the neural decod-
ing problems we are working on. We also compared LGF to
particle filtering. We judged performance by accuracy in com-
puting the posterior mean (which was determined by particle
filtering with a very large number of particles). However, the
posterior mean contains statistical inaccuracy (due to limited
data). We also evaluated the accuracy with which the several
alternative methods approximate the underlying true state.
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Simulation Setup. In each simulation run, we generated a
state trajectory from a d-dimensional AR process, Equation (8),
with F = 0.94I and W = 0.019I, I being the identity matrix,
over T = 30 time steps of duration � = 0.03 seconds. We ex-
amined different number of state dimensions, d = 6,10,20,30.
Regardless of d, we observed neural activity due to the state
through N = 100 neurons, with αi = 2.5 + N (0,1) and β i uni-
formly distributed on the unit sphere in R

d . Finally, the spike
counts were drawn from Poisson distributions with the firing
rates λi(xt) given by Equation (7) above.

Methods. To compare LGF state estimates to the posterior
mean we first needed a high-accuracy evaluation of the pos-
terior mean itself. We obtained this by averaging results from
ten independent realizations of particle filtering with 106 par-
ticles; the resulting approximation error in the mean integrated
squared error (MISE) is O(10−7), and so negligible for our pur-
poses. We also applied the PF for comparison. The number of
particles in the PF was chosen by consideration of computa-
tional cost; as discussed in Section 3.3, a LGF-1 is comparable
in time complexity to a PF with O(d) particles, and a LGF-2
is comparable to a PF with O(d2) particles. For the case of
d ≤ 30, 100 particles (PF-100) was about the least number at
which the PF was effective and was not much more resource-
intensive than the LGF-1. In order that the computational time
of a PF matchs that of the LGF-2, we chose 100, 300, 500, and
1000 particles for d = 6, 10, 20, and 30, respectively. (We label
it PF-scaled.) See also Table 2.

We implemented all the algorithms in Matlab, and we ran
them on Windows computer with Pentium 4 CPU, 3.80 GHz
and 3.50 GB of RAM.

Results. The first four rows in Table 1 show the four filters’
MISE in approximating the actual posterior mean. LGF-2 gives
the best approximation, followed by LGF-1; both are better than
PF-100 and PF-scaled. Note that LGF-1 is much faster than PF-
100, and the computational time of LGF-2 is approximately the
same as that of PF-scaled (Table 2). Figure 1 displays the MISE
of particle filters in approximating the actual posterior mean as
a function of the number of particles, for d = 6. PF needs on
the order of 104 particles to be as accurate as LGF-1, and about
106 particles to match LGF-2. Furthermore, since the computa-
tional time of the PF is proportional to the number of particles,
the time needed to decode by PF with 104 and 106 particles are
expected to be about 20 s and 2000 s, respectively (from Ta-
ble 2). Thus, if we allow the LGFs and the PF to have the same

Table 1. MISEs for different filters

Number of dimensions, d

Method 6 10 20 30

LGF-2 0.0000008 0.000002 0.00001 0.00006
LGF-1 0.00003 0.00004 0.0001 0.0002
PF-100 0.006 0.01 0.03 0.04
PF-scaled 0.006 0.007 0.01 0.02

Posterior 0.03 0.04 0.06 0.07

NOTE: The first four rows give the discrepancy between four approximate filters and the
optimal filter (approximation error). The fifth row gives the MISE between the true state
and the estimate of the optimal filter, that is, the actual posterior mean (statistical error).
All values are means from 10 independent replicates. The simulation standard errors are
all smaller than the leading digits in the table.

Table 2. Time (seconds) needed to decode

Number of dimensions, d

Method 6 10 20 30

LGF-2 0.24 0.43 1.0 2.0
LGF-1 0.018 0.024 0.032 0.056
PF-100 0.18 0.18 0.18 0.19
PF-scaled 0.18 0.50 0.81 1.8

NOTE: All values are means from 10 independent replicates. The simulation standard
errors are all smaller than the leading digits in the table.

accuracy, LGF-1 is about 1000 times faster than the PF, and
LGF-2 is expected to be about 10,000 times faster than the PF.

The value of γ for this state-space model is γ ≈ 100 [Equa-
tion (9)]. From Theorem 2, the MISEs of LGF-1 and LGF-2 are,
respectively, evaluated as c2

1γ
−2 and c2

2γ
−4, where c1 and c2

are constants depending on the model parameters. If c1 and c2
were in the range 1 to 10, then the MISEs of LGF-1 and LGF-2
should be 10−4 to 10−6, roughly matching the simulation re-
sults.

The fifth row of Table 1 shows the MISE between the true
state and the actual posterior mean. The error in using the op-
timal filter, that is, the actual posterior mean, to estimate the
true state is statistical error, inherent in the system’s stochas-
tic characteristics, and not due to the approximations. The sta-
tistical error is an order of magnitude larger than the approxi-
mation error in the LGFs, so that increasing the accuracy with
which the posterior expectation is approximated does little to
improve the estimation of the state. The approximation error in
the PFs, however, becomes on the same order as the statisti-
cal error when the state dimension is larger (d = 20 or 30). In
such cases the inaccuracy of the PF will produce comparatively
inaccurate estimates of the true state.

Figure 1. Scaling of the MISE for particle filters. The solid line
represents the MISE (vertical axis) of the particle filter as a function
of the number of particles (horizontal axis). Error here is with respect
to the actual posterior expectation (optimal filter). The dashed and dot-
ted horizontal lines represent the MISEs for the first-order and sec-
ond-order LGF, respectively.
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Figure 2. The solid lines represent the estimated trajectories with
five different initial values by LGF-1. The dashed line represents the
true state trajectory.

Finally, we examined how the choice of initial prior density
affects the filtering result. Figure 2 shows five estimated trajec-
tories started with different initial values. These five trajectories
converged to the same state as the time evolves, as expected
from Theorem 4.

4.3 Real Data Analysis

Experiment Setting and Data Collection. We used LGF to
estimate the hand motion from neural activity. A multielectrode
array was implanted in the motor cortex of a monkey to record
neural activity following procedures similar to those described
previously in Velliste et al. (2008). In all, 78 distinct neurons
were recorded simultaneously. Raw voltage waveforms were
thresholded and spikes were sorted to isolate the activity of in-
dividual cells. A monkey in this experiment was presented with
a virtual 3D space, containing a cursor which was controlled
by the subject’s hand position, and eight possible targets which

were located on the corners of a cube. The task was to move the
cursor to a highlighted target from the middle of the cube; the
monkey received a reward upon successful completion. In our
data each trial consisted of time series of spike counts from the
recorded neurons, along with the recorded hand positions, and
hand velocities found by taking differences in hand position at
successive � = 0.03 s intervals. Each trial contained 23 time
steps on average. Our dataset consisted of 104 such trials.

Methods. For decoding, we used the same state-space
model as in our simulation study. Many neurons in the mo-
tor cortex fire preferentially in response to the velocity vt ∈ R

3

and the position zt ∈ R
3 of the hand (Wang et al. 2007). We

thus took the state xt to be a 6-dimensional concatenated vector
xt = (zt,vt). The state model was taken to be

xt =
(

I �I
O I

)
xt−1 +

(
0
εt

)
, (10)

where εt is a 3D Gaussian random variable with mean zero and
covariance matrix σ 2I, I being the identity matrix. Sixteen tri-
als consisting of two presentations of each of the eight targets,
were reserved for estimating the parameters of the model. The
parameters in the firing rate, αi and β i, were estimated by Pois-
son regression of spike counts on cursor position and velocity,
and the value of σ 2 was determined via maximum likelihood.
The time lag between the hand movement and each neural ac-
tivity was also estimated from the same training data. This was
done by fitting a model over different values of time lag ranging
from 0 to 3� s. The estimated optimal time lag was the value
at which the model had the highest R2. Having estimated all
the parameters, cursor motions were reconstructed from spike
trains for the other 88 trials, and it is on these trials we focused.
For comparison, we also reconstructed the cursor motion with
a PF-100 and a widely used population vector algorithm (PVA)
(Dayan and Abbott 2001, pp. 97–101) (see also the supplemen-
tal material).

Results. Figure 3 compares MISEs for different algorithms
in estimating the true cursor position. Figure 3(a) compares the

Figure 3. Algorithm comparisons. The horizontal and vertical axes represent the MISE of different algorithms in estimating the true cursor
position. Each point compares two different algorithms for a trial. Overall, 4 algorithms (LGF-1, LGF-2, PF-100, and PVA) were compared for
88 trials. (a) LGF-2 versus LGF-1, (b) LGF-1 versus PF-100, and (c) PF-100 versus PVA.



176 Journal of the American Statistical Association, March 2010

MISE of LGF-1 with that of LGF-2. Just like in the simulation
study, there is no substantial difference between them since the
statistical error is larger than the LGFs’ approximation errors.
Figure 3(b) compares LGF-1 to PF-100: the former estimates
the true cursor position better than the latter in most trials. Also
(Table 2), LGF-1 is much faster than PF-100. Figure 3(c) shows
that the numerical error in the PF-100 is of the same order as
the error resulting from using PVA. (Plots of the true and re-
constructed cursor trajectories are shown in the supplemental
material.)

5. DISCUSSION

In this paper we have shown that, under suitable regularity
conditions, the error of the LGF does not accumulate across
time. In the context of a neural decoding example we found
the LGF to be much more accurate than the particle filter with
the same computational cost: in our simulation study the first-
order and second-order LGFs had MISE of about 1/200 to
1/7500 the size of the particle filter. We also found that for 6-
dimensional case, about 10,000 particles were required in order
for the particle filtering to become competitive with the first-
order LGF; and the second-order LGF remained as accurate as
the particle filter with 1,000,000 particles. In many situations
(such as some neural decoding applications), implementation
needs to be easy so that repeated refinements in modeling as-
sumptions may be carried out quickly. With this in mind, it
might be argued that the simplicity of the particle filter gives
it some advantages. We have, however, noted how numerical
methods may be used to supply the necessary second-derivative
matrices (see the supplementary material, and Kass 1987), and
these, together with maximization algorithms, make it as easy
to modify the LGF for new variations on models as it is to mod-
ify the particle filter. Nor does the use of the LGF interfere with
diagnostic tests and model-adequacy checks, such as the time-
rescaling theorem for point processes (Brown et al. 2002). The
obvious conclusion is that the LGF is likely to be preferable to
the particle filter in applications where the posterior in Equa-
tion (1) becomes concentrated.

We should note that the validity of the LGF is guaranteed
only when the posterior distribution is unimodal and has a log-
concave property. On the other hand, the particle filter is a
distribution-free method and can be used in a multimodal case.

It is perhaps worth emphasizing the distinction between the
LGF and other alternatives to the Kalman filter. The sim-
plest nonlinear filter, the extended Kalman filter (EKF) (Ahmed
1998), linearizes the state dynamics and the observation func-
tion around the current state estimate x̂, assuming Gaussian dis-
tributions for both. The error thus depends on the strength of
the quadratic nonlinearities and the accuracy of preceding es-
timates, and so error can accumulate dramatically. The LGF
makes no linear approximations—every filtering step is a (gen-
erally simple) nonlinear optimization—nor does it need to ap-
proximate either the state dynamics or the observation noise as
Gaussians.

In our simulation studies, the second-order LGF was always
more (in some cases much more) than 20 times as accurate
as the first-order LGF in approximating the posterior, but this
translated into only small gains in decoding accuracy. The rea-
son is simply that the inherent statistical error of the posterior

itself was much larger than the numerical error of the first-order
LGF in approximating the posterior. We would expect this to be
the case quite generally. Thus, our work may be seen as support-
ing the use of the first-order LGF, as applied to neural decoding
in Brown et al. (1998).

Finally, an interesting idea is to use a sequential approxi-
mation to the posterior based on some well-behaved and low-
dimensional parametric family, and to apply sequential simu-
lation based on that family. The Gaussian could again be used
(e.g., Brigo, Hanzon, and LeGland 1995; Azimi-Sadjadi and
Krishnaprasad 2005; Ergün et al. 2007), and our results would
provide new theoretical justification for such procedures. How-
ever, it is well known that Gaussian distributions, with their
very thin tails, are poorly suited for importance sampling, so
that heavier-tailed alternatives often work better (e.g., Evans
and Swartz 1995). Sequential simulation schemes with approx-
imating Gaussians replaced by multivariate t, or other heavy-
tailed distributions, may be worth exploring.

APPENDIX: PROOFS OF THEOREMS

We begin by proving a lemma and a proposition needed for the

main theorems. To simplify notation we introduce the symbols h(l)
t ≡

∂ lh(xt)/∂xl
t|xt=xt|t and q(l)(xt+1) ≡ ∂ lp(xt+1|xt)/∂xl

t|xt=xt|t .

Lemma A.1. Let ĥ(xt) be

ĥ(xt) = − 1

γ
log p(yt|xt)p̂(xt|y1:t−1), (A.1)

ĥ(l)
t ≡ ∂ l

xt
ĥ(x̂t|t), and x̂t|t the minimizer of ĥ(xt). Then, under the reg-

ularity conditions, the order-α Laplace approximation of the posterior
mean and variance have series expansions as

x̃t|t =
α−1∑
j=0

Aj
({

ĥ(l)
t

})
γ −j (A.2)

and

ṽt|t =
α−1∑
j=1

Bj
({

ĥ(l)
t

})
γ −j, (A.3)

where the coefficients, Aj and Bj, are functions of {ĥ(l)
t }.

Proof. The expectation of a function g(xt) with respect to the ap-
proximated posterior distribution is

Ê[g(xt)|y1:t] =
∫

g(xt) exp [−γ ĥ(xt)]dxt∫
exp [−γ ĥ(xt)]dxt

, (A.4)

where g(xt) = xt for the mean and g(xt) = x2
t for the second moment.

We get the coefficients Aj and Bj by applying Laplace’s method, an (in-
finite) asymptotic expansion of a Laplace-type integral (theorem 1.1
in Wojdylo 2006; see the supplemental material for a brief sum-
mary), to both the numerator and the denominator of Equation (A.4);

those formulae also show that the coefficients are functions of {ĥ(l)
t },

l = 1,2, . . . . For example, the coefficients of up to first-order terms

are obtained as A0({ĥ(l)
t }) = x̂t|t , A1({ĥ(l)

t }) = −ĥ′′′
t /(2(ĥ′′

t )
2
), and

B1({ĥ(l)
t }) = (ĥ′′

t )−1.

Remark A.1. Lemma A.1 guarantees that the choice of x̃t|t = x̂t|t
and ṽt|t = (γ ĥ′′

t )−1 provides the first-order approximation of pos-
terior mean and variance. As proved in Tierney, Kass, and Kadane
(1989), Equation (4) achieves the second-order expansion of the pos-

terior mean x̃t|t = x̂t|t + A1({ĥ(l)
t })γ −1. Thus Equation (4) and ṽt|t =

(γ ĥ′′
t )−1 provide the second-order approximation.
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Proposition A.2. Suppose that the regularity conditions (C.1)–(C.4)
hold, and that the approximated predictive distribution of time t satis-
fies

p̂(xt|y1:t−1) = p(xt|y1:t−1) +
N∑

j=ν

Et,j(xt)γ
−j + O(γ −N−1), (A.5)

where Et,j(xt) is a constant-order function of γ and 0 < ν < N
for ν,N ∈ N. Replacing the filtered distribution at time t with a
Gaussian with α-order Laplace approximated mean and variance leads
to the approximate predictive distribution at time t + 1,

p̂(xt+1|y1:t) = p(xt+1|y1:t) +
N∑

j=β

E ∗
t+1,j(xt+1)γ −j

+
N∑

j=ν

Et+1,j+1(xt+1)γ −j−1 + O(γ −N−1), (A.6)

where β = 1 for α = 1 and β = 2 for α ≥ 2. Here E ∗
t+1,j(xt+1) does

not depend on {Et,k(xt)}k=ν,ν+1,... and

Et+1,j+1(xt+1) = q′(xt+1)

h′′
t

∂

∂xt

( Et,j(xt)

p(xt|y1:t−1)

)∣∣∣∣
xt=xt|t

+ O(γ −1)

(A.7)

for j = ν, ν + 1, . . . ,N. Furthermore, if the condition (C.5) is satisfied,
the coefficients of the expansion terms in Equation (A.6) are bounded
uniformly across time.

Proof. The proof works by comparing the asymptotic expansions of
the true and approximated predictive distributions. To do this, we must
find those asymptotic expansions; once this is done the remaining steps
are fairly straightforward.

(i) We begin by evaluating the true predictive distribution at time
t + 1. From Equations (1) and (2), this is

p(xt+1|y1:t) =
∫

p(xt+1|xt) exp [−γ h(xt)]dxt∫
exp [−γ h(xt)]dxt

.

Applying Laplace’s method (theorem 1.1 in Wojdylo 2006; see also
the supplemental material) to both the numerator and the denominator
of above equation leads to

p(xt+1|y1:t) =
∑N

s=0 

(
s + 1

2

)( 2
h′′

t

)sc∗
2sγ

−s + O(γ −N−1)∑N
s=0 


(
s + 1

2

)( 2
h′′

t

)sc̄∗
2sγ

−s + O(γ −N−1)
, (A.8)

where

c∗
s =

s∑
i=0

qs−i(xt+1)

(s − i)!
i∑

j=0

(−(s + 1)/2
j

)
Ci,j(A1, . . .) (A.9)

and

c̄∗
s =

s∑
j=0

(−(s + 1)/2
j

)
Cs,j(A1, . . .). (A.10)

Here Cs,j(A1, . . .) is a partial ordinary Bell polynomial, which is the

coefficient of xi in the formal expansion of (A1x + A2x2 + · · ·)j, and

Ai ≡ Ai({h(l)
t }) is the coefficient which appeared in Lemma A.1. Ex-

panding with respect to γ −1, we obtain the asymptotic expansion of
p(xt+1|y1:t) as

p(xt+1|y1:t) = q(xt+1) +
N∑

j=1

Cj(xt+1)γ −j + O(γ −N−1), (A.11)

where q(xt+1) was earlier defined as p(xt+1|xt), and where Cj(xt+1)

depends on q(k)(xt+1) and h(l)
t (k, l = 1,2, . . .). Cj(xt+1) is directly

calculated by Equations (A.8)–(A.10).
(ii) We next consider the approximated predictive distribution of

time t + 1,

p̂(xt+1|y1:t) =
∫

p(xt+1|xt)p̂(xt|y1:t)dxt, (A.12)

where p̂(xt|y1:t) is the Gaussian distribution whose mean and variance
are given by Equations (A.2) and (A.3), respectively. Equation (A.12)
can be rewritten as

p̂(xt+1|y1:t) = 1√
2π ṽt|t

∫
p(xt+1|xt) exp

[
− (xt − x̃t|t)2

2ṽt|t

]
dxt.

Applying Laplace’s method again,

p̂(xt+1|y1:t) = q̃(xt+1) +
N∑

j=1

q̃(2j)(xt+1)

2j
(j + 1)
ṽj

t|t + O
(
ṽ−N−1

t|t
)
, (A.13)

where 
(j + 1) is the Gamma function and

q̃(l)
t ≡ ∂ lp(xt+1|xt)

∂xt

∣∣∣∣
xt=x̃t|t

. (A.14)

Now we compare Equations (A.13) and (A.11), via a series of sub-

stitutions. We want to rewrite Equation (A.13) with q(k)(xt+1) and h(l)
t .

Substituting Equation (A.5) into Equation (A.1),

ĥ(xt) = − 1

γ
log p(yt|xt)

×
[

p(xt|y1:t−1) +
N∑

j=ν

Et,j(xt)γ
−j + O(γ −N−1)

]

= h(xt) −
N∑

j=ν

Ft,j(xt)γ
−j−1 + O(γ −N−2), (A.15)

where

Ft,j(xt) = Et,j(xt)

p(xt|y1:t−1)
+ O(γ −ν)

is a collection of terms which depend on Et,j(xt).
Suppose x̂t|t = xt|t + ε and ε � 1. Taking the derivative both sides

of Equation (A.15) and evaluating it at xt|t , we obtain

ε =
N∑

j=ν

F ′
t,j

h′′
t

γ −j−1 + O(γ −N−2).

Then we get

x̂t|t = xt|t +
N∑

j=ν

F ′
t,j

h′′
t

γ −j−1 + O(γ −N−2). (A.16)

Inserting Equation (A.16) into Equation (A.15) gives

ĥ(l)
t = h(l)

t −
N∑

j=ν

[
F (l)

t,j −
F ′

t,jh
(l+1)
t

h′′
t

]
γ −j−1 + O(γ −N−2). (A.17)

Substituting Equation (A.16) and Equation (A.17) into Equa-
tion (A.2) leads to

x̃t|t = xt|t +
α−1∑
j=1

Ajγ
−j +

N∑
j=ν

F ′
t,j

h′′
t

γ −j−1 + O(γ −N−2). (A.18)
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Inserting Equation (A.18) into Equation (A.14) and expanding with
respect to γ −1,

q̃(l)(xt+1) = q(l)(xt+1) +
α−1∑
j=1

Ajq
(l+1)(xt+1)γ −j

+
α∑

j=2

[ j∑
k=2

1

k!q(l+k)(xt+1)Cj,k(A1, . . .)

]
γ −j

+
N∑

j=ν

F ′
t,j

h′′
t

q(l+1)(xt+1)γ −j−1 + O(γ −α−1). (A.19)

Substituting Equations (A.3), (A.17), and (A.19) into Equa-
tion (A.13), we obtain the final asymptotic expansion of p̂(xt+1|y1:t),

p̂(xt+1|y1:t) = q(xt+1) +
α∑

j=1

Rj(xt+1)γ −j

+
N−1∑
j=ν

F ′
t,j

h′′
t

q′(xt+1)γ −j−1 + O(γ −α−1), (A.20)

in which

Rj(xt+1) =
{

Gj(xt+1) + Ajq′(xt+1), 1 ≤ j ≤ α − 1

Gj(xt+1), j = α,

and

Gj(xt+1) =
j∑

s=2

1

s! Cj,s(A1, . . .)q(s)(xt+1)

+
j∑

s=1

Cj,s(B1, . . .)q(2s)(xt+1)

2s
(s + 1)

+
j−1∑
s=1

j−1∑
k=s

Aj−k Ck,s(B1, . . .)q(2s+1)(xt+1)

2s
(s + 1)

+
j−2∑
s=1

j−2∑
k=s

j−k∑
n=2

Cj−k,n(A1, . . .)Ck,s(B1, . . .)q(2s+n)(xt+1)

2s
(s + 1)n! ,

where Bj ≡ Bj({h(l)
t }) appeared in Lemma A.1.

(iii) Now we compare Equations (A.11) and (A.20). The coeffi-
cients, up to second order terms, in the former are

C1(xt+1) = q′′(xt+1)

2h′′
t

− h′′′
t q′(xt+1)

2(h′′
t )2

(A.21)

and

C2(xt+1) = q(4)(xt+1)

8(h′′
t )2

− 5h′′′
t q′′′(xt+1)

12(h′′
t )3

+
[

5(h′′′
t )2

8(h′′
t )4

− h(4)
t

4(h′′
t )3

]
q′′(xt+1)

+
[

2h′′′
t h(4)

t

3(h′′
t )4

− 5(h′′′
t )3

8(h′′
t )5

− h(5)
t

8(h′′
t )3

]
q′(xt+1). (A.22)

For the first-order Laplace approximation (α = 1), the coefficient of
order γ −1 in Equation (A.20) is

R1(xt+1) = q′′(xt+1)

2h′′
t

, (A.23)

which does not correspond to C1(xt+1), and hence Equation (A.6)
holds.

For α ≥ 2, R1(xt+1) is as

R1(xt+1) = q′′(xt+1)

2h′′
t

− h′′′
t q′(xt+1)

2(h′′
t )2

, (A.24)

which corresponds to C1(xt+1), and the first-order error term in Equa-
tion (A.6) is canceled.

The second-order error term in Equation (A.20) is calculated as

R2(xt+1) = q(4)(xt+1)

8(h′′
t )2

− h′′′
t q′′′(xt+1)

4(h′′
t )3

+
[

5(h′′′
t )2

8(h′′
t )4

− h(4)
t

4(h′′
t )3

]
q′′(xt+1) (A.25)

for α = 2 and

R2(xt+1) = q(4)(xt+1)

8(h′′
t )2

− h′′′
t q′′′(xt+1)

4(h′′
t )3

+
[

5(h′′′
t )2

8(h′′
t )4

− h(4)
t

4(h′′
t )3

]
q′′(xt+1)

+
[

2h′′′h(4)
t

3(h′′
t )4

− 5(h′′′
t )3

8(h′′
t )5

− h(5)
t

8(h′′
t )3

]
q′(xt+1) (A.26)

for α ≥ 3. Thus R2(xt+1) = C2(xt+1) and second-order error term in
Equation (A.6) remains for α ≥ 2.

From (A.21)–(A.26), the leading error term introduced by the
Gaussian approximation is

E ∗
t+1,1(xt+1) = R1(xt+1) − C1(xt+1) = h′′′

t q′(xt+1)

2(h′′
t )2

for α = 1,

E ∗
t+1,2(xt+1) = R2(xt+1) − C2(xt+1)

= h′′′
t q′′′(xt+1)

6(h′′
t )3

−
[

2h′′′
t h(4)

t

3(h′′
t )4

− 5(h′′′
t )3

8(h′′
t )5

− h(5)
t

8(h′′
t )3

]
q′(xt+1)

for α = 2, and

E ∗
t+1,2(xt+1) = R2(xt+1) − C2(xt+1) = h′′′

t q′′′(xt+1)

6(h′′
t )3

for α ≥ 3. Thus if the condition (C.5) is satisfied, the leading error
term is bounded uniformly across time. We can confirm in the same
way that the other error terms are also bounded uniformly.

There are two sources of error in Equation (A.6): first, that due to
the replacement of the true filtered distribution at time t by a Gaussian,∑N

j=β E ∗
t+1,j(xt+1)γ −j, and, second, that due to propagation from

time t,
∑N−1

j=ν Et+1,j+1(xt+1)γ −j−1. At each step, the Gaussian ap-
proximation introduces an O(γ −β) error into the predictive distrib-
ution, where β = 1 for α = 1 and β = 2 for α ≥ 2. However, the
errors propagated from the previous time step “move up” one or-
der of magnitude (power of γ ). Applying Equation (A.7) repeatedly,
we find that the leading error term, E ∗

t,β (xt)γ
−β , which is generated

at time step t, is propagated, by a strictly later time step u, to be
Eu,u−t+β(xu)γ −(u−t+β) where

Eu,u−t+β(xu) = q′(xu)

u−1∏
k=t+1

[
1

h′′
k

∂

∂xk

(
q′(xk)

p(xk|y1:k−1)

)∣∣∣∣
xk=xk|k

]

×
[

1

h′′
t

∂

∂xt

( E ∗
t,β (xt)

p(xt|y1:t−1)

)∣∣∣∣
xt=xt|t

]
.
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The compounded error in time step u is then given by the summation
of the propagated errors from t = 1 to u − 1 as

Su =
u−1∑
t=1

Eu,u−t+β(xu)γ −(u−t+β) < C−β
u−1∑
t=1

(Cγ −1)(u−t+β),

where the inequality holds under the condition (C.5), C < γ is a con-
stant which is independent of time t. The right-hand side in this equa-
tion converge on O(γ −β−1) as u → ∞, so that the compounded error
after infinite time-step remains O(γ −β−1). The result is that the whole
error term in the predictive distribution becomes O(γ −β), even if it
started out smaller, but it does not grow beyond that order. Theorem 1
is then proved from Proposition A.2 immediately.

Proof of Theorem 1

The LGFs start with an initial predictive distribution which does not
involve any errors. Thus, from Proposition A.2 it is proved inductively
that the error in the approximated predictive distribution is O(γ −β)

and uniformly bounded for t ∈ N.

Proof of Theorem 2 (Sketch)

Since the predictive distribution,

p(xt+1|y1:t) =
∫

p(xt+1|xt)p(xt|y1:t)dxt

is the posterior expectation of p(xt+1|xt) with respect to xt , Theorem 2
is proved in the same way as Theorem 1 [replacing p(xt+1|xt) by g(xt)

in the proof of Theorem 1].

Proof of Theorem 4

From Proposition A.2, the two predictive distributions at time t are
given by

p̂1(xt|y1:t−1) = p(xt|y1:t−1) +
N∑

j=ν

E (1)
t,j (xt)γ

−j + O(γ −N−1)

and

p̂2(xt|y1:t−1) = p(xt|y1:t−1) +
N∑

j=ν

E (2)
t,j (xt)γ

−j + O(γ −N−1),

where E (1)
t,j (xt) = E (2)

t,j (xt). Applying the LGF to both predictive distri-

butions introduces the same errors at time t + 1,
∑N

j=β E ∗
t+1,j(xt+1) ×

γ −j, which are canceled, while propagated errors from time step t

to t + 1 in both predictive distributions,
∑N−1

j=ν E (1)
t+1,j+1(xt+1)γ −j−1

and
∑N−1

j=ν E (2)
t+1,j+1(xt+1)γ −j−1 are not canceled. Then we get

p̂1(xt+1|y1:t)− p̂2(xt+1|y1:t) = O(γ −ν−1). Applying this procedure u
times completes the theorem.

Proof of Theorem 5

Assume that the expectation at time t + 1 satisfies

Ê[g(xt+1)|y1:T ] = E[g(xt+1)|y1:T ] + O(γ −β). (A.27)

From Theorem 1 and Equation (A.27), we obtain∫
p̂(xt+1|y1:T )p(xt+1|xt)

p̂(xt+1|y1:t)
dxt+1

=
∫

p(xt+1|y1:T )p(xt+1|xt)

p(xt+1|y1:t)
dxt+1 + O(γ −β).

Using Theorem 2, the expectation at time t is

Ê[g(xt)|y1:T ]

=
∫

g(xt)p̂(xt|y1:t)
∫

p(xt+1|y1:T )p(xt+1|xt)

p(xt+1|y1:t)
dxt+1 dxt + O(γ −β)

=
∫

g(xt)p(xt|y1:t)
∫

p(xt+1|y1:T )p(xt+1|xt)

p(xt+1|y1:t)
dxt+1 dxt + O(γ −β)

= E[g(xt)|y1:T ] + O(γ −β).

The initial smoothed distribution of the backward recursion is given
by the filtered distribution p̂(xT |y1:T ), which satisfies Ê[xT |y1:T ] =
E[xT |y1:T ] + O(γ −β) by Theorem 2. Then, the theorem is proved in-
ductively.

SUPPLEMENTAL MATERIALS

Method and Plots for Real Data: Our file contains the de-
tailed descriptions of numerical computation for second
derivatives, Laplace’s method and the population vector al-
gorithm. It also contains plots for real data analysis. (supple-
ment.pdf, pdf file)

[Received June 2008. Revised April 2009.]
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