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Populations of cortical neurons exhibit shared fluctuations in spiking
activity over time. When measured for a pair of neurons over multiple
repetitions of an identical stimulus, this phenomenon emerges as corre-
lated trial-to-trial response variability via spike count correlation (SCC).
However, spike counts can be viewed as noisy versions of firing rates,
which can vary from trial to trial. From this perspective, the SCC for a
pair of neurons becomes a noisy version of the corresponding firing rate
correlation (FRC). Furthermore, the magnitude of the SCC is generally
smaller than that of the FRC and is likely to be less sensitive to experi-
mental manipulation. We provide statistical methods for disambiguating
time-averaged drive from within-trial noise, thereby separating FRC from
SCC. We study these methods to document their reliability, and we ap-
ply them to neurons recorded in vivo from area V4 in an alert animal. We
show how the various effects we describe are reflected in the data: within-
trial effects are largely negligible, while attenuation due to trial-to-trial
variation dominates and frequently produces comparisons in SCC that,
because of noise, do not accurately reflect those based on the underlying
FRC.
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1 Introduction

Analysis of spike count correlation has provided important neurophysio-
logical insights, as summarized in Cohen and Kohn (2011), Gu et al. (2011),
Harris and Thiele (2011), Jeanne, Sharpee, and Gentner (2013), Mitchell,
Sundberg, and Reynolds (2009), Smith and Kohn (2008), and Smith and
Sommer (2013). However, as documented in these references, a striking
feature of the interaction among neurons is that it can occur at multiple
timescales. A neuron’s spike count collected across a time interval of length
T, such as T = 1000 ms, reflects both the time-averaged drive to that neu-
ron and additional stochastic fluctuations, which produce irregular spiking
at timescales smaller than T, usually described as point process variation
(Shadlen & Newsome, 1998; Churchland et al., 2011). That is, the spike
count involves both a relatively slowly varying input drive, at the timescale
T, and faster point-process fluctuations that determine when the neuron
fires. Across an interval of length T, this point-process variation determines
the number of times each neuron fires for a given level of time-averaged
input drive. Correspondingly, for a given pair of neurons, the spike count
correlation (SCC) may reflect (A) the firing rate correlation (FRC), that is,
the correlation in the time-averaged drive to these neurons, and (B) point
process noise (Kass & Ventura, 2006; Staude, Rotter, & Grún, 2008; Goris,
Movshon, & Simoncelli, 2014). It also could involve (C) more precisely timed
within-trial correlation effects that might arise, for instance, from (lagged)
synchronous spiking (Kelly & Kass, 2012; Harrison, Amarasingham, & Kass,
2013), which has been observed in some cortical areas (macaque V4: Smith
& Kohn, 2008; Smith & Sommer, 2013) and may be modulated by state tran-
sitions that are more prominent in some anesthetized preparations (Kelly,
Smith, Kass, & Lee, 2010; Ecker et al., 2014). Longer timescale effects, but
still shorter than trial length, such as correlated up and down states (Steri-
ade & Buzsaki, 1990; Cowan & Wilson, 1994; Timofeev, Grenier, & Steriade,
2001; Steriade, Timofeev, & Grenier, 2001), can also produce within-trial
spike count covariability.

In this letter, we describe ways in which the SCC may not accurately mea-
sure the FRC in component A due to distortion caused by component B, and
we present statistical methods for disambiguating component A from com-
ponent B. Other studies have developed related techniques: Churchland
et al. (2011), Goris et al. (2014), and Staude et al. (2008). Here we go further,
using both parametric and nonparametric approaches, in order to provide a
comprehensive set of tools that, as we show, perform well under conditions
similar to those found with neural data. When component C is negligible,
statistical inference and interpretation are simplified. Therefore, we focus
especially on methods for evaluating the relevance of that component to
the analysis of spike counts, including both statistical tests and estimates
of magnitude. We then use the tools we have developed to analyze data
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Figure 1: Hierarchical model for correlation sources. First level: the firing rates
(FR1r, FR2r) of two neurons have correlation FRC. Second level: the spike counts
(Y1r,Y2r) are jointly generated with rates (FR1r, FR2r) and have correlation SCC.
The first-level correlation (which is unobserved) describes the relationship be-
tween the two neurons, but it is contaminated in the second level with Poisson-
like noise.

recorded from area V4 while a monkey performed a fixation task, and we
demonstrate that FRC behaves differently than SCC does in this setting.

We begin by assuming that the data are observed across multiple trials
of total elapsed time T and that for trials r = 1, . . . , n, each pair of observed
spike counts (Y1r,Y2r) for two neurons comes from the doubly stochas-
tic correlated point process depicted in Figure 1. This process consists of
two levels. The first level consists of a pair of latent (unobserved) vari-
ables (X1r, X2r) generated with some across-trial correlation (trial-to-trial
correlation), where, on trial r, Xir is the average firing rate FRir for neu-
ron i multiplied by T, Xir = FRirT. The variable Xir may be interpreted as
an average input drive to neuron i. The second level consists of observed
spike counts (Y1r,Y2r), generated jointly with expectation (X1r, X2r). In ad-
dition, there may be some within-trial point-process correlation. Thus, the
conditional expectation of Yir, conditionally on (X1r, X2r), is

E(Yir | X1r, X2r) = Xir. (1.1)

We further assume that the conditional variance is

Var(Yir | X1r, X2r) = φiXir, (1.2)

where φi ∈ R+ controls the dispersion of Yir conditionally on Xir (Kass &
Ventura, 2006; Churchland et al., 2011; Goris et al., 2014). The case φi = 1
holds when Yir follows a Poisson distribution, conditionally on Xir.



852 G. Vinci, V. Ventura, M. Smith, and R. Kass

A fundamental decomposition of variability is given by

Cov(Y1r,Y2r) = E[Cov(Y1r,Y2r | X1r, X2r)]

+ Cov(E[Y1r | X1r, X2r], E[Y2r | X1r, X2r]). (1.3)

The observed trial-to-trial spike count correlation (SCC) is the Pearson cor-
relation of the counts Y1r and Y2r across trials, that is the normalized version
of the left-hand side of equation 1.3, while the unobserved trial-to-trial fir-
ing rate correlation (FRC) is the Pearson correlation of FR1r and FR2r or,
equivalently, of X1r and X2r across trials, that is, the normalized version of
the second term on the right-hand side. In section 2, we show that on a
sequence of independent trials, the SCC can be seen as a perturbed version
of FRC. We characterize this phenomenon by the simple formula,

SCC = FRC × ATT + �, (1.4)

where we identify an attenuation component (ATT), mainly due to trial-
to-trial variability, and a deviation component (�), which summarizes the
impact of within-trial point process correlation (component C in the first
paragraph of this letter on SCC).

It is not possible to estimate the components in equation 1.4 separately,
based on spike counts alone, without additional modeling assumptions
(Amarasingham, Geman, & Harrison, 2015). In conjunction with equation
1.3, Churchland et al. (2011) imposed constraints on the variance of the spike
counts, constraints estimated from the data, to extract method of moments
estimates of correlations between single-neuron firing rates at different
epochs of a trial. By assuming univariate Poisson-gamma models for single-
neuron spike counts and then also assuming a sampling distribution for the
values of SCC across stimuli, Goris et al. (2014) obtained estimates for FRC
and for a quantity related to �. Because they used univariate models for
the spike counts, they were only able to obtain a single estimate of FRC for
all stimuli. However, as illustrated in Figure 3A, the FRC of a neuron pair
can (and often does) vary across stimuli. The approach we take allows for
this. We build on previous work of Ventura, Cai, and Kass (2005) and Kass
and Ventura (2006), who proved that spike count correlation necessarily
increases with T in the presence of multiplicative trial-to-trial variation
in time-averaged input drive, and Behseta, Berdyyeva, Olson, and Kass
(2009), who used a bivariate hierarchical model as in Figure 1 to provide
a correction for attenuation of correlation in the presence of point process
noise. In section 3 we derive nonparametric estimators of the components
of equation 1.4 from spike trains (as opposed to from spike counts alone) by
showing that certain estimators of intermediate quantities are unbiased. We
also derive a nonparametric estimator of φi in equation 1.2 from spike trains,
in contrast to Goris et al. (2014), who assume φi = 1, and Churchland et al.
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Figure 2: Analysis road map. We first use nonparametric estimators (section
3.2) to explore the data and implement hypothesis tests to determine which
pairs of neurons have � �= 0 (jitter test, section 3.3). We then fit appropriate
bivariate parametric models (we impose � = 0 if � ≤ 0 was obtained from the
jitter test; section 3.1) and check their goodness of fit and sensitivity (sections
3.1.1 and 3.1.2).

(2011), who use φi like a tuning parameter and choose it such that variances
and correlations lie in the required domains. We provide details on bivariate
hierarchical models for spike counts that take the trial-to-trial distribution
of (X1r, X2r) to be log normal and the distribution of Yir to be Poisson
with mean Xir, and we suggest bootstrap methods to assess the fit of these
models. Because analysis and interpretation are more straightforward when
� = 0 in equation 1.4, we propose a jitter test of this hypothesis. We show
that the test is sufficiently powerful to find substantial departures from
� = 0 under realistic scenarios, and because one typically must examine
many pairs of neurons, we use methods that control the false discovery
rate (FDR) and the false nondiscovery rate (FNR). The latter assesses the
likelihood of error when a decision is made to assume � = 0 based on the
jitter test. We also introduce generalized forms of tuning curve and tuning
curve correlation (GTC and GTCC; see appendix H) that account for the
trial-to-trial variability of the firing rates. In section 4, we analyze the V4
data and find that the models fit well and that they support the effects
discussed in section 2. In section 5 we discuss implications of our findings.

Figure 2 summarizes the main features of our approach, in which we
begin with nonparametric estimators for exploratory purposes (e.g., making
informative plots) and to formulate the jitter test. We then move on to
model-based inference and, finally, assess goodness-of-fit and sensitivity.

2 Spike Count Correlation as an Attenuated Firing Rate Correlation

From equations 1.1 and 1.2, we have (see appendix A)

E[Yir] = E[Xir] and Var(Yir) = φiE[Xir] + Var(Xir), (2.1)

which implies that the spike counts are overdispersed (Var(Yir) > E[Yir]) if
φi > 1 − Fi, where Fi = Var(Xir)/E[Xir] ≥ 0 is the Fano factor of Xir.
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Figure 3: SCC and FRC at the 12 experimental stimuli (drift direction degrees)
for a neuron pair (macaque V4 area; section 4). (B) SCC versus FRC for the
macaque V4 data analyzed in section 4. The SCC is an attenuated version of the
FRC; both generally have the same sign.

Combining equations 1.1, 1.3, and 2.1, SCC = Cor(Y1r,Y2r) can be de-
composed as

SCC = FRC × ATT + � (2.2)

(see appendix A), where

• FRC = Cor(E(Y1r | X1r), E(Y2r | X2r)) = Cor(X1r, X2r) is the trial-to-
trial firing rate correlation.

• ATT = ∏
i=1,2(1 + φi/Fi)

−1/2 is the attenuation coefficient, ATT ∈
(0, 1].

• � = γ /
∏

i=1,2(Var(Yir))
1/2, where γ = E[Cov(Y1r,Y2r | X1r, X2r)] is the

trial-averaged within-trial covariance of the spike counts.

The attenuation effect is defined as the case when SCC and FRC have
the same sign and SCC has smaller magnitude (|SCC| < |FRC|). Figure 3A
shows an example neuron pair (macaque V4 area; section 4) with different
attenuation strengths across stimuli, and Figure 3B shows that SCC is an
attenuated version of FRC for the majority of neuron pairs in our data set.
Because ATT ∈ (0, 1], attenuation occurs whenever � is small, specifically
whenever � is between FRC × (1 − ATT) and −FRC × ATT. The special
case � = 0 is of particular interest because equation 2.2 simplifies to SCC =
FRC × ATT, so that the attenuation effect is completely specified by ATT
(and the results in Kass & Ventura, 2006, which assume � = 0, hold). In
section 3.3, we develop a jitter method to test the hypothesis � = 0, and
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in section 4 we show that this hypothesis is reasonable for the majority of
neuron pairs in the in vivo macaque V4 data set we analyze.

3 Estimating Sources of Correlations

Our aim here is to estimate the population quantities in equations 2.1 and
2.2 that characterize the hierarchical structure defined in section 2 and
Figure 1. In section 3.1 we propose bivariate parametric models for the
spike counts of neuron pairs, which imply parametric estimates for the
components of equations 2.1 and 2.2. These models assume φi = 1, allowing
for the overdispersed spike counts that are typical of the visual cortex V4
data we analyze in section 4 (Tomko & Crapper, 1974; Tolhurst, Movshon,
& Thompson, 1981; Cohen & Maunsell, 2009; Mitchell et al., 2009; Goris
et al., 2014). We also provide methods to evaluate the fit of the models
to data and assess their sensitivity to the assumptions. In section 3.2, we
propose nonparametric estimators of the population quantities in equations
2.1 and 2.2 based on binned spike counts, which only make assumptions
about the timescale of within-trial dependencies between neurons. Because
the interpretation of equation 2.2 is more straightforward when � = 0, we
develop a model-free jitter test of this hypothesis in section 3.3.

3.1 Parametric Estimation. Goris et al. (2014) used a univariate Poisson-
gamma model – Yir | Xir ∼ Poisson(Xir) where Xir ∼ �(αi, βi) – to model
single neuron spike counts, but because it has no natural bivariate extension,
we extend instead the univariate Poisson-lognormal model of Kass and
Ventura (2006):

Yir | Xir ∼ Poisson(Xir), i = 1, 2 (3.1)(
log X1r

log X2r

)
∼ N

(
μ =

(
μ1

μ2

)
, � =

(
σ 2

1 σ12

σ12 σ 2
2

))
.

This bivariate Poisson-lognormal model (PLN) allows for overdispersed
spike counts since φi = 1 (see section 2 and appendix C) but assumes that
Y1r | X1r and Y2r | X2r are independent, which implies γ = � = 0 in equation
2.2. We therefore generalize the model to allow γ �= 0. We assume γ ≥ 0 and
let

Yir = R0r + Rir (3.2)

R0r ∼ Poisson(γ )

Rir | Wir ∼ Poisson(Wir), i = 1, 2(
logW1r

logW2r

)
∼ N(μ,�),
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where R0r and Rir | Wir, i = 1, 2, are mutually independent, and the fir-
ing rates are Xir = γ + Wir. We call this model a bivariate doubly cor-
related Poisson-lognormal model (DC-PLN) because the spike counts
(Y1r,Y2r) given the rates have a correlated Poisson distribution, and the
rates (W1r,W2r) are also correlated. Figure 8 shows tolerance regions of the
joint distribution of (X1r, X2r) fitted by maximum likelihood (ML; see ap-
pendix C) to a neuron pair in macaque area V4 (see section 4), which we
also call a generalized tuning curve (GTC; see appendix H). Model 3.2 is
appropriate when the spike trains of two neurons share common spikes
R0r in addition to, and independent from, (R1r, R2r)—for example, if they
receive common input from an adjacent third neuron that causes positive
conditional within-trial covariance γ . This model does not accommodate
the case γ < 0, which is acceptable for the data set analyzed in section 4,
because over 95% of neurons-conditions pairs have γ ≥ 0. When γ = 0
(equivalently � = 0), model 3.2 reduces to the PLN model in equation 3.1.
Section 3.3 details a test of this hypothesis.

Under this model, the spike count correlation formula, equation 2.2,
reduces to

SCC = (eσ12 − 1)
∏

i=1,2

(eσ 2
i − 1)−

1
2

︸ ︷︷ ︸
FRC

×
∏

i=1,2

(
1 + ai + (eμi+σ 2

i /2(eσ 2
i − 1

))−1)− 1
2

︸ ︷︷ ︸
ATT

+�, (3.3)

where ai = γ (eμi+σ 2
i /2)−2(eσ 2

i −1)−1 and � = γ
∏

i=1,2[γ +eμi+σ 2
i /2 + (eμi+σ 2

i /2)2

(eσ 2
i − 1)]−

1
2 . Replacing the parameters by their ML estimates (see appendix

C) yields ML estimates of the quantities of interest: �̂mle, F̂RCmle, ÂTTmle,
and ŜCCmle.

Alternatively, the parameters of model 3.2 could be estimated via
Bayesian methods (Bernardo & Smith, 2009; Kass, Eden, & Brown, 2014),
which require choices of priors for μ,�, γ . Assuming squared error loss,
FRC would be estimated as the posterior mean from the marginal posterior
of �.

3.1.1 Assessing the Fit of the Parametric Model. We assess the global
goodness-of-fit (GOF) of a parametric model to data using a discrepancy
measure between a nonparametric quantity and its parametric analog un-
der the fitted model. A large discrepancy suggests that the model is not a
good representation of the true spike count generation process. We consider
two discrepancies: the Kullback-Leibler (KL) divergence of the fitted model
(univariate or bivariate) from the empirical distribution of the data and, in
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the bivariate case, the divergence between the sample SCC and the SCC
predicted by the fitted model.

Kullback-Leibler Divergence. Let Zr = Yir be the spike count of a neuron
in trial r in the univariate case and Zr = (Y1r,Y2r) in the bivariate case. Let
Pn(z) = n−1∑n

r=1 I(‖Zr − z‖1 = 0) be their empirical probability mass func-
tion (p.m.f.), where ‖x‖1 =∑ j |x j| is the L1-norm, and Qθ̂ be a parametric
model fitted to (Z1, . . . , Zn). The Kullback-Leibler (KL) divergence between
Pn and Qθ̂ is

KL(Pn||Qθ̂ ) =
∑

z

log(Pn(z)/Qθ̂ (z))Pn(z) = n−1
n∑

r=1

log(Pn(Zr)/Qθ̂ (Zr))

= n−1
n∑

r=1

log Pn(Zr) − n−1
n∑

r=1

log Qθ̂ (Zr) ≥ 0,

where
∑n

r=1 log Qθ̂ (Zr) = maxθ log LQ(θ; Z1, . . . , Zn) is the maximum of the
log likelihood of Qθ . Hence, the KL divergence can be written as

KL(Pn||Qθ̂ ) = n−1(EML − PML),

where EML stands for “empirical maximum log likelihood” and PML for
“parametric maximum log likelihood.” We use KL(Pn‖Qθ̂ ) to test the hy-
pothesis Zr ∼ Qθ , and approximate its null distribution, FKL, via a para-
metric bootstrap (Efron & Tibshirani, 1994). We reject the hypothesis if
KL(Pn‖Qθ̂ ) > F−1

KL (1 − α) for some significance level α.
SCC Divergence. Let Qθ be a bivariate parametric model for (Y1r,Y2r).

Define

D = fZ(ŜCCsamp) − fZ(ŜCCmle), (3.4)

where ŜCCsamp is the sample SCC of (Y1r,Y2r) (see equation 3.12), ŜCCmle is
the estimate derived from model Qθ fitted to the data (see equation 3.3), and
fZ(r) = 1/2 · log((1 + r)/(1 − r)) is the Fisher transformation. We reject the
hypothesis Zr ∼ Qθ if D < F−1

D (α/2) or D > F−1
D (1 − α/2), where FD is the

null distribution of D that we approximate using a parametric bootstrap.

3.1.2 Sensitivity of FRC Estimates to Model Assumptions. Goodness-of-fit
tests do not always have high power to detect deviations between the data
and the assumed parametric model, so it is useful to assess how sensitive
the parametric estimate of FRC is to mild deviations from the DC-PLN
model. We do that by simulating spike counts from the more general model
specified in equation 3.5, estimating FRC assuming that the data are DC-
PLN distributed, and quantifying the deviations of the estimate from its
true value.
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The generalized bivariate spike count model is defined as

Yir = R0r + Rir, i = 1, 2, (3.5)

R0r ∼ Pγ ,φ,

Rir | Wir ∼ PWir,φ
, i = 1, 2,

(W1r,W2r)
T ∼ fb,μ,�,

which has the same structure as model 3.2 but with the Poisson and lognor-
mal distributions replaced by Pλ,φ and fb,μ,� . It includes as a special case
the DC-PLN model, equation 3.2, when φ = 1, b = 0+, γ ≥ 0, and the PLN
model, equation 3.1, when φ = 1, b = 0+, and γ = 0. The distributions Pλ,φ

and fb,μ,� are generalizations of the Poisson and lognormal distributions
that allow different spread and skewness. They are defined as follows:

1. Under model 3.2, spike counts Y conditional on their rates X are Pois-
son, which implies φ = Var(Y|X)/E(Y|X) = 1 (see section 2). Here we
consider a generative model permitting φ �= 1:

Pλ,φ =⎧⎪⎨⎪⎩
Binomial

(
N = ⌊λ(1 − φ)−1

⌉
, p = 1 − φ

)
, φ ∈ (0, 1)

Poisson(λ) , φ = 1

Negative Binomial
(
r = λ(1 − φ)−1, p = (φ − 1)φ−1

)
, φ > 1,

(3.6)

where 	x
 is the closest integer to x. This model has E(Y|λ) ≈ λ and
Var(Y|λ) ≈ λφ (see appendix D). Figure 4A illustrates the deviations
of Pλ,φ with φ = 0.8 and 1.2 from the Poisson distribution—Pλ,φ with
φ = 1.

2. Under model 3.2, (W1r,W2r) are bivariate lognormal. Here we gener-
ate them as follows: set b > 0 and (1) generate (Z1r, Z2r) ∼ N(μ,�),
(2) evaluate Wir = (1 + Zirb)

1/b, i = 1, 2, and (3) repeat steps 1 and 2
until W1r,W2r ≥ 0. When b → 0+, it is easy to show that (W1r,W2r)

are bivariate lognormal. Figure 4B shows fb,μ,� for b = 0 (lognormal)
and b = 1, with μ,� chosen to match typical values in the V4 data
analyzed in section 4.

Details of simulations and sensitivity results for the V4 data are in
section 4.2.

3.2 Nonparametric Estimation. Let Si = {Sir}n
r=1 be n independent spike

trains of duration [0, T] for neuron i. We divide [0, T] into m bins of equal
length, and we let Yirj denote the spike count in trial r and bin j, so that∑m

j=1 Yir j = Yir is the total spike count for neuron i on trial r. We assume
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Figure 4: (A) Deviations of the spike counts from Poisson. Top: p.m.f. of model
3.6 for φ = 0.8, 1, 1.2; φ = 1 corresponds to the Poisson p.m.f. Bottom: relative
% difference between model 3.6 for φ = 0.8 and 1.2 and the Poisson p.m.f.
(B) Deviations of the firing rates from lognormality.

E[Yir j|X1r, X2r,Y1r,Y2r] = pi jYir, where pij is the probability that given that
neuron i spikes, the spike occurs in bin j, independent of trial r,

∑
j pi j = 1;

in other words, the expected spike count in bin j in trial r is a portion pij
of the total spike count Yir in trial r, with pij constant across trials. We let
0 ≤ K < m − 1 and define1

Gm,K(S1, S2) =
∑n

r=1
∑

| j−h|≤K(Y1r j − p1 jY1r)(Y2rh − p2hY2r)

n
(

1 −∑| j−h|≤K p1 j p2h

) . (3.7)

Proposition 1. If the spikes of neurons 1 and 2 given their rates are uncor-
related whenever they are separated by more than K bins, that is, they satisfy
Cov(Yir j , Ykrh |Xir , Xkr ) = 0 for 1 ≤ i ≤ k ≤ 2 whenever bins j and h are such that
K < | j − h| ≤ m − 1, then Gm,K (S1, S2) and Gm,K (Si , Si ) are unbiased estima-
tors of γ and φi E[Xir ], respectively.

1A sufficient condition for the denominator of equation 3.7 to be strictly positive
is pi j > 0 for all i = 1, 2, since K < m − 1 implies

∑
| j−h|≤K p1 j p2h <

∑
j,h p1 j p2h, where∑

j,h p1 j p2h = 1. The pij could be smoothed to achieve pi j > 0 for low firing rate neurons.
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The proof is in appendix E. The probabilities pij are typically un-
known but can be estimated by the corresponding observed proportions
p̂i j =∑n

r=1 Yir j/
∑n

r=1 Yir, or smooth versions. In section 4 we estimate pij
based on 50 ms bin widths peristimulus time histograms. The unbiased
property depends on K: given the trial length T and number of bins m,
we need K such that K/m ≥ δ/T, where δ is such that the spikes of the
two neurons are correlated only if they are within δ. If the spikes are still
correlated when they are farther than T apart, we cannot obtain unbiased
estimates of γ and φiE[Xir]. Thus, proposition 1 yields unbiased estimates
only if within-trial covariabilities occur on timescales δ smaller than the
trial duration T, and m is sufficiently large, specifically, m > T/(T − δ) (see
appendix E). Within these constraints, we use the smallest value of K, that
is, K/m ≈ δ/T, because the variance of Gm,K increases with K. For the data
in section 4, Smith and Sommer (2013) found that based on jitter-corrected
cross-correlograms, short time-scale correlation happened on a 5 to 10 ms
half-width, so we use δ = 20 ms to be conservative. The variance of the
estimators decreases with the number of bins m because:

1. The trial length T is finite so the cross-terms of the extreme indices in
the summand of equation 3.7 are not available, so that the ends of the
spike trains do not contribute to estimating γ . Using small bins (m
large) therefore means using more data, which reduces the variance
of the estimators.

2. (δ/T ) < 1 and m large makes it possible for K = δ/(T/m) to be an
integer. Otherwise we must round K up to the next integer so we
avoid biasing the estimators, with the consequence that the cross-
terms for | j − k| large in equation 3.7 may contain less signal and
more noise, and thereby increase the variance of the estimators.

3. Small bins better localize the beginnings and ends of within-trial
effects, which reduces the variance of equation 3.7 for the same reason
as in item 2.

In section 4 we used m = 100 bins, and thus K = 2. It would be statistically
more efficient to use the largest m possible up to recording accuracy (in our
case, this would be m = 1000, since T = 1000 ms and spike time accuracy
is in ms), but the computational burden to perform the within-trial covari-
ability jitter tests (see section 3.3) would be prohibitive (see appendix G).

3.2.1 Plug-In Estimators. We use proposition 1 to define plug-in estima-
tors for the components of equations 2.1 and 2.2:

ÂTTplug =
∏

i=1,2

(
1 + Gm,K(Si, Si)

V̂ar(Yir) − Gm,K(Si, Si)

)−1/2

, (3.8)
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�̂plug = Gm,K(S1, S2)√
V̂ar(Y1r)V̂ar(Y2r)

, (3.9)

F̂RCplug =
ŜCCsamp − �̂plug

ÂTTplug

, (3.10)

φ̂i plug = Gm,K(Si, Si)

Ȳi

, (3.11)

where

Ĉov(Y1r,Y2r) = (n − 1)−1
n∑

r=1

(Y1r − Ȳ1·)(Y2r − Ȳ2·), Ȳi· = n−1
n∑

r=1

Yir,

V̂ar(Yir) = Ĉov(Yir,Yir),

and

ŜCCsamp = Ĉov(Y1r,Y2r)√
V̂ar(Y1r)V̂ar(Y2r)

(3.12)

are the sample estimates of the corresponding population quantities. When
γ = � = 0, we set �̂plug = 0 (see section 3.3). Note that the plug-in estimators
do not always lie in the required domains (Churchland et al., 2011, encoun-
tered similar problems); for example, F̂RCplug could lie outside [−1, 1]. They
are nevertheless useful estimates for exploratory data analysis.

We are able to estimate the components of equations 2.1 and 2.2 without
specific assumptions on φi, in contrast to the assumption that φi = 1 in
section 3.1 and in Goris et al. (2014), and to the approach of Churchland
et al. (2011), who use φi like a tuning parameter and choose it such that
variances and correlations lie in the required domains. Here we derive a
nonparametric estimate of φi, by using the information carried by spike
counts at timescales smaller (i.e., spike counts in smaller bins) than the
timescale of SCC and FRC.

3.3 Jitter Test for Within-Trial Correlation. In section 2 we presented a
hierarchical model where spike counts (Y1r,Y2r) are trial-to-trial correlated
through the rates (X1r, X2r), but also, conditionally on (X1r, X2r), they might
share within-trial covariability, measured by γ or �. The case γ = 0 (equiv-
alently � = 0) is of particular interest because then the attenuation of FRC
is fully explained by the attenuation factor ATT, equation 2.2.
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A parametric likelihood ratio test (LRT) of H0 : γ = 0 based on model
3.2 is problematic because it is limited to the one-sided alternative Ha :
γ > 0, whereas γ could be negative, and the asymptotic chi-square null
distribution of the LRT does not hold because γ = 0 is at the boundary
of the parameter space. A bootstrap would be needed to obtain the null
distribution. The parametric estimate of γ also turned out to be less efficient
than the nonparametric estimate, equation 3.7, in a simulation study, where
we repeatedly generated synthetic data sets similar to ours and estimated
γ parametrically and nonparametrically. Both estimators were unbiased,
but the nonparametric estimator had smaller variance, which translates
into more power in a testing context. The difference in efficiency happens
because the two estimators are obtained from different reductions of the
observed spike trains: the parametric estimate of γ is based on spike counts
in bins of T = 1000 ms and the nonparametric estimate on spike counts in
10 ms bins. The spike trains contain more information about γ than spike
counts (data processing inequality; Cover & Thomas, 2012), and presumably
spike counts in smaller bins contain more information than spike counts in
larger bins, since they are closer to the original data.

We therefore prefer a model-free jitter test that accommodates the two-
sided alternative γ �= 0, does not depend on parametric assumptions, and
is likely to be more powerful. We use the nonparametric estimator of γ

in section 3.2, γ̃ = Gm,K (m = 100 and K = 2 are appropriate for the data
in section 4), and we reject H0 : γ = 0 if γ̃ < F−1(α/2) or γ̃ > F−1(1 − α/2),
where F is the null distribution of γ̃ obtained using a jitter method (Harrison
et al., 2013), as follows. Let (Yir1, . . . ,Yirm) denote the spike counts of neuron i
in trial r and time bin j = 1, . . . , m, such that

∑m
j=1 Yir j = Yir is the total spike

count of neuron i in trial r. Let

(Y∗
ir1, . . . ,Y∗

irm) | Yir ∼ Multinomial(Yir; pi1, . . . , pim), r = 1, . . . , n

be jittered spike counts for neuron i for each of the n trials, where pij is
the probability that, given that neuron i spikes, the spike occurs in bin j
(the same pij’s appear in section 3.1). Let γ̃ ∗ be the nonparametric estimator
of γ calculated from these jittered spike counts. We repeat this B times to
obtain B values of γ̃ ∗: their empirical distribution approximates the null
distribution F of γ̃ . To obtain accurate p-values requires a simulation size B
in the thousands. However, a normal probability plot revealed that the γ̃ ∗

were approximately normally distributed (this is not surprising given that
equation 3.7 is an average), so a faster approximation of F is the normal
distribution with mean 0 and variance equal to the sample variance of
B values of γ̃ ∗, where B can be much smaller, say B = 100 (see Canty,
Davison, Hinkley, & Ventura, 2006). The jitter test is a conditional parametric
bootstrap test that is exact when the pij’s are known. In our application, we
must estimate the pij’s (see section 3.2), so the test is no longer exact. Figure 5
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Figure 5: (A) Power of the jitter test to detect lagged synchrony within-trial
effects. The test has full power when γ > 1, approximately. (B) FDR-FNR control:
The actual FDR is below the nominal FDR β so the FDR procedure of Benjamini
and Hochberg (1995) is reliable. The FNR is below 10% for all β > 5%. We expect
that the FDR testing procedure will fail to detect less than 10% of existing within-
trial effects in data like the V4 data of section 4.

shows that its spurious detection rate is nevertheless close to the significance
level α, so the test is reliable.

3.3.1 Statistical Power. The power of a test is the probability of detect-
ing deviations from the null hypothesis when they exist. It is difficult to
calculate analytically the power of the jitter test, so we estimated it by
simulation. For values of γ ∈ (0, 1.25), we simulated 1000 data sets of 60
trials of pairs of independent spike trains satisfying model 3.1 and induced
within-trial covariability by adding an independent homogeneous Pois-
son spike train with rate γ to each spike train pairs, lagged by 0, 10, or
20 ms. The resulting pairs of spike trains satisfy model 3.2 with parame-
ters μi = 1.9, σi = 0.31, ρ = 0.51. These parameter values match the mean
estimated values in the data in section 4. Then for each γ , we estimated
the power as the proportion of times the jitter test rejected the hypothesis
γ = 0 out of the 1000 data sets (δ = 20 ms, m = 100, K = 2), and plotted this
estimate in Figure 5A against γ and a standardized version of γ that takes
value in [−1, 1], the expected conditional spike count correlation:

ECC = E

[
Cov(Y1r,Y2r | X1r, X2r)∏

i=1,2

√
Var(Yir | Xir)

]
. (3.13)

Appendix F provides nonparametric and parametric estimates of ECC. The
power of the jitter test increases with the amount of within-trial covariability
γ and has very high power when γ > 0.75, ECC > 0.1.
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3.3.2 False Discovery Rate Control. When many tests are performed, it
is useful to cap the expected proportion of false rejections among all
rejections—the false discovery rate (FDR)—below some desired β. Ben-
jamini and Hochberg (1995) proceed as follows: given M independent tests
with null hypotheses H01, . . . , H0M and corresponding p-values P1, . . . , PM,
they reject H0(1), H0(2), . . . , H0(K) where K = max{i such that P(i) ≤ iβ/M}
and P( j) is the jth largest p-value. Then, in expectation, fewer than a propor-
tion β of the K rejected tests correspond to true null hypotheses. Benjamini
and Yekutieli (2001) show that this procedure also controls the FDR in the
case of positive regression-dependent tests, but advocate a more conser-
vative FDR control for tests with general dependencies, which consists of
replacing β with β/

∑M
i=1 i−1.

The jitter tests are dependent since they are applied to all neuron
pairs, but they are not necessarily positive regression dependent, so we
investigated the performances of both procedures for data like ours. We
simulated n = 60 independent trials of spike trains from an N-variate
Poisson-lognormal model with N = 30 (we extended model 3.1 from N = 2
to 30), where μ and � were assigned values that match the V4 data in
section 4, such that half of the neuron pairs had FRC below 0 and half
had FRC above 0. Neurons were randomly assigned to three groups of size
N/3 = 10. For each trial r, the spike trains of all neurons in a group were
contaminated by the same noise spike train with rate γ , and the noise spike
trains were independent between groups. We used γ = 0.5, 1, and 2 for the
three groups, respectively, to match approximately the values calculated in
the data. The proportion of tests with H0 false was therefore one-third. We
performed the

(N
2

) = 435 jitter tests for all neuron pairs and recorded the
observed FDR and false nondiscovery rate (FNR), that is, the expected pro-
portion of false nulls among the nonrejections, for a range of nominal FDR
β. We repeated the simulation 1000 times to obtain accurate mean estimates
of the observed FDR and FNR. In Figure 5B, we show that the Benjamini
and Hochberg (1995) procedure provides reliable FDR control for data like
ours (the observed FDR is below β), perhaps because the tests were only
weakly dependent, as suggested by the Brownian covariance test of Székely
and Rizzo (2009). We also observe FNR ≤ 10% whenever β ≥ 5%, which
means that most cases with � �= 0 are detected by the jitter test with FDR
control. The Benjamini and Yekutieli (2001) procedure for tests with general
dependencies provided too conservative a control (smaller FDR and larger
FNR; results not shown), so we did not use it.

4 Analysis of V4 Data

We analyze the rhesus macaque monkey (Macaca mulatta) visual V4 data
collected by Smith and Sommer (2013) during the following task (see
Figure 6). The animal fixated a small blue dot in the center of a computer
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Figure 6: (A) The experimental task. The dashed circle indicates the aggregate
receptive field (RF) of all the V4 neurons recorded from the 100-electrode array.
After the animal fixated on the central blue dot for 100 ms, a drifting grating
stimulus (one of 12 directions, block randomized) was shown for 1000 ms.
The central dot and grating were then extinguished, and a blue target dot
appeared at a random location positioned along a circle 8 degrees from fixation.
The animal was rewarded for making a successful saccade to this target dot
within 300 ms. (B) The experimental stimulus consisted of a full-contrast drifting
sinusoidal grating with 12 equally spaced directions of drift (30 degrees). The
spatial frequency (1.3 cpd) and temporal frequency (6.25 Hz) were fixed, and
the grating was positioned and sized to cover the aggregate RF of the neurons.

screen while a sinusoidal grating covered the aggregate receptive field area
of the recorded neurons. The grating’s size and spatial and temporal fre-
quencies were fixed, and the direction of drift was one of 12 equally spaced
directions for each trial; n = 61 independent trials of duration T = 1000 ms
were recorded for each of the 12 stimuli (directions). The neural data were
acquired from a Utah array (100 electrodes, Blackrock Microsystems) im-
planted in V4. The electrode voltages were amplified and bandpass filtered
(250–7.5 kHz) prior to spike sorting with custom software (Kelly et al., 2007).
All procedures were approved by the Institutional Animal Care and Use
Committee of the University of Pittsburgh and were in compliance with
the guidelines set forth in the National Institutes of Health’s Guide for the
Care and Use of Laboratory Animals.

For our statistical analysis, we retained only the 53 well-isolated single
units with minimum signal-to-noise ratio 2.75 (Kelly et al., 2007) and 1 Hz
minimum trial-averaged firing rate, and studied the relationships between
all
(53

2

)× 12 = 16,536 neuron pairs-stimuli combinations. We proceeded as
outlined in Figure 2. We first applied the jitter test (see section 3.3) with a
false discovery rate (FDR) of 10% to all neuron pairs-stimuli combinations
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Figure 7: (A) The estimates of �̂plug, equation 3.9, concentrate around zero:
within-trial correlations have a weak effect on SCC. (B) The estimates of ÂTT plug,
equation 3.8, concentrate around 0.35: the magnitude of SCC is about 35% that
of FRC on average. (CD) SCC, FRC, ECC versus interneural distance and TCC
obtained by local linear regressions of the sample estimates of SCC and ECC
(see equations 3.12, 3.13, and F.1), and parametric and nonparametric estimates
of FRC (see equations 3.3 and 3.10); solid and dashed curves, respectively),
along with 95% simultaneous confidence bands. All correlations decrease with
interneural distance and increase with TCC. The SCC and FRC curves are similar
in shape, but SCC is attenuated compared to FRC. ECC is close to zero, which
suggests that within-trial correlations have a small impact on spike counts in
1 s bins.

to determine which pairs have � �= 0. Only a minority of the V4 neuron pairs
exhibited significant within-trial covariance (6.04% using a two-sided test,
and 10.07% using a one-sided test with alternative γ > 0), which suggests
that within-trial correlations have a weak impact on SCC, and therefore
that the attenuation effect is mainly characterized by ATT in equation 2.2.
Figure 7B shows the distribution of the nonparametric estimates ÂTT plug
(see equation 3.8); it is concentrated around 0.35, which means that the
magnitude of observed SCCs is on average only 35% of the magnitude of
FRC.
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Figure 8: Joint generalized tuning curve (GTC; see appendix H). Tolerance re-
gions (10% to 90% levels) of the estimated joint bivariate lognormal distributions
for the rates (X1r, X2r) in model 3.2 for an example pair of neurons at 12 stimuli.
The stimulus number is written in the top-right corner of each panel. This plot
shows not only how the neurons’ average firing rates vary with the stimulus,
but also how differently the two rates are correlated for different stimuli.

Next we fitted the parametric models in section 3.1 consistently with the
jitter test results (that is, we fitted the DC-PLN model, equation 3.2, if � > 0,
and the PLN model, equation 3.1 otherwise) using the maximum likelihood
algorithm 2 in appendix C, and obtained estimates of the components of
equation 2.2. A component of the model fitted to a neuron pair is shown in
Figure 8; goodness-of-fit diagnostics and sensitivity to parametric assump-
tions are summarized in sections 4.1 and 4.2. Figure 3B shows the sample
estimates of SCC in equation 3.12 versus the model-based estimates of FRC
in equation 3.3 for all 16,536 neuron pairs-stimuli combinations. The SCC
is substantially attenuated compared to the FRC, which is consistent with
the nonparametric estimates of ATT being well below one in Figure 7B. Fig-
ures 7C and 7D further show that on average, SCC and FRC decrease with
pairwise interneural distance (distance between electrodes) and increase
with tuning curve correlation (TCC; see equation H.1), which is a measure
of similarity between the neural activity of two neurons. Smith and Som-
mer (2013) had noted these relationships for SCC but not FRC. The sample
estimate of ECC, equation F.1, also decreases with interneural distance and
increases with TCC, although it is hard to see by the naked eye because
ECC is close to zero.

In appendix H, we also display SCC, FRC, and ECC against the gen-
eralized tuning curve correlation (GTCC), a combined measure of tuning
curve similarity and firing rate covariability between a neuron pair, which
is motivated in Figure 8. This figure shows the estimated joint generalized
tuning curve (GTC) of a neuron pair, that is, the estimated joint distribution
of their firing rates for all stimuli, and shows not only how the neurons’



868 G. Vinci, V. Ventura, M. Smith, and R. Kass

Figure 9: (A) Spike count log variance versus log mean. The spike counts are
overdispersed. (B) Kullback-Leibler divergence test p-values. Using α = 5%, the
Poisson model is rejected 52% of the times, and the Poisson–lognormal model
5% of the times, which matches the chosen spurious detection rate: the second
model provides a better fit to the spike counts.

average firing rates vary jointly with the stimulus—the TCC provides a
one number summary of that covariability across stimuli—but also how
differently these rates are correlated across trials for different stimuli. For
the neuron pair shown in Figure 8, these rates are virtually uncorrelated
when stimulus 7 is presented and very strongly positively correlated for
stimuli 2, 9, and 12. The GTCC is a one-number summary of both tuning
curve similarity and firing rate covariability between a neuron pair.

4.1 Parametric Model Goodness of Fit. Figures 3B, 7C, and 7D display
the parametric estimates of FRC. We justify here that the parametric models
fit the data.

Figure 9A shows the sample variance versus the sample mean of the
spike counts of the 53 neurons for all 12 stimuli: the spike counts are overdis-
persed, which is a feature of the Poisson-lognormal model. The KL diver-
gence test (see section 3.1) confirms that the univariate Poisson-lognormal
model (i.e., the univariate version of equation 3.1) fits single neuron spike
counts well; only 5% of the tests were rejected, which matches the spurious
detection rate α. To provide a contrasting result, we also performed KL
divergence tests assuming Poisson spike counts. Their p-values are plotted
in Figure 9B against the spike counts’ Fano factors: 52% of the Poisson tests
were rejected, including all the tests applied to data with loge Fano factors
above 0.6. The p-values of the univariate Poisson-lognormal KL divergence
tests are also plotted and exhibit no relationship with the Fano factor.
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Now we assess the fits of the PLN and DC-PLN models in equations 3.1
and 3.2 to pairs of spike counts. We randomly selected 2500 cases (≈ 15%
of the 16,536 neuron pairs-stimuli combinations) to which we applied the
KL and SCC divergence tests (see section 3.1). Only about 4% of the neuron
pairs did not pass the SCC divergence test, and less than 1.5% did not pass
the KL test, at the 5% significance level, which suggests that the bivariate
parametric models fit pairs of spike counts well.

4.2 Sensitivity of FRC Estimates to Model Assumptions. Figures 3B,
7C, and 7D display the parametric estimates of FRC where in about 90% of
cases, we imposed γ = � = 0 according to the results of the jitter test. This
test has a low false nondiscovery rate (FNR, Figure 5B) and high power to
detect deviations from γ = 0 when γ > 0.75 or ECC > 0.1 (see Figure 5A)
so we are confident that we fitted the appropriate model, the PLN model, in
such cases. However, we would like to know how the parametric estimate
of FRC is affected by assuming γ = 0 when the jitter test fails to detect that
γ is small and positive, and how sensitive it is to mild deviations from the
Poisson and lognormal assumptions.

We applied the methods in section 3.1.2. We generated n = 60 tri-
als of duration T = 1000 ms of spike count pairs (Y1r,Y2r) from the
generalized bivariate spike count model, equation 3.5, for (φ, b, γ ) in
(0.8, 1.2) × (0, 1) × (0, 1), where μ(φ, b, γ ) and �(φ, b, γ ) were calibrated
for each (φ, b, γ ) so that spike counts had means 7, variances 12, and
FRC = 0.5, to match typical values in the V4 data. We used these data
to estimate FRC under model 3.1, and repeated the simulation 10,000 times.
Figure 10A shows the mean of the repeat values of F̂RCmle and Figure 10B
the standard deviation of F̂RCmle relative to what it should be if the spike
counts were generated from the estimation model, equation 3.1, as functions
of the generating model parameters, φ, b, and γ (the estimating model has
φ = 1, b = 0+, and γ = 0). The deviations from lognormality (b > 0) have
practically no effect on F̂RCmle, and the deviations from φ = 1 moderate
effects, that is, F̂RCmle is fairly robust to mild deviations from the Poisson-
lognormal model. However, the deviations from γ = 0 increase the bias of
F̂RCmle substantially and reduce its variance,2 so inferences are not reliable
(for example, a confidence interval for the true FRC would be centered on
the wrong value and have lower coverage than expected). The possibility
of this happening in our data is small because the FNR is less than 10% (see
Figure 5B).

2The FRC is overestimated likely because the positive within-trial covariance (γ > 0)
causes an increase in SCC (see equation 2.2), which is erroneously attributed to the firing
rate’s covariance by the estimation model, equation 3.1, which assumes Cov(Y1r,Y2r) ≡
Cov(X1r, X2r).
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Figure 10: Sensitivity of F̂RCmle to deviations of the spike counts from the PLN
model, equation 3.1, that is, to deviations from φ = 1 (horizontal axis), γ = 0
(different colors), and b = 0 (thickness of the curves) in model 3.5, in terms of
mean and relative standard deviation (SD). The true value of FRC is 0.5. The
mean and SD of F̂RCmle are not sensitive to changes in b ∈ (0, 1), somewhat
sensitive to changes in dispersion of the spike counts φ ∈ (0.8, 1.2), and very
sensitive to changes in within-trial covariability γ .

5 Discussion

We have provided a collection of methods for eliminating Poisson-like noise
from the SCC to produce the FRC. As shown in Figure 3B, FRC tends to be
much larger in magnitude than SCC and should be much more sensitive
to experimental manipulations. A relatively simple bivariate hierarchical
model may be introduced when the within-trial correlation is sufficiently
small that its impact on FRC is negligible, and we proposed a jitter test of
this assumption. We showed that the majority of pairs of V4 neurons failed
to reject the null hypothesis of no within-trial correlation. Careful analysis
requires an evaluation of the power of this test and the sensitivity of the
proposed parametric model to mild departures from assumptions, which
we supplied, along with an evaluation of the expected false nondiscovery
rate (FNR) of the test, which we determined to be low. Together, these
analyses strongly suggest that in our data, within-trial correlation rarely
induces distortions in the estimate of FRC when the jitter test does not
reject the null hypothesis. For pairs of neurons where the hypothesis of no
within-trial correlation was rejected, we used a nonparametric estimate of
within-trial correlation and then applied a correlated Poisson hierarchical
model that allows for positive within-trial correlation. A more complete
accounting of within-trial variation, which would include negative within-
trial correlation, could be obtained from point process models (Snyder &
Miller, 1991; Kass et al., 2014) and is the subject of future research.

Our finding that only a few V4 neuron pairs exhibited within-trial corre-
lations differs from the result of Goris et al. (2014) in the macaque visual area
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V1. First, their SCCs are larger than in our V4 data; a similar discrepancy
is also documented by the V1 analysis of Smith and Kohn (2008) and the
V4 studies of Smith and Sommer (2013), Cohen and Maunsell (2009), and
Mitchell et al. (2009). Second, the attenuation effect in Goris et al. (2014) is
much weaker than ours, so that SCC is only weakly attenuated compared
to FRC (in that paper, FRC is called “gain correlation”), while their point
process covariability is much higher (ours is measured by � or ECC). These
differences may be due to the different area under study. The different anes-
thetics used in the two experiments (our animal was alert) might also have
induced different levels of up and down states (Steriade & Buzsaki, 1990;
Cowan & Wilson, 1994; Timofeev et al., 2001; Steriade et al., 2001), which in
turn could have affected within-trial covariabilities.

Our overall goal was to provide a useful suite of methods for examining
the trial-to-trial correlated behavior of neurons at trial-length timescales.
To the extent that neural implementations of maximum likelihood and
Bayesian inference are possible (e.g., Ma, Beck, Latham, & Pouget, 2006),
downstream neural networks should be able to strip away noise from spike
counts and use FRC to advantage, just as we have been able to do statisti-
cally. Whether they do so remains an open question.

Appendix A: Spike Count Correlation Formula

Using the laws of total expectation and total variance, equations 1.1 and 1.2
imply

E[Yir] = E{E[Yir|Xir]} = E[Xir]

and

Var(Yir) = E{Var(Yir|Xir)} + Var(E[Yir|Xir]) = φiE[Xir] + Var(Xir).

Thus,

Cor(Y1r,Y2r) = γ + Cov(X1r, X2r)∏
i=1,2

√
Var(Yir)

with γ = E[Cov(Y1r,Y2r|X1r, X2r)]

= Cov(X1r, X2r)∏
i=1,2

√
(φiE[Xir] + Var(Xir))

+ γ∏
i=1,2

√
Var(Yir)

= Cov(X1r, X2r)∏
i=1,2

√
Var(Xir)(φi/Fi + 1)

+ �

= Cor(X1r, X2r)
∏

i=1,2

(1 + φi/Fi)
−1/2 + �.
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Appendix B: Lognormal Distribution

Let (W1r,W2r) = (log X1r, log X2r) ∼ N(μ,�). Then:

E[Xir] = E[eWir ] = eμi+σ 2
i /2

Var(Xir)= E[e2Wir ] − (E[eWir ])2

= e2μi+2σ 2
i − e2μi+σ 2

i

= (eμi+σ 2
i /2)2(eσ 2

i − 1),

Cov(X1r, X2r)= E[eW1r+W2r ] − E[eW1r ]E[eW2r ]

= eμ1+μ2+(σ 2
1 +σ 2

2 )/2+σ12 − eμ1+μ2+(σ 2
1 +σ 2

2 )/2

= eμ1+σ 2
1 /2eμ2+σ 2

2 /2(eσ12 − 1)

such that Fi = eμi+σ 2
i /2(eσ 2

i − 1) and Cor(X1r, X2r) = (eρσ1σ2 − 1)
∏

j=1,2(e
σ 2

j −
1)−1/2.

Appendix C: Doubly Correlated Poisson-Lognormal Distribution

Let pλi
(y) be the p.m.f. of Poisson(λi). Let Rir ∼ Poisson(λi), i = 0, 1, 2, be

independent, and define Yir = R0r + Rir, i = 1, 2. The joint distribution of
(Y1r,Y2r) is

P(Y1r = y1,Y2r = y2) = P(R0r + R1r = y1, R0r + R2r = y2)

= P(R1r = y1 − R0r, R2r = y2 − R0r)

=
min{y1,y2}∑

z=0

P(R1r = y1 −R0r, R2r = y2 −R0r, R0r = z)

=
min{y1,y2}∑

z=0

pλ1
(y1 − z)pλ2

(y2 − z)pλ0
(z).

By integrating with respect to (log λ1, log λ2)
T ∼ N(μ,�) we obtain the

p.m.f. of the DC-PLN model, equation 3.2:

pμ,�,γ (y1, y2) =
min{y1,y2}∑

z=0

qμ,�(y1 − z, y2 − z)pλ0
(z) (C.1)
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where

qμ,�(y1, y2) =
∫

R2
pex1 (y1)pex2 (y2)gμ,�(x1, x2)dx1dx2 (C.2)

is the p.m.f. of the PLN model, equation 3.1, and gμ,� is the gaussian p.d.f.
We can compute the ML estimators of μ,�, γ numerically using algo-

rithm 1, when only the spike counts are available, or algorithm 2, when the
spike trains are available. In data simulated as in section 4.2, we found that
algorithm 2 typically yielded lower-variance estimates of FRC. We therefore
recommend algorithm 2, keeping in mind that algorithm 1 could provide
better estimates of other quantities. Note that if we assume γ = 0, that is,
the PLN model, then we just use step 2 of algorithm 2 with γ = 0.

Appendix D: Generalized Count Model

Let Y|λ have the distribution in equation 3.6. Thus,

• If φ ∈ (0, 1), then E[Y|λ] = 	 λ
1−φ


(1 − φ) = ( λ
1−φ

+ ε)(1 − φ) = λ +
ε(1 − φ) ≈ λ, and Var(Y|λ) = E[Y|λ]φ = λφ + ε(1 − φ)φ ≈ λφ, where
ε ∈ (−0.5, 0.5), such that Var(Y|λ)/E[Y|λ] ≈ φ.

• If φ = 1, then E[Y|λ] = λ and Var(Y|λ) = λ.
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• If φ > 1, then E[Y|λ] = rp(1 − p)−1 = λ and Var(Y|λ) = rp(1 − p)−2 =
λφ.

Appendix E: Nonparametric Estimators of γ and φi

Proof of Proposition 1. Let Xr = (X1r, X2r) and Yr = (Y1r,Y2r). Exploit-
ing the covariance decomposition as in equation 1.3 and the fact that
E[Yir j|Xr,Yr] = pi jYir, we get

Cov(Y1r j,Y2rh|Xr)

= E[Cov(Y1r j,Y2rh|Xr,Yr)|Xr] + Cov(E[Y1r j|Xr,Yr], E[Y2rh|Xr,Yr]|Xr)

= E{E[(Y1r j −p1 jY1r)(Y2rh−p2hY2r)|Xr,Yr] | Xr}+Cov(p1 jY1r, p2hY2r|Xr)

= E[(Y1r j − p1 jY1r)(Y2rh − p2hY2r)|Xr] + p1 j p2hCov(Y1r,Y2r|Xr),

which implies

E[(Y1r j − p1 jY1r)(Y2rh − p2hY2r)|Xr]

= Cov(Y1r j,Y2rh|Xr) − p1 j p2hCov(Y1r,Y2r|Xr). (E.1)

Moreover, zero conditional covariance across time bins j, h s.t. | j − h| > K
implies

Cov(Y1r,Y2r|Xr) =
∑

| j−h|≤K

Cov(Y1r j,Y2rh|Xr). (E.2)

Therefore, combining equations E.1 and E.2, we get

∑
| j−h|≤K

E[(Y1r j − p1 jY1r)(Y2rh − p2hY2r)|Xr]

= Cov(Y1r,Y2r|Xr)

⎛⎝1 −
∑

| j−h|≤K

p1 j p2h

⎞⎠ ,

implying that E[Gm,K(S1, S2)] = E[Cov(Y1r,Y2r|X1r, X2r)].
The proof that Gm,K(Si, Si) is an unbiased estimator of φiE[Xir] is sim-

ilar; all we need is to replace (Y1r,Y2r) and (X1r, X2r) by (Yir,Yir) and
(Xir, Xir).
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Table 1: Time (ms) to Compute Gm,K (equation 3.7) for a Neuron Pair for Differ-
ent Values of n and m (K = �mδ/T
).

Number of Trials (n)

δ/T m 60 80 100

Gm,K 0.01 50 0.3 (207) 0.3 (275) 0.4 (346)
100 0.8 (322) 0.9 (426) 1.1 (526)
200 2.1 (603) 2.5 (867) 3.4 (976)

0.02 50 0.6 (235) 0.6 (289) 0.8 (357)
100 1.2 (354) 1.3 (492) 1.8 (581)
200 3.3 (744) 4.3 (914) 5.5 (1202)

Note: The implementation time of the jitter test based on Gm,K
(section 3.3) with 100 bootstraps and 20-bin psth is indicated
in parentheses.

Note that combining the conditions K < m − 1 and K/m ≥ δ/T of sec-
tion 3.2 yields δ

T ≤ K
m < m−1

m < 1, which implies δ
T < 1 and m−1

m > δ
T ⇒ m >

T/(T − δ). These conditions are necessary to obtain unbiased estimators.

Appendix F: Expected Conditional Spike-Count Correlation

The expected conditional spike-count correlation (ECC) in equation 3.13
can be estimated nonparametrically analogous to equation 3.7:

ÊCCsamp = 1
|I|
∑
r∈I

∑
| j−h|≤K(Y1r j − p̂1 jY1r)(Y2rh − p̂2hY2r)/Q̂12(K)∏

i=1,2

√∑
| j−h|≤K(Yir j − p̂i jYir)(Yirh− p̂ihYir)/Q̂ii(K)

,

(F.1)

where Qil (K) = 1 −∑| j−h|≤K pi j plh, and p̂i j’s are as discussed in section 3.2,
and I = {r ∈ {1, . . . , n} : Y1r,Y2r > 0}, that is, I is the set of trials where both
neurons spiked at least once. Notice that if Cov(Y1r,Y2r|X1r, X2r) is constant
across trials, then ECC = γ × E[1/

∏
i=1,2

√
Var(Yir|Xir)], so that ECC = 0 ⇔

γ = 0. Otherwise the equivalence is not necessarily true. For instance, under
model 3.2, we have ECC = γ × E[1/

√
(γ + W1r)(γ + W2r)].

Appendix G: Computational Time

We implemented our estimation and testing procedures in R, by using per-
sonal codes and modifications of the package poilog to estimate the DC-
PLN model, equation 3.2. We used a laptop with an Intel CoreTM 2 Duo CPU
T6600 (2 × 2.20 GHz), RAM 4GB (DDR 800 MHz); and OS Ubuntu 15.04.
Table 1 displays the time to compute Gm,K (see equation 3.7) and perform



876 G. Vinci, V. Ventura, M. Smith, and R. Kass

Table 2: Computational Time (ms) to Estimate the Parameters of the DC-PLN
Parametric Model, Equation 3.2, for a Neuron Pair.

Number of Trials (n)

60 80 100

Estimate μ, � assuming γ = 0 240 293 383
Estimate μ, �, γ (algorithm 1) 4516 6364 7494
Estimate μ, �, γ (algorithm 2, step 2) 2257 2769 3721

Note: Time for step 1 of algorithm 2 can be found in table 1.

the jitter test on a neuron pair, and Table 2 to estimate the parametric model.
The times required to process a data set with N neurons and S stimuli can
be obtained by multiplying the values in the tables by

(N
2

)× S. For example,
in section 4, the multiple jitter tests required about

(53
2

)× 12 × 354 ms ≈ 97
minutes.

G.1 Choosing m of Gm,K. In section 3.1 we argued that the number of
bins m should be large. However, the computational burden may be too
large when we perform the jitter test (see table 1): the number of elements
in the summand in equation 3.7 is n × M, where M = card({ j, h : 1 < j, h ≤
m, | j − h| ≤ K}) = m(2K + 1) − K(K + 1), so that for a fixed ratio π = K/m =
δ/T, the computational time of equation 3.7 is proportional to n × M =
O(n × m2). To set an upper bound D on M given π , we use m∗(π, D) =
1−π+

√
(1−π)2+4(2π−π2 )D
2(2π−π2 )

and K = �πm∗
.

Appendix H: Generalized Tuning Curve Correlation

The tuning curve of a neuron i is generally defined as the spike count aver-
aged across trials, fi(s) = E[Yir(s)], which varies with the stimulus s when
s modulates the neuron (Butts & Goldman, 2006). Under the assumptions
of section 2, the tuning curve reduces to fi(s) = E[Xir(s)], which contains
information about the firing rate averaged across trials but none about the
trial-to-trial variability of Xir(s). Instead of reducing the tuning properties
to the mean firing rate, we may retain in addition the full distribution of
Xir(s), say Fis, for each stimulus s: this ensemble is what we call the gener-
alized tuning curve (GTC). Figure 11A displays the GTC for two example
V4 neurons, assuming the Poisson-lognormal model, equation 3.1, for their
spike counts. Figure 8 shows the joint GTC for a neuron pair, which further
displays their shared trial-to-trial covariability.

The tuning curve correlation (TCC) is widely considered an important
measure of similarity of the neural activity between two neurons across
stimuli. It can be defined as
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Figure 11: (A) Generalized tuning curves of two V4 neurons with 0.05, 0.15,

. . . , 0.95 quantiles, estimated assuming the Poisson-lognormal model, equation
3.1. The red curves are the standard tuning curves. (B) GTCC versus TCC:
They can have different signs, and GTCC appears more attenuated than TCC.
(C) SCC, FRC, ECC versus GTCC (local linear regression with 95% simultaneous
confidence bands): all correlations increase with GTCC; the relationships are
more pronounced than when plotted versus TCC in Figure 7.

TCC = Cor( f1(S), f2(S)), (H.1)

where the covariance is with respect to the random variable S, which codes
for the stimulus; for example, when all stimuli are presented with equal
frequency, S is uniform over the stimuli. Consider the toy example where,
for a stimulus s, (X1r(s), X2r(s)) are (trial-to-trial) random variables with
generative model:{

X1r(s) ∼ F1s,

X2r(s) = (1 + β) f1(s) − βX1r(s),

where we choose β > 0 to achieve P(X2r(s) ≥ 0) = 1. This model implies
E[X1r(s)] = E[X2r(s)] for all s and, in turn, TCC = 1, from which one might
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conclude that the two neurons have proportional tuning curves. But the
model also implies FRCs = Cor(X1r(s), X2r(s)) = −1 for all s, which reveals
that TCC only summarizes the similarity of the expected firing rates of
the two neurons across stimuli but does not convey the sign and magni-
tude of their shared trial-to-trial variability. This motivates us to define the
generalized tuning curve correlation:

GTCC = Cor(X1r(S), X2r(S)), (H.2)

where the correlation is with respect to the stimulus random variables S,
as in equation H.1, but also to the trial-to-trial random firing rates Xir(s).
Hence, the TCC only captures the covariability of the expected firing rates
across stimuli, and the GTCC also accounts for changes in their joint distri-
bution, such as trial-to-trial firing rate correlation (FRC). That is, the GTCC
summarizes the strength of the relationship between two neurons across
both trials and stimuli.

Note that when the experiment involves only one stimulus, so that
S = s is not a random variable since it always takes the same value, then
GTCC = FRC; when the firing rates have no trial-to-trial variability, that
is, when Xir(s) = E(Xir(s)) for all r, then GTCC = TCC since fi(s) = Xir(s)
for all r. When both the stimulus and the firing rates are random, the
GTCC can be viewed as an approximate average of FRC across stimuli or
as an approximate average of TCC across trials. More precisely, we can
rewrite

GTCC = E[Cov(X1r(S), X2r(S)|S)] + Cov( f1(S), f2(S))∏
i=1,2

√
E[Var(Xir(S)|S)] + Var( fi(S))

= TCC × E[Cov(X1r(S), X2r(S)|S)]/Cov( f1(S), f2(S)) + 1∏
i=1,2

√
E[Var(Xir(S)|S)]/Var( fi(S)) + 1

= TCC × �, (H.3)

where � depends on the joint distributions of the firing rates at differ-
ent stimuli (Figure 8 shows such a distribution), so that GTCC can be
viewed as a modified version of TCC. Figure 11B shows GTCC versus
TCC for all the neuron pairs in the V4 data: GTCC has smaller magnitude,
and GTCC and TCC sometimes have different signs. Figure 11C shows
SCC, FRC, and ECC as functions of GTCC, which resembles the plot of the
same quantities versus TCC in Figure 7B, although the relationships appear
stronger. This happens because GTCC is approximately an average of FRC
across stimuli, as justified above, whereas SCC is an attenuated version of
FRC.
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