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SUMMARY

We consider the problem of comparing noisy functions, here trial-averaged neuronal firing-rate curves,
across multiple experimental conditions. Of interest are comparisons both within neurons and also among
populations of individually recorded neurons. We propose likelihood ratio tests to perform comparisons
either pointwise or globally over the entire experimental time. A simulation study of power demonstrates
the strength of these tests even for moderate sample sizes. We implement these tests on a group of 233
neurons recorded from primate frontal oculomotor cortex, first, to screen for condition-related differential
activity and, second, to search for neurons displaying interesting time-locked features that vary with
condition. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Electrophysiological studies often examine in vivo the activity of individual neurons following
various stimuli or preceding various movements. These investigations typically attempt to char-
acterize differential responsiveness across experimental conditions (the stimuli or movements), in
order to demonstrate that a certain type of information is available at a particular point in the
neural processing stream. In some cases [1–3], simple summaries of spike counts, together with
well-established statistical procedures such as t-tests or ANOVA, are sufficient to document the
results—this occurs when timing is considered to be extraneous, and results are unlikely to depend
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Figure 1. Fitted firing-rate functions for eight-directional eye movement conditions, in each of two SEF
neurons. For the neuron on the left, the firing-rate functions were not significantly different according to the

likelihood ratio test of Section 2.2.

much on the time interval chosen for the analysis. When it is important to focus on temporal
response, it would remain possible to analyze spike counts obtained from many different time
windows. Such an approach might be effective, but it would beg the question of how the time
windows should be chosen. Furthermore, it does not take account of the smoothness of neuronal
firing rates across time. An alternative is to begin with smooth estimates of firing-rate functions
[4, 5], and to devise tests based on these. Fitted functions across eight experimental conditions, for
each of two neurons, are shown in Figure 1. The figure suggests that the hypothesis of equality
among firing-rate functions would be rejected for the second neuron, but not for the first. This
illustrates the approach we take here: we provide simple modifications of standard methods from
multivariate analysis to produce ANOVA-type tests of null hypotheses of equality among firing-rate
functions across experimental conditions. We discuss both pointwise and global hypothesis tests.

The procedures we define and study are natural generalizations of those discussed in [6] for
examining differences in firing-rate curves across two conditions. They are, in addition, applicable in
any statistical setting that presents the problem of estimating multiple curves f1(t), f2(t), . . . , f J (t)
and then testing the hypothesis

H0 : f1(t) = f2(t) = · · · = f J (t) (1)

either pointwise, for each t in a finite interval [A, B], or globally, meaning simultaneously for
all t ∈ [A, B]. These procedures thus provide generalizations of those in [7], which emphasized
a spline-based fitting method called BARS [8]. The usual approach to testing H0 : f1(t) = f2(t)
is to assume time to be discrete and then to apply multivariate analysis. To be concrete, suppose
we have, for each of J = 2 experimental conditions, j = 1, 2 (subsequently to become J condi-
tions j = 1, . . . , J ), a vector of estimated function values ( f̂ j (t1), . . . , f̂ j (tp)) at times t1, . . . , tp.
In the case of neuronal firing rates, estimates f̂ j (t) may be fitted, say, every 10 ms. If we
define Y j = ( f̂ j (t1), . . . , f̂ j (tp)), it may often be assumed, with good justification (e.g. for
sample sizes typically found in neurophysiological studies), that Y j is p-dimensional multivariate
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3960 S. BEHSETA ET AL.

normal. We write this as Y j ∼ Np(� j ,� j ), where � j represents the uncertainty in estimating
( f j (t1), . . . , f j (tp)). However, the usual Hotelling’s T 2 test from multivariate analysis cannot be
applied because (i) the matrices �1 and �2 are unequal; (ii) the matrices �1 and �2 are not esti-
mated by sample covariance matrices; and (iii) the matrices �1 and �2 are singular (non-invertible).
Furthermore, (iv) the number of time points p may be large, so that the test may not be very pow-
erful (for example, see [9]). As discussed in [7], problems (i)–(iii) are easily fixed, while the use
of BARS drastically reduces the dimensionality of the problem by fitting splines with a relatively
small number of knots, thereby gaining power. We use an analogous approach here, modifying
the usual multivariate ANOVA. In the applications reported here, we have used BARS to fit the
curves initially and then applied likelihood ratio (LR) tests based on the asymptotic distribution of
BARS fits. For brevity we omit a description of BARS and refer readers to [7] and the references
cited there. The techniques we describe could be applied with any smoothing method.

We also generalize by considering populations of individuals (here, populations of neurons)
indexed by i = 1, . . . , I . We then have functions f ij (t) and wish to examine whether there is
evidence of differences among conditions, on average, across the population. We may conceptualize
the problem in this case as analogous to two-way ANOVA and MANOVA. An example of the
kind of results obtained from a population-level analysis is given in Figure 2.

In Section 2, we first present methods for analyzing individual neurons, and then discuss
population analyses. Each of these two situations includes both ‘pointwise’ analyses, which provide
significance tests at every value of discretized time, and ‘global’ analyses, which evaluate the
statistical significance of the totality of differential responses across time. Our point of view here
is that the global analyses provide protection against false discovery of pointwise differences. Thus,
one would first conduct global analyses and then, when significant, move on to pointwise analyses.
In Section 3, we give results from a small simulation study of these approaches, where, to save

time (ms)
0 300 600 900 1200

p=0.01

0.001

10e-6

Figure 2. Pointwise likelihood ratio test for the population of neurons. The log-likelihood is plotted
as a function of time (0–1200 after appearance of the target). The dotted horizontal line identifies
significance at the 0.01 level. This test indicates differential firing roughly 100–500ms post target, and again

roughly 700–1000 ms post target.
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computing time, we have used Normal kernel smoothing (Gaussian filtering) instead of BARS.
In Section 4 we describe an analysis of data from 233 neurons recorded in the supplementary
eye field (SEF) of two rhesus monkeys. We show how the methods developed here provide, first,
a rigorous approach to identifying differences across conditions among firing-rate functions that
evolve over time and, second, a way of identifying neurons that are involved in differing networks
under differing experimental conditions. Section 5 contains discussion.

2. METHODS

We will present methods for the four cases separately: (i) pointwise analysis for a single neuron;
(ii) global analysis for a single neuron; (iii) pointwise analysis for a population of neurons; and (iv)
global analysis for a population of neurons. Before doing so, we introduce notation and discuss
the general approach of applying the LR test. All of the discussion is stated in terms of neuronal
data, although, as we emphasized at the outset, the methodology is general.

We index neurons by i = 1, . . . , I , and for each neuron we assume that we have spike train
data from multiple trials r = 1, . . . , Ri for each of several conditions j = 1, . . . , J . We begin by
smoothing the Peri-Stimulus Time Histogram (PSTH) (using BARS or some other method) to get
fitted vectors Y i

j = (Y i
j (t1), . . . , Y

i
j (tp)). We assume (as is the case with BARS) that the smoothing

method also gives us corresponding covariance matrices �i
j which, throughout, are taken to be

fixed (known). That is, any uncertainty introduced by variance estimation is assumed to be of little
importance and is ignored. The functions f j (t) appearing in the null hypothesis of equality (stated
in the Introduction) are, in this context, trial-averaged firing-rate intensity functions.

We assume Y i
j is multivariate normal, as it typically would be in practice, to a good approximation

(with at least several trials per condition, and at least a handful of spikes per trial). We note, however,
that �i

j is typically (for large p) singular. For example, when smoothing with a B-spline basis
having k knots, there would be only k + 2 degrees of freedom and the variance matrix would,
therefore, have rank at most k + 2, which would typically be much less than the number p of
grid points at which the functions are evaluated. We also assume that observations obtained under
differing conditions are statistically independent.

The LR test has the general form

LR= max�∈�0 fx |�(x |�)
max�∈� fx |�(x |�) (2)

in which � is the vector of parameters generally lying in a parameter space � but restricted to lie
in �0 under H0. The density fx |�(x |�) is the probability density function of the data x . We derive
LR tests in our four situations below, writing first the numerator of (2) and then its denominator.
To obtain a p-value for testing H0, we then have various possibilities, depending on the four cases
considered. In cases (i) and (iii), a �2 distribution may be used. In cases (ii) and (iv), we suggest
rough choices of degrees of freedom for �2, but in all cases parametric or nonparametric Bootstrap
procedures could be used instead. For completeness, we provide some details.

2.1. Pointwise analysis for single neurons

Our pointwise analysis will occur across a sequence of time points, but by ‘pointwise’ we mean
that each time tk (for k = 1, . . . , p) will be considered separately. In addition, in this subsection,
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3962 S. BEHSETA ET AL.

we focus on an individual neuron. Thus, we drop the superscript i , and let Y j be a single, arbitrary
component of the vector (Y j (t1), . . . , Y j (tp)).

Under the assumption Y j ∼N(� j , �
2
j ), the hypothesis H0 is that of one-way ANOVA, but the

within-group variances are assumed unequal and known. (Weerahandi [10] discusses the unequal-
variance case in some detail.) In the numerator of the LR statistic, we obtain the maximum
likelihood estimator (MLE)

�̂0 =
∑J

j=1 y jw j∑J
j=1 w j

where w j = 1/�2j , while in the denominator we have �̂ j = y j . Therefore, we get

LR=

∏
j

⎡
⎣ 1√

2��2j

exp

(
−(y j − �̂0)

2

2�2j

)⎤
⎦

∏
j

⎡
⎣ 1√

2��2j

exp

(
−(y j − y j )2

2�2j

)⎤⎦
(3)

which simplifies to

−2 log LR=
J∑

j=1

(
y j − �̂0

� j

)2

(4)

Under H0 and the approximate normality of the fitted values Y j , the distribution of this statistic is
approximately �2 with J − 1 degrees of freedom.

2.2. Global analysis for a single neuron

To treat this case, we write Y i
j = (Y i

j (t1), . . . , Y
i
j (tp)) and then, because we are still discussing

a single neuron, we drop the superscript and assume Y j ∼ Np(� j , � j ). The null hypothesis
H0 : �1 = · · · = �J is that of the usual multivariate ANOVA (MANOVA) setting, except that the
variance matrices � j are unequal and known. They are also not of full rank, and we therefore
project the observed data vectors y j to a lower-dimensional space where the projections do have
full-rank variance matrices. We write the projections as Q j y j , where Q j is the matrix made up
of eigenvectors of � j such that

� j = Q j ∗ (� j ) ∗ (Q j )
T (5)

is diagonal and full rank, as in [7]. Then, we can write Q jY j ∼ Nqj (Q j� j , � j ), where q j is the
rank of � j .

In Appendix A, we show that the numerator of the LR has the form of a product (over j) of
Nqj (Q j �̂0, � j ) densities, where

�̂0 =
[

J∑
j=1

QT
j�

−1
j Q j

]− [
J∑

j=1
QT

j�
−1
j Q j y j

]
(6)
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and the denominator has the form of a product of Nqj (Q j �̂ j , � j ) densities, where �̂ j = y j .

In (6), [∑ QT
j�

−1Q j ]− is the generalized inverse (the ‘Moore-Penrose’ generalized inverse;

e.g. [11, p. 56]) of ∑ QT
j�

−1Q j . We obtain

−2 log(LR) =
J∑

j=1
(Q j y j − Q j �̂0)

T�−1
j (Q j y j − Q j �̂0)

If the matrices Q j were equal, and we had q = q1 = · · · = qJ , then −2 log LR would have an
approximately �2 distribution on q(J −1) degrees of freedom. We might therefore take −2 log LR
to have roughly a �2 distribution on q̄(J−1) degrees of freedom, where q̄ = (1/J )

∑
q j . In several

simulations we have found the rough approximation to be quite adequate for purposes such as
screening neurons for task-related activity. For example, simulating from J = 3 conditions with
20 trials, we observed an agreement between the quantiles of the empirical distribution of the
simulated LR values and their counterparts obtained from a �2 distribution with q̄(J − 1) degrees
of freedom, as shown in Figure 3.

An alternative is to apply a nonparametric Bootstrap procedure by resampling the trials while
enforcing H0. Specifically, if there are n1, . . . , nJ trials among the J conditions,

1. For g= 1, . . . ,G

• Resample the n1 + n2 + · · · + nJ trials, then assign the resampled trials to J conditions,
the first n1 resampled trials being assigned to condition 1, the next n2 to condition 2, etc.

10 20 30 40

10

15

20

25

30

35

Empirical Distribution

Figure 3. The qq-plot between the quantiles of the empirical distribution of the simulated likelihood
ratio values with their counterparts obtained from a �2 distribution with q̄(J − 1) degrees of free-
dom. In this example, J = 3 conditions were considered according to the true firing-rate curves as

shown in Figure 4. In this case, q̄ = 7.
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• For each condition, form the PSTH and smooth it to obtain vectors Y (g)
1 , . . . , Y (g)

J in place
of the original vectors.

• Compute −2 log(LR) based on Y (g)
1 , . . . , Y (g)

J instead of the original vectors.

2. Set r equal to the proportion of values g for which −2 log(LR) based on Y (g)
1 , . . . , Y (g)

J was
larger than −2 log(LR) based on the original data. It should be noted that r is the Bootstrap
estimate of the p-value.

2.3. Pointwise population analysis

We consider the set of fitted values Y i
j (tk) at an arbitrary time point tk and drop the reference to

tk , writing instead Y i
j . The usual two-way ANOVA model may be written in the form

E(Y i
j ) = � + �i + � j

but in this situation V (Y i
j ) = (�ij )

2 is known. As a result, to maximize the likelihood function, we

obtain the MLEs for �, �i , and � j , as weighted least-squares estimates with weights wi j = 1/(�ij )
2

[12]. We have

�̂=
∑I

i=1
∑J

j=1 wi j Y i
j∑I

i=1
∑J

j=1 wi j

while �i can be estimated by solving the equation

�̂ = A−1b

in which A=Diag(w1+, . . . , wI+) − C and the ikth element of C is cik = ∑J
j=1 wi jwk j/w+ j ,

followed by replacing the last row of matrix A byw1+, . . . , wI+; and the i th element of b is given by
bi = ∑J

j=1 wi j yij−
∑I

i=1 (wi j/w+ j )
∑I

k=1 wk j ykj , wherewi+ = ∑J
j=1 wi j andw+ j = ∑I

i=1 wi j .
The mirror solution is applied to obtain estimates for � j :

�̂ = B−1d

where B =Diag(w+1, . . . , w+J ) − C and the jkth element of C is c jk = ∑I
i=1 wi jwik/wi+,

followed by replacing the last row of matrix B by w+1, . . . , w+J ; the j th element of d is given
by d j = ∑I

i=1 wi j yij −∑I
i=1 (wi j/wi+)

∑J
k=1 wik yik .

In the numerator of the LR, we have � j = 0 for all j . Therefore, we get

LR=

∏
i
∏

j

[
1√
2��ij

exp

(−(yij − �̂ − �̂i )2

2(�ij )
2

)]

∏
i
∏

j

[
1√
2��ij

exp

(−(yij − �̂ − �̂i − �̂ j )
2

2(�ij )
2

)]
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which simplifies to

−2 log LR=
I∑

i=1

J∑
j=1

wi
j (�̂

2
j − 2�̂ j (y

i
j − (�̂ − �̂i )))

Under H0 and the approximate normality of the fitted values Y i
j , the distribution of this statistic is

approximately �2 with J − 1 degrees of freedom.

2.4. Global population analysis

In this case, we write Y i
j = (Y i

j (t1), . . . , Y
i
j (tp)) and assume Y i

j ∼ Np(�ij , �
i
j ). We have E(Y i

j ) = �ij
and write

�ij = � + �i + � j

while V (Y i
j ) =�i

j . Using the dimensionality reduction projections [7] we have

Qi
jY

i
j ∼ Np(Q

i
j�

i
j , �

i
j )

where �i
j = Qi

j ∗ (�i
j ) ∗ (Qi

j )
T. The null hypothesis is H0 : � j = 0, for all j .

To calculate the LR, first we obtain the maximum likelihood estimates �̂, �̂i , and �̂ j (see
Appendix B for details).

Now, defining

l̂0 =
I∑

i=1

J∑
j=1

[(Qi
j y

i
j − Qi

j (�̂ + �̂i ))
T(�i

j )
−1(Qi

j y
i
j − Qi

j (�̂ + �̂i ))]

and

l̂ =
I∑

i=1

J∑
j=1

[(Qi
j y

i
j − Qi

j (�̂ + �̂i + �̂ j ))
T(�i

j )
−1(Qi

j y
i
j − Qi

j (�̂ + �̂i + �̂ j ))]

we get

−2 log LR=−l̂0 + l̂

The distribution of this statistic can be roughly approximated via a �2 with q̄(J − 1) degrees
of freedom, where q̄ = (1/J )

∑
q j . We have compared this with a nonparametric Bootstrap in

several simulated examples and judge the rough approximation, adequate except in borderline
circumstances, where a Bootstrap procedure should be used. The Bootstrap is similar to that in
Section 2.2, except that here the trials must be resampled separately for each neuron. Specifically,
if there are ni1, . . . , n

i
J trials among the J conditions for the i th neuron.

1. For g= 1, . . . ,G

• For neurons i = 1, . . . , I ,
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resample the ni1 + ni2 + · · · + niJ trials, then assign the resampled trials to J conditions;
the first ni1 resampled trials are assigned to condition 1, the next ni2 to condition 2, etc.
For each condition, form the PSTH and smooth it.

This produces vectors Y 1
1 (g), . . . , Y 1

J (g), . . . , Y
I
1 (g), . . . , Y I

J (g), in place of the original
vectors.

• Compute −2 log(LR) based on Y (g)
1 , . . . , Y (g)

J instead of the original vectors.

2. Set p equal to the proportion of values g for which −2 log(LR) based on Y (g)
1 , . . . , Y (g)

J was
larger than −2 log(LR) based on the original data.

3. SIMULATION STUDY

We assessed the power of the LR tests under case (ii), the global test for single neurons. We did
so under two scenarios, each with three distinct true firing-rate curves as indicated in Figures 4
and 5. The firing-rate curves were based roughly on the observed firing-rate function from an
inferotemporal neuron displayed in [4].

For each firing-rate curve, we generated Poisson data in 10ms bins for repeated trials. We
implemented the simulation by considering a Bernoulli random variable W (t) (taking the values 0
or 1), for t = 1, . . . , 1000. We generated a spike with pr(W (t) = 1)= f (t)/100, where f (t) is the
value of each curve in Figure 4. Finally, we smoothed the data using kernel estimators (formula
1 in [6]), with the choice of Gaussian kernel. The choice of bandwidth was based on the method
of [13] (see [6, formula 2]; the R-algorithm of this method can be found in [11, p. 183]).
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Figure 4. Curves used for power study under the first simulation scenario. In this case the curves are close
to each other and, to distinguish them reliably, a fairly large number of trials are needed.
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Figure 5. Curves used for power study under the second simulation scenario. In this case the curves are
quite far apart, and relatively little data are needed to distinguish them reliably.

Table I. Simulation study of power under two scenarios for the
alternative hypothesis.

Type I error Scenario 1 Scenario 2

0.05 28 7
0.01 61 15

The minimum number of trials required to achieve a power of 0.80 is
shown. For example, 28 trials are needed to achieve power of 0.80 under
scenario 1 with a test having type I error of 0.05.

We display results in two ways. First, the minimum number of trials needed to achieve a power
of 0.80 (a widely applied standard) is shown in Table I for type I error set to each of 0.05 and
0.01. The power based on 15, 30, and 60 trials is shown in Table II. It is apparent that the method
is able to detect even relatively small differences with a moderate number of trials, and larger
differences with a quite modest number of trials.

4. ANALYSIS OF SEF DATA

4.1. Data and scientific issues

The macaque SEF, an area on the dorsomedial shoulder of the frontal lobe, is involved in the
generation of saccadic eye movements. Characterizations of SEF activity are discussed in [14] and
the references therein. The data analyzed here come from a study conducted by Moorman and
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3968 S. BEHSETA ET AL.

Table II. Power of tests under the two scenarios.

Scenario 1 Scenario 2

Type I error 15 30 60 15 30 60

0.05 0.598 0.750 0.890 0.793 0.890 1.00
0.01 0.473 0.662 0.798 0.670 0.799 1.00

Results are shown as power achieved for 15, 30, and 60 trials. For example,
in the first scenario with 15 trials and type I error of 0.05, the power is only
0.598.

Olson [15]. Our analysis is a demonstration of the capabilities of our methodology rather than a
documentation of the properties of SEF neurons. For this purpose, we focus only on the spatial
response of SEF neurons, and only on the ‘dot’ component of the ‘bar-dot’ task used by Moorman
and Olson. A summary of this component of the task appears in Figure 6.

In the data considered here, SEF neuronal responses were obtained in J = 8 spatial conditions,
each condition corresponding to a direction of eye movement. It is known that many SEF neurons
are spatially tuned, so a given neuron will tend to fire most rapidly for movement in a particular
direction—called the ‘preferred direction’ for that neuron. A range of 8–16 trials (repetitions)
were obtained for each condition, for each neuron. The data for our analysis consist of the counts,
accumulated across trials, in 10ms bins, beginning 0ms and ending 1200ms after appearance of
the target. We thus have data vectors of length 120. In our analysis, data from 233 SEF neurons
were examined.

There are two issues we wish to address. First, there is the identification of task-related activity.
In the setting we are considering here, this becomes identification of neurons for which there
is differential directional response. Second, among directionally responsive neurons, we wish to
identify those where there is a different temporal response in the preferred direction than in the
anti-preferred direction. A neuron showing a distinct temporal pattern of responses would be
involved in different functional networks for differing movement conditions.

4.2. Analysis

For each of I = 233 neurons in J = 8 directional eye movement conditions, we have a vector
Y i
j = (Y i

j (t1), . . . , Y
i
j (tp)) of spike counts, accumulated across trials, with p= 120. One would

expect many SEF neurons to be directionally tuned, with a maximal firing rate in a particular
direction, called the cell’s ‘preferred direction’. With only eight-directional movements we cannot
identify the preferred direction very precisely, and it is not our purpose here to provide a detailed
model of directional tuning. (For methods of doing so, see [16].) However, the directional conditions
do need to be defined in terms of the preferred direction; that is, in principle, we would want to
define experimental conditions in terms of their rotation, say, clockwise, relative to the preferred
direction. For this purpose, we began by identifying each neuron’s direction of maximal firing rate.
We then defined this direction as Condition 1, and defined Conditions 2–8 as successive directions
found by rotating clockwise from Condition 1. Thus, for every neuron, Condition 1 was defined as
the direction of maximal firing rate; Condition 2 was defined as the direction obtained by rotating
45◦ clockwise from Condition 1, etc.

We applied the global analysis for single neurons to all 233 neurons, and identified those
neurons for which the firing-rate functions across the eight-directional conditions were significantly
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(a)

(b)

Figure 6. Directional visually guided saccade task. Part A of the figure indicates there were eight conditions
in which the saccade target was a dot, each condition corresponding to a different direction. Part B shows
the sequence of events during the trial. (1) A white fixation spot appeared at the center of the screen and
the monkey achieved foveal fixation. (2) After 200ms, the fixation spot was replaced by a gray target
which instructed the monkey to prepare a saccade to the upcoming dot target. (3) A delay ensued. (4) The
target display appeared and remained on during an ensuing delay period. (5) Offset of the fixation spot
served as an imperative cue. (6) The monkey was required to make a saccade directly to the target.

different, with p<0.01. Examples of fitted firing-rate functions for two neurons, one where they
are significantly different and the other where they are non-significant, are shown in Figure 1. This
eliminated 75 non-significant neurons, leaving us with 158 neurons having condition-dependent
firing-rate functions.

We also applied a pointwise population analysis to identify time regions where there tend to be
differential firing rates across neurons. Figure 2 shows the log-LR, plotted across time. A dotted
horizontal line is drawn to indicate the 0.01 significance level. This figure indicates that most of
the population-level differential firing occurs 100–500ms post target, but there is also considerable
differential response surrounding the eye movement, roughly 700–1000ms post target.

The population-level differential response in Figure 2 could arise in at least two different ways.
It could come from a population of firing-rate curves that tend to exhibit both early and late
response, as in the second neuron in Figure 1, where the essential distinction among directions
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is simply that each neuron tends to fire more rapidly in its preferred direction, with the overall
firing rate diminishing as the directions move away from the preferred direction. In other words,
the firing-rate functions might differ by additive or multiplicative constants. Another possibility
is that the temporal response itself might change with direction. For example, for some neurons
there may be a substantial response related to eye movement mainly in the preferred direction,
which is suppressed for movement in the anti-preferred direction.

To search for such differential temporal responses that would not depend on the overall firing
rate, we normalized the fitted firing-rate functions before subjecting them to analysis: we divided
by the pointwise average firing rate, averaged across the eight conditions; that is, for each time tk ,
we created observations Wi

j (tk) = Y i
j (tk)/Ȳ

i (tk), the mean Ȳ i (tk) being found separately for each
neuron. We also reduced the directional data somewhat. Because the preferred direction was not
exactly at Condition 1, but rather somewhere between Condition 1 and Condition 2 or between
Condition 1 and Condition 8, and also because Conditions 2 and 8 typically had responses that
were similar to those in Condition 1, we contrasted Conditions 8, 1, and 2 against Conditions 4,
5, and 6. We did this for each neuron by creating one vector of length 360= 3× 120, obtained
by concatenating the data for Conditions 8, 1, and 2; and then we created a second vector of
length 360 by concatenating the data for Conditions 4, 5, and 6. We then applied a global analysis
of single neurons for J = 2 conditions (which reduces to a modified Hotelling’s T 2, as in [7]).
This produced 20 neurons that were significant at the 0.01 level. The fitted firing-rate functions
for these 20 neurons were examined by eye, and nine shared a particularly interesting pattern. As
shown in Figure 7, these neurons demonstrated both early and late response at or near the preferred
direction, but only early response at or near the anti-preferred direction.

5. DISCUSSION

The purpose of this article was to provide methods for testing equality among functions across
multiple conditions. In the setting of neuronal data analysis, we have illustrated these methods
by identifying, within a substantial sample, neurons that have condition-related differences among
firing-rate functions; population-level differences across conditions; and neurons that exhibit in-
teresting patterns of temporal difference across conditions. The methods are easily applied in
high-level software such as R or MATLAB.

In our population-level analyses, we applied fixed-effects tests. An alternative would be to
assume, as in [17], that each function is a Gaussian process and then, instead, use tests based on
random-effects models. We explored this alternative. That approach requires additional effort and
more specialized software. Unless assessments of variability among functions were of immediate
interest (as in [17]), we do not think the extra effort would yield much useful additional information.
The relative simplicity of the tests used here is part of their appeal.

A referee asked us to be more specific in justifying approximate multivariate normality for data
sets such as those discussed in Section 4. Our confidence in the suitability of approximate normality
is based on experience in this and related situations (see [18]). To demonstrate the accuracy of the
approximation within the context of our BARS-based smoothing, we examined the posterior of
the vector �= ( f j (t1), . . . , f j (tp)), which is estimated by y = ( f̂ j (t1), . . . , f̂ j (tp)). Specifically,
we calculated the exact posterior probability of sets of the form {� : (� − y)T�−(� − y)<c}
where c is the 0.95 quantile of the �2 distribution that would result if the posterior were exactly
normal; if the posterior were highly non-normal, the probability of these sets would be different

Copyright q 2007 John Wiley & Sons, Ltd. Statist. Med. 2007; 26:3958–3975
DOI: 10.1002/sim



FIRING-RATE CURVES 3971

0

0

50

75

25

0

50

75

25

0

50

75

25

0

50

75

25

0

50

75

25

0

50

75

25

0

50

75

25

0

50

75

25

0

50

75

25

300 600 900 1200 0 300 600 900 1200 0 300 600 900 1200

0 300 600 900 1200 0 300 600 900 1200 0 300 600 900 1200

0 300 600 900 1200 0 300 600 900 1200 0 300 600 900 1200

Figure 7. Firing-rate functions for nine neurons in preferred (solid) and anti-preferred (dashed) directions.
The x-axis is time measured in milliseconds, and the y-axis represents the firing rate in Hertz. These neurons
had normalized firing-rate functions that were significantly different (p<0.01) at or near preferred versus
at or near anti-preferred directions. At or near preferred directions these neurons responded both early
(with target-related activity) and late (with movement-related activity), while at or near the anti-preferred

direction the late response was suppressed.

than 0.95. (Posterior normality of � is not the same as normality of Y , but posterior and frequentist
Normality tend to go hand in hand, and the latter is harder to evaluate for BARS-based procedures.)
We obtained results for five sets of data obtained from two neurons among those described in
Section 4. The first neuron had 88 trials, and the second 10 trials. This gave us two of our data
sets. We then randomly sampled 10 and 5 trials from the first neuron and 5 trials from the second
neuron, so that we had two cases with 5 trials, two cases with 10 trials, and one case with 88 trials.
The resulting posterior probabilities were obtained from 5 long Markov Chain Monte Carlo runs,
having a simulation standard error of 0.005 (i.e. two-digit accuracy in the posterior probabilities).
The 88-trial data set gave a posterior probability of 0.95 (in agreement with the putative figure to
two digits), while all the other four data sets gave a posterior probability 0.94. In our experience,
close agreement between exact and approximate central probabilities is common. We would expect
that, with firing rates of at least several Hz and five or more trials, it would be unusual to obtain
highly inaccurate p-values for the resulting multivariate tests.

In multi-trial neurophysiological data, there are sometimes trends across trials, as when learning
occurs. In such situations, trial-averaged firing rates may be misleading. The methodology we
have described should be of interest when condition-related temporal responses may reasonably be
examined by averaging across trials. More specifically, from a theoretical point of view, in settings
such as the one described in Section 4, the functions f j (t) have the form f j (t) = E(� jr (t |Ht )),
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where � jr (t |Ht ) is a conditional intensity function that describes the spiking behavior of a given
neuron on trial r and the expectation is taken across trials. One situation in which this is clearly of
interest is when there is no excess trial-to-trial variability, that is, no variability beyond that produced
by a conditional intensity that contains no trial-specific effects [19]. However, analysis of trial-
averaged firing-rate functions does not assume trial-to-trial effects to be absent; it merely assumes
that the average behavior across trials is informative. This assumption is analogous to assumptions
made in many diverse statistical contexts involving random-effects models or aggregate response
estimation based on generalized estimating equations, and is imbedded in much neurophysiological
investigation.

APPENDIX A: DERIVATION OF LIKELIHOOD RATIO FOR GLOBAL ANALYSIS
WITH A SINGLE NEURON

Letting MVN(y; �, �) denote the multivariate normal density with mean � and variance � evaluated
at y, we write the numerator of the LR statistic as follows:

LH0(�0, . . . , �0) =
J∏

j=1
MVN(Q j y j ; Q j�0, Q j� j Q

T
j )

= c
J∏

j=1
|� j | −1

2 ×
J∏

j=1
exp

{−1

2
[(Q j y j − Q j�0)

T� j
−1(Q j y j − Q j�0)]

}

Therefore, the log-likelihood is as follows:

l0 = c +
J∑

j=1
ln |� j | −1

2 −
J∑

j=1

1

2
[(Q j y j − Q j�0)

T� j
−1(Q j y j − Q j�0)]

so, the quadratic form can be written as follows:

U =
∑

[(Q j y j )
T�−1

j (Q j y j ) − (Q j y j )
T�−1

j (Q j�0) − (Q j�0)
T�−1

j (Q j�0)

+(Q j�0)
T�−1

j (Q j�0)]

therefore,

�U
�0

=
J∑

j=1
[−Q j�

−1
j (Q j y j ) + QT

j�
−1
j (Q j�0)] = 0

ends up being

�̂0 =
[

J∑
j=1

QT
j�

−1
j Q j

]−1 [
J∑

j=1
QT

j�
−1
j Q j y j

]
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Similarly, to obtain the denominator of the LR statistic, we write

�U
� j

=[−(Q j�
−1
j (Q j y j ) + QT

j�
−1
j (Q j� j )] = 0

which ends up producing

�̂ j = y j

So, the LR will become:

LR=
∏

j MVN(Q j y j ; Q j �̂0, � j )∏
j MVN(Q j y j ; Q j y j , � j )

Therefore,

log(LR) =
J∑

j=1

[−1

2
(Q j y j − �̂0)

T�−1
j (Q j y j − �̂0)

]

APPENDIX B: DERIVATION OF THE MLES OF THE GLOBAL-POPULATION
PARAMETERS

Letting MVN(y; �,�) denote the multivariate normal density with mean � and variance matrix �
evaluated at y, the likelihood function is

L =
I∏

i=1

J∏
j=1

MVN(Qi
j y

i
j ; Qi

j�
i
j , �

i
j )

= c
I∏

i=1

J∏
j=1

|�i
j |

−1
2 ×

I∏
i=1

J∏
j=1

exp

{−1

2
[(Qi

j y
i
j − Qi

j� j )
T(�i

j )
−1(Qi

j y
i
j − Qi

j� j )]
}

Consequently, the log-likelihood function, l, becomes

l =
I∑

i=1

J∑
j=1

−1

2
[(Qi

j y
i
j )
T(�i

j )
−1(Qi

j y
i
j ) − (Qi

j y
i
j )
T(�i

j )
−1(Qi

j (� + �i + � j ))

−(Qi
j (� + �i + � j ))

T(�i
j )

−1(Qi
j y

i
j ) + (Qi

j (� + �i + � j ))
T(�i

j )
−1(Qi

j (� + �i + � j ))]

To maximize this function, we extend the argument of Anand and Weerahandi [12] to the multi-
variate setting, differentiating l with respect to �, �i , and � j and equating the result to zero. We
obtain the following system of equations:

I∑
i=1

J∑
j=1

[(Qi
j )
T(�i

j )
−1(Qi

j )(y
i
j − �̂ + �̂i + �̂ j )] = 0
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I∑
i=1

[(Qi
j )
T(�i

j )
−1(Qi

j )(y
i
j − �̂ + �̂i + �̂ j )] = 0

J∑
j=1

[(Qi
j )
T(�i

j )
−1(Qi

j )(y
i
j − �̂ + �̂i + �̂ j )] = 0

By letting wi j = (Qi
j )
T(�i

j )
−1(Qi

j ), wi+ = ∑I
i=1 wi j , w+ j = ∑J

j=1 wi j , we simplify the above
and obtain the solutions:

�̂ =
[

I∑
i=1

J∑
j=1

wi j

]− [
I∑

i=1

J∑
j=1

wi j y
i
j

]

wi+�̂i −
I∑

k=1
�̂k

[
J∑

j=1
[w+ j ]−wi jwk j

]
=

J∑
j=1

wi j y
i
j −

J∑
j=1

[w+ j ]−wi j

I∑
k=1

wk j y
k
j

w+ j �̂ j −
J∑

k=1
�̂k

[
I∑

i=1
[wi+]−w j iw jk

]
=

I∑
i=1

wi j y
i
j −

I∑
i=1

[wi+]−wi j

J∑
k=1

wik y
i
k

REFERENCES

1. Roesch MR, Olson CR. Neuronal activity related to reward value and motivation in primate frontal cortex.
Science 2004; 304(5668):307–310.

2. Nieder A, Diester I, Tudusciuc O. Temporal and spatial enumeration processes in the primate parietal cortex.
Science 2006; 313(5792):1431–1435.

3. Freedman DJ, Assad JA. Experience-dependent representation of visual categories in parietal cortex. Nature 2006;
443(7107):85–88.

4. Kass RE, Ventura V, Cai C. Statistical smoothing of neuronal data. Network: Computation in Neural Systems
2003; 14:5–15.

5. Kass RE, Ventura V, Brown EN. Statistical issues in the analysis of neuronal data. Journal of Neurophysiology
2005; 94:8–25.

6. Ventura V, Carta R, Kass RE, Gettner SN, Olson CR. Statistical analysis of temporal evolution in single-neuron
firing rates. Biostatistics 2002; 1:1–20.

7. Behseta S, Kass RE. Testing equality of two functions using BARS. Statistics in Medicine 2005; 24:3523–3534.
8. DiMatteo I, Genovese CR, Kass RE. Bayesian curve-fitting with free-knot splines. Biometrika 2001; 88:

1055–1071.
9. Fan J, Lin S. Test of significance when data are curves. Journal of the American Statistical Association 1998;

93:1007–1021.
10. Weerahandi S. ANOVA under unequal variances. Biometrics 1995; 51:589–599.
11. Venables WN, Ripley BD. Modern Applied Statistics with S-plus. Springer: New York, 1997.
12. Ananda MA, Weerahandi S. Two-way ANOVA with unequal cell frequencies and unequal variances. Statistica

Sinica 1997; 7:631–646.
13. Sheather SJ, Jones MC. A reliable data-based bandwidth selection method for kernel density estimation. Journal

of the Royal Statistical Society, Series B 1991; 53:683–690.
14. Olson CR, Gettner SN, Ventura V, Carta R, Kass RE. Neuronal activity in macaque supplementary eye field during

planning of saccades in response to pattern and spatial cues. Journal of Neurophysiology 2000; 84(3):1369–1384.
15. Moorman DE, Olson CR. Combination of neuronal signals representing object-centered location and saccade

direction in macaque supplementary eye field. Journal of Neurophysiology 2007; 97(5):3554–3566.

Copyright q 2007 John Wiley & Sons, Ltd. Statist. Med. 2007; 26:3958–3975
DOI: 10.1002/sim



FIRING-RATE CURVES 3975

16. Kaufman CG, Ventura V, Kass RE. Spline-based nonparametric regression for periodic functions and its application
to directional tuning of neurons. Statistics in Medicine 2005; 24:2255–2265.

17. Behseta S, Kass RE, Wallstrom G. Hierarchical models for assessing variability among functions. Biometrika
2005; 92:419–434.

18. Kass RE, Slate EH. Reparameterization and diagnostics of posterior non-normality (with discussion). In Bayesian
Statistics, vol. 4, Berger JO, Bernardo JM, Dawid AP, Smith AFM (eds). Oxford University Press: Oxford, 1992;
289–305.

19. Ventura V, Cai C, Kass RE. Trial-to-trial variability and its effect on time-varying dependence between two
neurons. Journal of Neurophysiology 2005; 94:2928–2939.

Copyright q 2007 John Wiley & Sons, Ltd. Statist. Med. 2007; 26:3958–3975
DOI: 10.1002/sim


