Chapter 12

Bayesian Inference

This chapter covers the following topics:

Concepts and methods of Bayesian inference.

Bayesian hypothesis testing and model comparison.
Derivation of the Bayesian information criterion (BIC).
Simulation methods and Markov chain Monte Carlo (MCMC).
Bayesian computation via variational inference.

Some subtle issues related to Bayesian inference.

12.1 What is Bayesian Inference?

There are two main approaches to statistical machine learning: frequentist (or classical)
methods and Bayesian methods. Most of the methods we have discussed so far are fre-
quentist. It is important to understand both approaches. At the risk of oversimplifying, the
difference is this:

Frequentist versus Bayesian Methods

e In frequentist inference, probabilities are interpreted as long run frequencies.
The goal is to create procedures with long run frequency guarantees.

¢ In Bayesian inference, probabilities are interpreted as subjective degrees of be-
lief. The goal is to state and analyze your beliefs.
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Some differences between the frequentist and Bayesian approaches are as follows:

Frequentist Bayesian
Probability is: limiting relative frequency degree of belief
Parameter 6 is a: fixed constant random variable
Probability statements are about: | procedures parameters
Frequency guarantees? yes no
To illustrate the difference, consider the following example. Suppose that X;,..., X, ~

N(6,1). We want to provide some sort of interval estimate C' for 6.

Frequentist Approach. Construct the confidence interval

1.96 — 1.96

C= Yn__a Xn
NIRRT

Then
Py(0 € C) =0.95 forall § € R.

The probability statement is about the random interval C'. The interval is random because
it is a function of the data. The parameter 6 is a fixed, unknown quantity. The statement
means that C' will trap the true value with probability 0.95.

To make the meaning clearer, suppose we repeat this experiment many times. In fact, we
can even allow 6 to change every time we do the experiment. The experiment looks like
this:

Nature R Nature generates N Statistician computes
chooses 6, n data points from N (6, 1) confidence interval C;
Nature R Nature generates N Statistician computes
chooses 6, n data points from N (6, 1) confidence interval C,

We will find that the interval C; traps the parameter #;, 95 percent of the time. More
precisely,

1 n
1 1 — . ) > .
hggglf - El 1(0; € C;) > 0.95 (12.1)
almost surely, for any sequence 61, 0,, .. ..

Bayesian Approach. The Bayesian treats probability as beliefs, not frequencies. The
unknown parameter 6 is given a prior distributon 7 (#) representing his subjective beliefs
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about . After seeing the data Xj,..., X, he computes the posterior distribution for ¢
given the data using Bayes theorem:

(0| X1,...,X,) o< L(O)7(0) (12.2)

where £(0) is the likelihood function. Next we finds an interval C' such that
/ (0| Xy,...,X,)d0 = 0.95.
c

He can thn report that
P(6 € C|X1,...,X,) = 0.95.

This is a degree-of-belief probablity statement about 6 given the data. It is not the same
as (12.1). If we repeated this experient many times, the intervals would not trap the true
value 95 percent of the time.

Frequentist inference is aimed at given procedures with frequency guarantees. Bayesian
inference is about stating and manipulating subjective beliefs. In general, these are differ-
ent, A lot of confusion would be avoided if we used F'(C') to denote frequency probablity
and B(C) to denote degree-of-belief probability. These are idfferent things and there is
no reason to expect them to be the same. Unfortunately, it is traditional to use the same
symbol, such as P, to denote both types of probability which leads to confusion.

To summarize: Frequentist inference gives procedures with frequency probability guar-
antees. Bayesian inference is a method for stating and updating beliefs. A frequentist
confidence interval C' satisfies

1191f]P’9(9 S C) =1—«a

where the probability refers to random interval C'. We call infy Py(f € C) the coverage of
the interval C'. A Bayesian confidence interval C' satisfies

P €C|Xy,..., X)) =1—a

where the probability refers to 6. Later, we will give concrete examples where the coverage
and the posterior probability are very different.

Remark. There are, in fact, many flavors of Bayesian inference. Subjective Bayesians in-
terpret probability strictly as personal degrees of belief. Objective Bayesians try to find
prior distributions that formally express ignorance with the hope that the resulting poste-
rior is, in some sense, objective. Empirical Bayesians estimate the prior distribution from
the data. Frequentist Bayesians are those who use Bayesian methods only when the re-
sulting posterior has good frequency behavior. Thus, the distinction between Bayesian and
frequentist inference can be somewhat murky. This has led to much confusion in statistics,
machine learning and science.
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12.2 Basic Concepts

Let X1, ..., X,, be n observations sampled from a probability density p(x | §). In this chapter,
we write p(x | 0) if we view ¢ as a random variable and p(x | #) represents the conditional
probability density of X conditioned on 6. In contrast, we write py(x) if we view 6 as a
deterministic value.

12.2.1 The Mechanics of Bayesian Inference

Bayesian inference is usually carried out in the following way.

Bayesian Procedure

1. We choose a probability density w(f) — called the prior distribution — that
expresses our beliefs about a parameter # before we see any data.

2. We choose a statistical model p(x | #) that reflects our beliefs about x given 6.

3. After observing data D,, = {Xi,..., X, }, we update our beliefs and calculate
the posterior distribution p(0 | D,,).

By Bayes’ theorem, the posterior distribution can be written as

(X, X [0)m(0)  La(0)7(0)

p(0|X1""7Xn) - p(Xl,,Xn) - Cn OCﬁ?’b(e)/ﬂ-(e) (12-3)

where £,,(6) = [[;—, p(X; | 0) is the likelihood function and

en = p(X1s . X)) = /p(Xl, X | 0)7(6)d0 = /En(Q)W(G)dQ

is the normalizing constant, which is also called the evidence.

We can get a Bayesian point estimate by summarizing the center of the posterior. Typically,
we use the mean or mode of the posterior distribution. The posterior mean is

/ 0L, (0)7(0)d0
/ Lo(0)r(0)d0

5, = / 0p(0] D)0 —
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We can also obtain a Bayesian interval estimate. For example, for « € (0, 1), we could find
a and b such that

/a P(Q\Dn)dﬁz/boop(9|Dn)d9:a/2.

—00

Let C' = (a,b). Then
b
P(0 € C|D,) :/ p(0D,)do =1 — a,
so C' is a 1 — « Bayesian posterior interval or credible interval. If § has more than one
dimension, the extension is straightforward and we obtain a credible region.

Example 205. Let D,, = {X;,...,X,,} where X;,..., X, ~ Bernoulli(d). Suppose we take
the uniform distribution 7 (f) = 1 as a prior. By Bayes’ theorem, the posterior is

p(e | Dn) X 7T(Q)En(g) = 05”(1 — O)n_S" = QS”+1_1(1 _ 9)n_5n+1—1

where S, = Y | X; is the number of successes. Recall that a random variable # on the
interval (0, 1) has a Beta distribution with parameters « and f$ if its density is

Ta5(60) = —32‘); (?) 0 (1 - 0)° .

We see that the posterior distribution for ¢ is a Beta distribution with parameters S,, + 1
and n — S, + 1. That is,

_ ['(n +2) (Snt1)—1 (n—Sp+1)—1
P(0]Dn) = F(Sn+1)F(n—Sn+1)9 (1-6) '

We write this as
0| D,, ~ Beta(S, +1,n— S5, +1).

Notice that we have figured out the normalizing constant without actually doing the inte-

gral / L, (0)m(0) df. Since a density function integrates to one, we see that

b ns.  D(S,+1)I(n—S,+1)
/095 (1—0)" > = 1 2) :

The mean of a Beta(«, ) distribution is o/ (a + ) so the Bayes posterior estimator is

g:Sn_Fl.

It is instructive to rewrite 6 as
9= 0+ (1—A\)0
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where 6 = S, /n is the maximum likelihood estimate, § = 1/2 is the prior mean and
A =n/(n+2) ~ 1. A 95 percent posterior interval can be obtained by numerically finding
b

a and b such that / p(0|D,) df = .95.

a

Suppose that instead of a uniform prior, we use the prior 6§ ~ Beta(a, ). If you repeat the
calculations above, you will see that 6 | D,, ~ Beta(a+ S,,, 5+ n — S,,). The flat prior is just
the special case with & = § = 1. The posterior mean in this more general case is

— a+ Sy, n n a+p
0= = 0 — )0
a+pB+n (a+ﬂ+n) +(a+5+n) 0

where 0y = o/(a + ) is the prior mean.

An illustration of this example is shown in Figure 12.1. We use the Bernoulli model to
generate n = 15 data with parameter 6 = 0.4. We observe s = 7. Therefore, the maximum
likelihood estimate is # = 7/15 = 0.47, which is larger than the true parameter value 0.4.
The left plot of Figure 12.1 adopts a prior Beta(4,6) which gives a posterior mode 0.43,
while the right plot of Figure 12.1 adopts a prior Beta(4, 2) which gives a posterior mode
0.67.

Density
Density -

Figure 12.1: Illustration of Bayesian inference on Bernoulli data with two priors. The
three curves are prior distribution (red-solid), likelihood function (blue-dashed), and the
posterior distribution (black-dashed). The true parameter value 6 = 0.4 is indicated by the
vertical line.

Example 206. Let X ~ Multinomial(n, 8) where 8 = (y,...,0x)" be a K-dimensional
parameter (K > 1). The multinomial model with a Dirichlet prior is a generalization of
the Bernoulli model and Beta prior of the previous example. The Dirichlet distribution for
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K outcomes is the exponential family distribution on the K — 1 dimensional probability
simplex! A given by

F(ZKzl aj) - a;—1
m(0) = ——— 119’
) Hj:l () ]1:[1

where o = (ay,...,ax)? € RY is a non-negative vector of scaling coefficients, which are
the parameters of the model. We can think of the sample space of the multinomial with K
outcomes as the set of vertices of the K-dimensional hypercube Hy, made up of vectors
with exactly one 1 and the remaining elements 0:

(. J/

x = (0,0,...,0,1,0,...,0)".

K places
Let X; = (Xu, ..., Xix)T € Hg. If
0 ~ Dirichlet(ar) and X;|6 ~ Multinomial(8) fori=1,2,...,n,
then the posterior satisfies
n K K K
p(O] X1, X)) o Lo 7(0) o [T 0 [T 057 = [T o7 "
i=1 j=1 j=1 j=1
We see that the posterior is also a Dirichlet distribution:
0| X,,...,X, ~ Dirichlet(a+nX)
where X =n 1Y " | X, € Ag.

Since the mean of a Dirichlet distribution 7,(0) is given by

T
(03] (0774
E(0) = e ,
) <Efi1 Qi Zfil ai)

the posterior mean of a multinomial with Dirichlet prior is

T
o+ Xa g+ Xz’K)

E@|Xy,...,X,) = e
1% ) (Zfilaﬁ'” Zfilaﬁ—n

! The probability simplex A is defined as

K
AK:{0:(91,...,9K)T€RK‘91-ZOfOl”aH i and Zeizl}_

=1
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The posterior mean can be viewed as smoothing out the maximum likelihood estimate by
allocating some additional probability mass to low frequency observations. The parameters
o, ..., act as “virtual counts” that don’t actually appear in the observed data.

An illustration of this example is shown in Figure 12.2. We use the multinomial model
to generate n = 20 data points with parameter 8 = (0.2,0.3,0.5)”. We adopt a prior
Dirichlet(6, 6,6). The contours of the prior, likelihood, and posterior with n = 20 observed
data are shown in the first three plots in Figure 12.2. As a comparison, we also provide the
contour of the posterior with n = 200 observed data in the last plot. From this experiment,
we see that when the number of observed data is small, the posterior is affected by both
the prior and the likelihood; when the number of observed data is large, the posterior is
mainly dominated by the likelihood.

In the previous two examples, the prior was a Dirichlet distribution and the posterior was
also a Dirichlet. When the prior and the posterior are in the same family, we say that the
prior is conjugate with respect to the model; this will be discussed further below.

Example 207. Let X ~ N(#,0?%) and D,, = {X},..., X,,} be the observed data. For sim-
plicity, let us assume that ¢ is known and we want to estimate # € R. Suppose we take as
a prior § ~ N(a,b?). Let X = >_' | X,/n be the sample mean. In the Exercise, it is shown
that the posterior for 6 is

0| D, ~ N(0,7?) (12.4)

where R
0 =wb+ (1 —w)a,

1
~ = 5 11 1
=X, w=—"1T1, —=—+—,
L+ 12 ser P

and se = o//n is the standard error of the maximum likelihood estimate f. This is another
example of a conjugate prior. Note that w — 1 and 7/se — 1 as n — oo. So, for large n,
the posterior is approximately N (5, se?). The same is true if n is fixed but b — oo, which
corresponds to letting the prior become very flat.

Continuing with this example, let us find C' = (¢, d) such that P(§ € C'|D,,) = 0.95. We
can do this by choosing ¢ and d such that P(6 < ¢|D,,) = 0.025 and P(6 > d|D,,) = 0.025.

More specifically, we want to find ¢ such that
Dn> =P (Z < ¢ 9) =0.025
T

where Z ~ N(0,1) is a standard Gaussian random variable. We know that P(Z < —1.96) =
0.025. So,

0—60 c—80
<
T T

IP’(6<c|Dn):IP’<

c—0

= —1.96

T
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likelihood function with n = 20

posterior distribution with n = 20 posterior distribution with n = 200

Figure 12.2: Illustration of Bayesian inference on multinomial data with the prior
Dirichlet(6, 6,6). The contours of the prior, likelihood, and posteriors are plotted on a
two-dimensional probability simplex (Starting from the bottom left vertex of each triangle,
clock-wisely the three vertices correspond to 6y, 65, 05). We see that when the number of
observed data is small, the posterior is affected by both the prior and the likelihood; when
the number of observed data is large, the posterior is mainly dominated by the likelihood.

implying that ¢ = 6 — 1.967. By similar arguments, d = 0+ 1.967. So a 95 percent Bayesian
credible interval is 6 4- 1.96 7. Since 6 ~ 6 and 7 ~ se when n is large, the 95 percent
Bayesian credible interval is approximated by 64 1.96 se which is the frequentist confidence
interval.
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12.2.2 Bayesian Prediction

After the data D,, = {Xj, ..., X,,} have been observed, the Bayesian framework allows us
to predict the distribution of a future data point X conditioned on D,,. To do this, we first
obtain the posterior p(f | D,,). Then

p(x|D,) = / p(x,0|D,)d0
_ / p(x] 6, D)p(0| D)o

— [ plx|0)p(6 D)

Where we use the fact that p(x|6,D,) = p(x|6) since all the data are conditionally in-
dependent given . From the last line, the predictive distribution p(x|D,,) can be viewed
as a weighted average of the model p(x | ). The weights are determined by the posterior
distribution of 6.

12.2.3 Inference about Functions of Parameters

Given the data D,, = { X1, ..., X,,}, how do we make inferences about a function 7 = g(6)?
The posterior CDF for 7 is

H(t D) = Plol6) < |D,) = [ p(6]D,)a8

where A = {0 : ¢(0) < t}. The posterior density is p(7 | D,,) = H'(7 | D).

Example 208. Under a Bernoulli model X ~ Bernoulli(6), let D,, = {X3,...,X,} be the
observed data and 7(#) = 1 so that 6 | D,, ~ Beta(S,, +1,n — S, + 1) with 5, = > | X;.
We define ¢) = log(6/(1 — 6)). Then

H(t|D,) = B <t|D,) :P(log(&) Stan)

et
= Plo< 1D,
1+¢et

et /(1+et)
_ / p(0]D,) do
0

et/(1+et)
_ L(n+2) / 65 (1 — )" df
(S, +1)I'(n— S, +1) Jo
and
: I(n+2) N (T
D, =H D,) =
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for ¢ € R.

12.2.4 Multiparameter Problems

Let D,, = {Xi,..., X, } be the observed data. Suppose that 8 = (6,,...,0,4)" with some
prior distribution 7(€). The posterior density is still given by

p(0|D,) x L,(0)7(0).

The question now arises of how to extract inferences about one single parameter. The key
is to find the marginal posterior density for the parameter of interest. Suppose we want to
make inferences about #,. The marginal posterior for 6, is

In practice, it might not be feasible to do this integral. Simulation can help: we draw
randomly from the posterior:
0,...,6° ~p(0|D,)

where the superscripts index different draws. Each 67 is a vector 8/ = (#/,...,6°)". Now
collect together the first component of each draw: 6},...,05. These are a sample from
p(01 | D,,) and we have avoided doing any integrals. One thing to note is, sampling B data
from a multivariate distribution p(@ | D,,) is challenging especially when the dimensionality
d is large. We will discuss this topic further in the section on Bayesian computation.

Example 209 (Comparing Two Binomials). Suppose we have n; control patients and n,
treatment patients and that X; is the number of survived patients in the control group;
while x, is the number of survived patients in the treatment group. We assume the Bino-
mial model:

X1 ~ Binomial(nl, 91) and X2 ~ Bil’lOIl’li&l(TlQ, 92)

We want to estimate 7 = g(6y,0,) = 05 — 0.

If m(0;,6,) = 1, the posterior is
P01, 05| X1, Xo) oc 0751 (1 — 0)" X102 (1 — )2,
Notice that (6, 02) live on a rectangle (a square, actually) and that
p(b1, 02 | X1, X2) = p(6h | X1)p(62 | X2)
where
(01| X1) oc 074 (1 = 61) =™ and p(fa | X) o< 052 (1 — 6,)"2 2,

which implies that ¢, and 6, are independent under the posterior. Also, 6; | X; ~ Beta(X;+
I,ng — X, + 1) and 6| Xy, ~ Beta(X; + 1,ny — X5 + 1). If we simulate 6},...,08 ~
Beta(X; + 1,n; — X; + 1) and 63, ..., 02 ~ Beta(Xy + 1,ny — X5 + 1), then 7, = 65 — 65,
b=1,...,B,is asample from p(7 | X1, X3).

Statistical Machine Learning, by Han Liu and Larry Wasserman, (©)2014 309



Statistical Machine Learning CHAPTER 12. BAYESIAN INFERENCE

12.2.5 Flat Priors, Improper Priors, and “Noninformative” Priors

An important question in Bayesian inference is: where does one get the prior 7(#)? One
school of thought, called subjectivism says that the prior should reflect our subjective opin-
ion about 6 (before the data are collected). This may be possible in some cases but is im-
practical in complicated problems especially when there are many parameters. Moreover,
injecting subjective opinion into the analysis is contrary to the goal of making scientific
inference as objective as possible.

An alternative is to try to define some sort of “noninformative prior.” An obvious candidate
for a noninformative prior is to use a flat prior 7(f) o constant. In the Bernoulli example,
taking 7(0) = 1 leads to 0| D,, ~ Beta(S,, + 1,n — S,, + 1) as we saw earlier, which seemed
very reasonable. But unfettered use of flat priors raises some questions.

Improper Priors. Let X ~ N(0,0?) with ¢ known. We denote D,, = {X,...,X,} as
the observed data. Suppose we adopt a flat prior 7(6) x ¢ where ¢ > 0 is a constant.

Note that / 7m(0)df = oo so this is not a valid probability density. We call such a prior an

improper prior. Nonetheless, we can still formally carry out Bayes’ theorem and compute
the posterior density by multiplying the prior and the likelihood:

p(0|D,) x L,(0)m(0) < L,(0).

Let X = >"" | X;/n. This gives 0| D,, ~ N(X,0?/n) and the resulting Bayesian point and
interval estimators agree exactly with their frequentist counterparts. In general, improper
priors are not a problem as long as the resulting posterior is a well-defined probability
distribution.

Flat Priors are Not Invariant. Let X ~ Bernoulli(f) and suppose we use the flat prior
7(0) = 1. This flat prior presumably represents our lack of information about ¢ before the
experiment. Now let ¢» = log(6/(1 — 0)). This is a transformation of # and we can compute
the resulting distribution for ¢, namely,
P
e
p(¥) = A1)

which is not flat. But if we are ignorant about ¢ then we are also ignorant about ¢ so we
should use a flat prior for ). This is a contradiction! In short, the notion of a flat prior
is not well defined because a flat prior on a parameter does not imply a flat prior on a
transformed version of this parameter. Flat priors are not transformation invariant.

Jeffreys’ Prior. To define priors that are transformation invariant, Harold Jeffreys came
up with a rule: take the prior distribution on parameter space that is proportional to the
square root of the determinant of the Fisher information.

0?logp(X | 6) ‘0]

m(0) o< v/ |1(0)] Wheref(e):_E[ 00067
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is the Fisher information.

There are various reasons for thinking that this prior might be a useful prior but we will
not go into details here. The next theorem shows its transformation invariant property.

Theorem 210. The Jeffreys’ prior is transformation invariant.

Proof. Let the likelihood function be p(x|#) and ) be a transformation of #, we need to
show that 7(¢) o« +/|I(¢)|. This result follows from the change of variable theorem and
the fact that the product of determinants is the determinant of matrix product. O]

Example 211. Consider the Bernoulli(f) model. Recall that

Jeffreys’ rule uses the prior

7(0) o /1(0) = 607Y2(1 —6)~V/2

This is a Beta (1/2,1/2) density and is very close to a uniform density.

The Jeffreys’ prior is transformation invariant but this does not mean it is “noninformative”.
Researchers have tried to develop more sophisticated noninformative priors like reference
priors [9, 7]. The reference prior coincides with the Jeffrey’s prior for single-parameter
models. For general multiparameter models, they can be different.

12.2.6 Conjugate Priors

We have already seen examples of conjugate priors above, with the binomial/Beta and
multinomial/Dirichlet families. Here we first look at conjugacy from a more general per-
spective, and then give further examples.

Loosely speaking, a prior distribution is conjugate if it is closed under sampling. That is,
suppose that P is a family of prior distributions, and for each 6, we have a distribution
p(-|0) € F over a sample space X. Then if the posterior

p(0]%) = p(x|0) m(6)
/p(x|0) 7(0) df

satisfies p(- | x) € P, we say that the family P is conjugate to the family of sampling distri-
butions F. In order for this to be a meaningful notion, the family P should be sufficiently
restricted, and is typically taken to be a specific parametric family.
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We can characterize the conjugate priors for general exponential family models. Suppose
that p(- | 0) is a standard exponential family model, where the densities with respect to a
positive measure u take the form

p(x|0) = exp(0Tx — A(6)) (12.5)

where the parameter 8 € R? is d-dimensional, and the parameter space © C R? is open,
with
/exp (0"x — A(0)) du(x) < oco.

The moment generating function, or log-normalizing constant A(@) is given by

A(0) = log/exp(@Tx — A(0)) du(x).

A conjugate prior for the exponential family (12.5) is a density of the form
exp (noxt 0 — noA(6))
/exp (nox4 @ — noA(0)) do

Txomo (0) =
where x, € R? is a vector and ny € R is a scalar.

To see that this is conjugate, note that
P(X|0) Teyno(0) = exp (87x — A(0)) exp (nox) 0 — ngA(6))
= exp ((x +x0)" 60— (1+ nO)A(9)>

= exp ((1+n0)< * %o )Te— (1—|—n0)A(0)>

1+n0 1+7L0

X T nox 0).
1+xn0+1£n871+n0( )

We can think of the prior as incorporating n, “virtual” observations of x, € R?. The
parameters of the posterior after making one “real” observation x are then n;, = 1+ ny and

X noXo
1+ Mo 1+ o

Xy =
which is a mixture of the virtual and actual observations. More generally, if we have n

observations X, ..., X, then the posterior takes the form

p(@|X1,...,X,) = Tax

n+ng

2258 o (0)
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n+ny n-+ng

x exp<(n+no)< nX |, Xy )Ta—(n+n0)A(9>>,

where X = > | X;/n. Thus, the parameters of the posterior are nf, = n + ny and the
mixture

, nX NoXo
XO = + .
n + ny n —+ ny

Now, let 7y, », be defined by
Txomo (8) = xp (noxg @ — noA(0))
so that

Vixono (0) = 10 (X0 = VA(O)) T, (0)-

/ Vg (0) dO = V < / Txomo (0) de) —0,

from which it follows that

E[VA(0)] = / VA(0) Ty, (0)d0 = x0 — nio / Vg o () d6 = Xo,

Since

where the expectation is with respect to 7y, ,,(6). More generally,
TLY noXo
+

no+n no+n

E[VA®)|Xi,...,X,] =

Under appropriate regularity conditions, the converse also holds, so that linearity of

is sufficient for conjugacy; this is the following result of Diaconis (1979), stated here in
the continuous case.

Theorem 212. Suppose that © ¢ R? is open, and let X be a sample of size one from the
exponential family p(- | @), where the support of ; contains an open interval. Suppose that
0 has a prior density 7(6) which does not concentrate at a single point. Then the posterior
mean of VA(0) given a single observation X is linear,

E(VA@#)| X) =aX + b,
if and only if the prior 7 () is given by

l1—a

a

7(0) o< exp (ébTa — A(H)) :
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A similar result holds in the case where p is a discrete measure, as in the case of the
multinomial family.

First consider the Poisson model with rate A > 0, given by sample space X = Z, and

X

P(X =x|A) = %6_)\ ox exp(xlog A — \).
Thus the natural parameter is § = log ), and the conjugate prior takes the form
Txomo(A) X €xp(noxg log A — ngA).
A better parameterization of the prior is

Ta(N) oc A LePA

which is the Gamma(a, #) density. Using this parameterization, let X1, ..., X,, be observa-
tions from Poisson(\), we see that the posterior is given by

AMX1...,X, ~ Gamma(a+nX,B+n).

Here we see that the prior acts as if § virtual observations were made, with a total count
of & — 1 among them.

Next consider the exponential model, where the sample space X = R, is the non-negative
real line, and

p(x]0) = e,

This is a widely used model for survival times or waiting times between events. The
conjugate prior, in the most convenient parameterization, is again the Gamma

Tap(0) oc 02 te P
Let X,..., X, be observed data from Gamma(#). The posterior is given by
0| X1,...,X, ~ Gamma(a+n,3+nX).

Thus, in this case the prior acts as if « — 1 virtual examples are used, with a total waiting
time of f.

The discrete analogue of the exponential model is the geometric distribution, with sample
space X' = Z. , the strictly positive integers and sampling distribution

P(X =x|0) = (1-6)"0.

The conjugate prior for this model is the Gamma(a, #) distribution. Let X;,..., X, be
observed data from Geometric(f). The posterior is

0| X1,..., X, ~ Gamma(a+n,S+nX)
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just as for the exponential model.

Next, consider a Gaussian model with known mean p, so that the free parameter is the
variance o2. The likelihood function is

1 n
P Xl o) o (08 enp (= Y0 - )

where

The conjugate prior is an inverse Gamma distribution. Recall that # has an inverse Gamma
distribution with parameters « and ( in case 1/§ ~ Gamma(«, 3); the density takes the
form

Tap(f) oc =T e=0/0,

With this prior, the posterior distribution of o2 is given by

o*|X1,...,X, ~ InvGamma (a+ g,ﬁ—i— g(X —u)2) .

Alternatively, the prior can be parameterized in terms of the scaled inverse y? distribution,
which has density of the form

2
o2 (0) o = (1+10/2) oy (_Vggo)‘

This is the distribution of ¢§1yZ where Z ~ x2 . Under this prior, the posterior takes the
form

2 X _z
o? 1 Xy, ., X, ~ ScaledInv-XQ(y0+n, Y090 _1_”( 1) )

Vo +n Vo +n

In the multidimensional setting, the inverse Wishart takes the place of the inverse Gamma.
The Wishart distribution is a multidimensional analogue of the Gamma distribution; it is
a distribution over symmetric positive semi-definite d x d matrices W with density of the
form

1
T so(W) oc [W]00~0D/2 oxp (‘ﬁtr<solw>),
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where the parameters are the degrees of freedom 1, and the positive-definite matrix S.
If W—! ~ Wishart(r, Sy) then W has an inverse Wishart distribution; the density of the
inverse Wishart has the form

1
Tyo,S0 (W) X |VV|_(VO+CH_1)/2 exp <—§tr(SOW_1)) .

Let X4,..., X, be observed data from N(0,X), then an inverse Wishart prior multiplies
the likelihood takes the form

p(Xla--an‘E) 7TV0,50<2> X
— 1
|E|—n/2 exp (_gtr(sz—1)> |E|—(Vo+d+1)/2 exp (—§tr(802_1))

1 —

n

S . . s 1 .
where S is the empirical covariance S = — E X; X[ Thus, the posterior takes the form
n
i=1

3| Xy,..., X, ~ InvWishart(yy +n,Sg + nS).

Similarly, the conjugate prior for the inverse covariance X! ( precision matrix) is a
Wishart.

The previous examples are all for exponential family distributions. Now we consider a
non-exponential family example, the uniform distribution Unifom(0, §) with parameter
6 > 0. Recall that the Pareto is the standard power-law distribution, if § ~ Pareto(vy, k),
the survival function is

PO > t) = (i)k t> .

140

The parameter k determines the rate of decay, and v, specifies the support of the distribu-
tion. The density is given by

kvt
7leow> - Qk+1 0>
0 otherwise.

Suppose Xj, ..., X,, be observed data from Uniform(0, #) and the prior of 6 is Pareto(k, vy).
Let X(,) = maxi<;j<, {Xi}. If vy > X(y), then £,,(0)74,,(0) = 0. But if X,y > 14, then under
the posterior we know that # must be at least X(,,), and in this case

1 1
£n(¢9>7Tk71,0 (0) X 6_” W
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Thus, the posterior is given by
0]Xy,...,X, ~ Pareto (n + k, max{ X, VO}) )

Thus, as n increases, the decay of the posterior increases, resulting in a more peaked
distribution around X,; the parameter k controls the sharpness of the decay for small n.

Charts with models and conjugate priors for both discrete and continuous distributions are
provided in Figures 12.3 and 12.4.

Sample Space | Sampling Dist. | Conjugate Prior Posterior
X ={0,1} Bernoulli(#) Beta(a, ) Beta(a +nX, B+ n(l — X))
X=17, Poisson()\) Gamma(a, 3) Gamma(a +nX, 3 +n)
X =7, Geometric(6) Gamma(a, 3) Gamma(a + n, 8+ nX)
X = Hg Multinomial(f) | Dirichlet(x) Dirichlet(a + nX)

Figure 12.3: Conjugate priors for discrete exponential family distributions.

12.2.7 Bayesian Hypothesis Testing

Suppose we want to test the following hypothesis:
Hy:0=10y versus H;:0+#6,

where 6 € R. The Bayesian approach to testing involves putting a prior on H, and on
the parameter ¢ and then computing P(H,|D,,). It is common to use the prior P(H,) =
P(H;) = 1/2 (although this is not essential in what follows). Under H; we need a prior
for 6. Denote this prior density by 7(6). In such a setting, the prior distribution comprise a
point mass 0.5 at §, mixed with a continuous density elsewhere. From Bayes’ theorem

p(Dy | Ho)P(Hy)
p(Dy | Ho)P(Ho) + p(Dy | H1)P(H,)
p(Dn | bh)
p(Dn | 00) +p(Dn | H)
P(Dn| 90)

p(Dy | 6o) + / p(D, | 6)m(6)do

P(Ho | Dn) =
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Sampling Dist. Conjugate Prior Posterior
Uniform(6) Pareto(vy, k) Pareto (max{vg, X(n)},n + k)

Exponential(6) Gamma(a, 3) Gamma(a + n, 8+ nX)
N(u,0?), known o N (g, o) N ((‘TL(% + %)1 (g—g + %) ; <0ig + %>1>
N(u,0?), known p | InvGamma(a, 3) InvGamma (a + %, B+ gm)
N(u,0?), known | ScaledInv-y?(vy, 032) ScaledInv-y? <u0 +n, Vzojgn + n(j()( J: §)2>
N(p,%), known X N (o, 2o) N (K (zgluo + nz—17> K) K= (3 +nm )
N(p, %), known p | InvWishart(v, Sp) InvWishart(vy + n,Sg + nS), S sample covariance

Figure 12.4: Conjugate priors for some continuous distributions.

L(6o)
£(600) + / L(0)7(0)d0

We saw that, in estimation problems, the prior was not very influential and that the fre-
quentist and Bayesian methods gave similar answers. This is not the case in hypothesis
testing. Also, one can’t use improper priors in testing because this leads to an undefined
constant in the denominator of the expression above. Thus, if you use Bayesian testing
you must choose the prior 7 (6) very carefully.

12.2.8 Model Comparison and Bayesian Information Criterion

LetD, = {Xj,..., X, } be the data. Suppose we consider K parametric models M, ..., M.
In Bayesian inference, we assign a prior probability =; = P(M,) to model M; and prior
p;(0; | M) to the parameters 6; under model M. The posterior probability of model M;
conditional on data D,, is

p(Dn | Mj)m;  p(Dn | My)m;

P(M; | D,,) = p(Dn) K (D, | M)
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where
p(Dn | M;) = /ﬁj(gj)pj(ej)dej
and L, is the likelihood function for model ;. Hence,

P(M; D) _ p(Dn| M), e
P(My|D,)  p(Dp| Mp)m (12.6)

To choose between models M, and M), we examine the right hand side of (12.6). If it’s
larger than 1, we prefer model M; otherwise, we prefer model M.

Definition 213. (Bayes factor) The Bayes factor between models M; and M;, is

defined to be
_ p(Dnl M) _ JL£505)p;(6;)d8;
P(Dn | Mk) fﬁk(ek)m(ek)d@k
Here, p(D,, | M,) is called the marginal likelihood for model M.

BF(D,)

The use of Bayes factors can be viewed as a Bayesian alternative to classical hypothesis
testing. Bayesian model comparison is a method of model selection based on Bayes factors.

In a typical setting, we adopt a uniform prior over the models: 7 =7 = ... =71 = 1/K.
Now

p(Dn | M;) = /p(Dn]Mj,Hj)pj(Oj\Mj)de = /ﬁn(ej)l?j(eﬂf\/lj)d@j-

Under model M, we define [,,(6;) and I;(6,) to be the empirical Fisher information ma-
trices for the dataset D,, and one data point:

_82 log p(D,, | M;, 6;)

_ Plogp(Xi | M;,8;)
06,007 |

1(6;) = 06,007

and [1(0]) =

Recall that, under certain regularity conditions, I,,(6;) = nIy(0,). Let 8; be the maximum a
posterior (MAP) estimator under model M, i.e.,

dlogp(6;| M;,D,,) B
00; 0;=0;

Let £,,(0;) = p(D, | M;, 8,). By a Taylor expansion at §j, we have

1 . . .
log £,,(0;) ~ log L,,(6;) — 5(93' —6,)"1,(0,)(8; — 6;).
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Therefore, by exponentiating both sides,
A 1 A A A
L,(8;) ~ L(6;) exp (—5(93' —0;)"1,(6,)(0; — 9]-)) -

Assuming 0; € R%, we choose a prior p;(0; | M;) that is noninformative or “flat” over the
neighborhood of 6, where £,,(0) is dominant. We then have

p(Dn | M;)
- / £.(6,)p(8;| M;)d8,
_ 5 n(0;)
= n(aj)/£n<é\j)pj( ]|M])d0]
~ 0\ \ [ £a(6) o
~ ﬁn(ej)pj(ej‘MJ)/cn(é\j)deJ
~ LB M) [ e {56~ 871,806, - 8) p ao
@08 | My E (127
11,(8))[172
~ (Qﬂ)dj/Q

Equation (12.7) was obtained by recognizing that the integrand is the kernel of a Gaussian
density.

Now
—2log p(D,, | M;) ~ —2l0g L,,(8;) + d;log n + log |1,(8,)] — d; log(27) + log p(8; | M,).
The term log |[1(§j)] — d;log(2m) + logp(gj | M) is of smaller order than —2log £n<§j) +

d;logn. Hence, we can approximate logp(D,, | M;) with Bayesian information criterion
BIC) defined as:

Definition 214. (Bayesian information criterion) Given data D,, and a model M, the
Bayesian information criterion for M is defined to be

BIC(M) =log L;(6;) — glog n,

where d is the dimensionality of the of model M;.
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The BIC score provides a large-sample approximation to the log posterior probability as-
sociated with the approximating model. By choosing the fitted candidate model corre-
sponding to the maxium value of BIC, one is attempting to select the candidate model
corresponding to the highest Bayesian posterior probability.

It is easy to see that

p<Dn | M])
log ————= = BIC ;) — BIC Op(1).
This relationship implies that, if 7y = ... = 7 = 1/K, then
exp (BIC(M;)
p(M; | D) = ( 2)

T F exp (BIC(My))

Typically, log(p(D,, | M;)/p(D,, | My,)) tends to oo or —oo as n — oo in which case the Op(1)
term is negligible. This justifies BIC as an approximation to the posterior. More precise
approximations are possible by way of simulation. However, the improvements are limited
to the Op(1) error term. Compared to AIC, BIC prefers simpler models. In fact, we can
show that BIC is model selection consistent, i.e. if the true model is within the candidate
pool, the probability that BIC selects the true model goes to 1 as n goes to infinity.

However, BIC does not select the fitted candidate model which minimizes the mean squared
error for prediction. In contrast, AIC does optomize predictive accuracy.

12.2.9 Calculating the Posterior Distribution

To compute any marginal of the posterior distribution p(@|D,,) usually involves high di-
mensional integration. Uusally, we instead approximate the marginals by simulation meth-
ods.

Suppose we draw 6',...,6"% ~ p(f|D,). Then a histogram of ¢',...,6" approximates
the posterior density p(6 | D,,). An approximation to the posterior mean 6,, = E(0|D,,) is
B! Zle ¢7. The posterior 1 — « interval can be approximated by (0,2, 61-/2) Where 6,,/»

is the /2 sample quantile of §', ... #5. Once we have a sample 6', ... 08 from p(0 | D,,),
let 7% = g(#"). Then 7,... 78 is a sample from p(7 | D, ). This avoids the need to do any
integration.

In this section, we will describe methods for obtaining simulated values from the posterior.
The simulation methods we discuss include Monte Carlo integration, importance sampling,
and Markov chain Monte Carlo (MCMC). We will also describe another approximation
method called variational inference. While variational methods and stochastic simulation
methods such as MCMC address many of the same problems, they differ greatly in their
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approach. Variational methods are based on deterministic approximation and numerical
optimization, while simulation methods are based on random sampling. Variational meth-
ods have been successfully applied to a wide range of problems, but they come with very
weak theoretical guarantees.

Example 215. Consider again Example 208. We can approximate the posterior for 1
without doing any calculus. Here are the steps:

1. Draw 6',...,68 ~ Beta(s + 1,n — s + 1).
2. Let ¢ =log(6"/(1—0")) fori=1,...,B.

Now ¢!, ... 9P areii.d. draws from the posterior density p(¢) | D,). A histogram of these
values provides an estimate of p(¢ | D,,).

12.3 Theoretical Aspects of Bayesian Inference

In this section we explain some theory related to the Bayesian inference. In particular, we
discuss the frequentist aspects of Bayesian procedures.

12.3.1 Bayesian Decision Theory

Let §(X ) be an estimator of a parameter # € ©. The notation §(X ) reflects the fact that 0
is a function of the data X. We measure the discrepancy between a parameter ¢ and its

estimator (X)) using a loss function L : © x © — R. We define the risk of an estimator
§(X ) as

R(0,0) = E4(1(0,0)) = / L(6,8()) polx) dx.

From a frequentist viewpoint, the parameter ¢ is a deterministic quantity. In frequentist
inference we ofetn try to find a minimax estimator § which is an estimator that minimizes
the maximum risk

Runax(0) == sup R(6,6).
0e©

From a Bayesian viewpoint, the parameter ¢ is a random quantity with a prior distribution

7(0). The Bayesian approach to decision theory is to find the estimator §(.X) that minimizes
the posterior expected loss

R(0]X) = /@ L(6, 5(X))p(8| X)do.
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An estimator 6 is a Bayes rule with respect to the prior 7(6) if

where the infimum is over all estimators 6 € ©.

It turns out that minimizing the posterior expected loss is equivalent to minimizing the
average risk, also known as the Bayes risk defined by

B, = / R(6,0)r(6)do.
Theorem 216. The Bayes rule minimizes the B,.

Under different loss functions, we get different estimators.

Theorem 217. If L(0,0) = (6 — §)? then the Bayes estimator is the posterior mean. If
L(0,60) = |0 — 0| then the Bayes estimator is the posterior median. If ¢ is discrete and

~ ~

L(6,0) = I(6 # 0) then the Bayes estimator is the posterior mode.

12.3.2 Large Sample Properties of Bayes’ Procedures

Under appropriate conditions, the posterior distribution tends to a Normal distribution.
Also, the posterior mean and the mle are very close. The proof of the following theorem
can be found in the van der Vaart (1998).

Theorem 218. Let /() denote the Fisher information. Let 6, be the maximum likelihood

estimator and let )

se =

~

n[(@n)'

Under appropriate regularity conditions, the posterior is approximately Normal with mean
0,, and standard deviation se. That is,

/ (01X, X) — (0B, s0)[d0 5 0.

Also, 8,, — 6, = Op(1/n). Let z,/2 be the a/2-quantile of a standard Gaussian distribution
and let C,, = [@1 — Zq/25€, 5n + za/25€] be the asymptotic frequentist 1 —«a confidence interval.
Then

PO e C,|D,) — 11—
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Proof. Here we only give a proof outline. See Chapter 10 of van der Vaart (1998) for a
rigorous proof. It can be shown that the effect of the prior diminishes as n increases so
that p(0 | D,) x L,(0)p(0) =~ L,(0). Let £,(0) = log L, (0), we have logp(0|D,,) ~ £,(6).
Now, by a Taylor expansion around 6,
0(6) ~ 6a(B) + (0 = 8,)6,(0) + [(6 — 6,)/2)65,(B,)
= £La0) +[(0 = 0,)°/2)0,6),

since 6;(5,1) = 0. Exponentiating both sides, we get that, approximately,

1(6—6,)>
p(0|D,) x exp{—éT},
where 02 = —1/£"(6,). So the posterior of § is approximately Normal with mean 6, and

variance o2. Let ¢;(0) = logp(X; | 0), then

Lo @)= N b, =n (%) i —0"(B,) ~ nl, [—gg'(ﬁn)] = nl(B,)

g
n =1

and hence o, ~ se(é\n). O

There is also a Bayesian delta method. Let 7 = g(#). Then 7|D, ~ N(7,s¢’) where

~ ~

7= g(0) and e = s2|¢'(9)).

12.4 Examples of Bayesian Inference

We now illustrate Bayesian inference with some examples.

12.4.1 Bayesian Linear Models

Many frequentist methods can be viewed as the maximum a posterior (MAP) estimator
under a Bayesian framework. As an example, we consider Gaussian linear regression:

d
Y=fo+ ) BiX;+e e~ N(0,0%).

=1

Here we assume that o is known. Let D,, = {(X1,Y1),...,(X,,Y,)} be the observed data
points. The conditional likelihood of B = (8, 31, ..., 34)" can be written as

- Sy (v = Bo— X5y By :
c<ﬂ>:Hp<yi|xi,ﬁ>o<exp(— ( — ) )

=1
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Using a Gaussian prior my(8) o< exp (—A||8]|3/2), the posterior of 3 can be written as

p(B D) x L(B)mA(B)-

The MAP estimator BMAP takes the form

n

d
BMAY = argmaxp(B| D) = arg;nin{Z(Yi —Bo— D BiXy) "+ Aoﬂlﬁ\l%}-
j=1

=1

This is exactly the ridge regression with the regularization parameter \' = \o?. If we adopt
the Laplacian prior 7,(3) o exp (—\||3]]1/2), we get the Lasso estimator

n

d
BMAP — argmin{Z(Yi — Po — Zﬁinj)Q + )\02||:3||1}-
=1

B =1

Instead of using the MAP point estimate, a complete Bayesian analysis aims at obtaining
the whole posterior distribution p(3|D,,). In general, p(3|D,,) does not have an analytic
form and we need to resort to simulation to approximate the posterior.

12.4.2 Hierarchical Models

A hierarchical model is a multi-level statistical model that allows us to incorporate richer
information into the model. A typical hierarchical model has the following form:

a ~ m(a)
Or,....0,]a ~ p(dla)

As a simple example, suppose that 6; is the infection rate at hospital i and X is presence or
absence of infection in a patient at hospital i. It might be reasonable to view the infection
rates 6, ..., 0, as random draws from a distribution p(f | «). This distribution depends on
parameters «, known as hyperparameters. We consider hierarchical models in more detail
in Example 226.

12.5 Simulation Methods for Bayesian Computation

Suppose that we wish to draw a random sample X from a distribution F'. Since F(X) is
uniformly distributed over the interval (0, 1), a basic strategy is to sample U ~ Uniform(0, 1),
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and then output X = F~1(U). This is an example of simulation; we sample from a distri-

bution that is easy to draw from, in this case Uniform(0, 1), and use it to sample from a

more complicated distribution F. As another example, suppose that we wish to estimate
1

the integral [ h(x)dx for some complicated function . The basic simulation approach is

0
to draw N samples X; ~ Uniform(0, 1) and estimate the integral as

1 1 N
/ h(x) dx ~ > n(X). (12.8)
0 i=1

This converges to the desired integral by the law of large numbers.

Simulation methods are especially useful in Bayesian inference, where complicated distri-
butions and integrals are of the essence; let us briefly review the main ideas. Given a prior
7(0) and data D,, = { X1, ..., X,,} the posterior density is

Ln(0)7(6)

(0] D,) = — . (12.9)
where £,,(6) is the likelihood function and
c= /ﬁn(ﬁ)w(e) do (12.10)
is the normalizing constant. The posterior mean is
0= /97r(«9|Dn)d6 = %/e/:n(e)w(e)de. (12.11)
If 0 = (6,...,04)" is multidimensional, then we might be interested in the posterior for
one of the components, ,, say. This marginal posterior density is
(0, D,) = //--~/7r(91, 01 Dy)dby - - dby (12.12)

which involves high-dimensional integration. When 6 is high-dimensional, it may not be
feasible to calculate these integrals analytically. Simulation methods will often be helpful.

12.5.1 Basic Monte Carlo Integration

Suppose we want to evaluate the integral

b
]:/ h(x) dx (12.13)
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for some function hA. If & is an “easy” function like a polynomial or trigonometric function,
then we can do the integral in closed form. If & is complicated there may be no known
closed form expression for /. There are many numerical techniques for evaluating / such
as Simpson’s rule, the trapezoidal rule and Gaussian quadrature. Monte Carlo integration
is another approach for approximating / which is notable for its simplicity, generality and
scalability.

Begin by writing
b b
I:/ h(X)dX:/ w(x) f(x)dx (12.14)

where w(x) = h(x)(b —a) and f(x) = 1/(b — a). Notice that f is the probability density for
a uniform random variable over (a, b). Hence,

I =E¢(w(X)) (12.15)
where X ~ Uniform(a,b). If we generate Xi,..., Xy ~ Uniform(a,b), then by the law of
large numbers

N
~ 1
I=~ Z (w(X)) = 1. (12.16)

This is the basic Monte Carlo integration method. We can also compute the standard error
of the estimate

S
s = — (12.17)
VvIN
where N R
2 _ 2 (Yi = 1)?
=== 12.1
s N1 ( 8)

where Y; = w(X;). A 1 — o confidence interval for I is I + z, /25¢. We can take NN as large
as we want and hence make the length of the confidence interval very small.

Example 219. Let h(x) = x3. Then, [ = fol x3dx = 1/4. Based on N = 10,000 observations
from a Uniform(0, 1) we get I = .248 with a standard error of .0028.

A generalization of the basic method is to consider integrals of the form

b
I = / h(x)f(x)dx (12.19)
where f(x) is a probability density function. Taking f to be a Uniform(a,b) gives us the
special case above. Now we draw X;,..., Xy ~ f and take
7 1 X
= Z (12.20)
as before.
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Example 220. Let

1 2
_ —x%/2
X) = e 12.21
f(x) Nors (12.21)
be the standard normal PDF. Suppose we want to compute the CDF at some point z:
I= / f(s)ds = D(x). (12.22)
Write
= /h(s)f(s)ds (12.23)
where
1 s<x
h(s) = { 0 s> (12.24)
Now we generate X,..., Xy ~ N(0,1) and set
~ 1 number of observations < z
I =— X;) = —. 12.2
y 2 hlX0) S (12.25)

For example, with x = 2, the true answer is ®(2) = .9772 and the Monte Carlo estimate
with N = 10,000 yields .9751. Using N = 100, 000 we get .9771.

Example 221 (Bayesian inference for two binomials). Let X ~ Binomial(n,p;) and Y ~

Binomial(m, ps). We would like to estimate § = py — p;. The MLE is 6 = py — p; =
(Y/m) — (X/n). We can get the standard error se using the delta method, which yields

o \/pl(l —p) , b(1-p) (12.26)

n m

and then construct a 95 percent confidence interval 6 + 25e. Now consider a Bayesian
analysis. Suppose we use the prior 7(p;,p2) = 7(p1)m(p2) = 1, that is, a flat prior on
(p1,p2). The posterior is

TP, p2 | X,Y) o< pif (1= pu)" ™ py (1= p2)™ . (12.27)

The posterior mean of 0 is

1 1 1 1
Sz/ / 5(p1,p2)7r(p1,pz\X,Y)=/ /(pQ—p1)7T(p1,p2]X,Y). (12.28)
0 0 0 0

If we want the posterior density of § we can first get the posterior CDF

F(e| X,Y) =P < c| X,Y) = / (o1 pa | X, V) (12.29)
A
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where A = {(p1,p2) : pa — p1 < ¢}, and then differentiate F'. But this is complicated; to
avoid all these integrals, let’s use simulation.

Note that m(py,p2 | X, Y) = w(p1 | X) m(p2 | V') which implies that p; and p, are independent
under the posterior distribution. Also, we see that p; | X ~ Beta(X + 1,n — X + 1) and
p2|Y ~ Beta(Y +1,m —Y + 1). Hence, we can simulate (P\", P{"),.... (P, P from
the posterior by drawing

P ~ Beta(X +1,n — X + 1) (12.30)
P ~ Beta(Y +1,m — Y + 1) (12.31)

fori=1,...,N. Nowlet 6 = P — P Then,
1 N
o~ —) 60, 12.32
~ ; (12.32)

We can also get a 95 percent posterior interval for ¢ by sorting the simulated values, and
finding the .025 and .975 quantile. The posterior density f(¢|X,Y’) can be obtained by
applying density estimation techniques to 61", ..., 6®¥) or, simply by plotting a histogram.
For example, suppose that n = m = 10, X = 8 and Y = 6. From a posterior sample of size
1000 we get a 95 percent posterior interval of (—0.52,0.20). The posterior density can be
estimated from a histogram of the simulated values as shown in Figure 12.5.

Example 222 (Bayesian inference for dose response). Suppose we conduct an experiment
by giving rats one of ten possible doses of a drug, denoted by x; < x; < ... < x39. For
each dose level x; we use n rats and we observe Y;, the number that survive. Thus we
have ten independent binomials Y; ~ Binomial(n, p;). Suppose we know from biological
considerations that higher doses should have higher probability of death; thus, p; < ps <
.-+ < p1o. We want to estimate the dose at which the animals have a 50 percent chance of
dying—this is called the LD50. Formally, § = x;- where

j =min{j: p; >1i}. (12.33)
Notice that § is implicitly just a complicated function of p;, ..., p1g SO we can write § =
g(p1,-..,p10) for some g. This just means that if we know (py, ..., p1o) then we can find §.
The posterior mean of ¢ is
// o / g(P1;- -, p10) T(P1, -5 P10| Y1, - -, Yio) dprdps . . . dpio. (12.34)
A

The integral is over the region

A={(p1,---,p10) s p1 <--- < pro}. (12.35)
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Figure 12.5: Posterior of § from simulation.

The posterior CDF of ¢ is

F(c|Yi,...,Yi0) = P(0<c|Vi,...,Yi) (12.36)
= //.../7T(p1,...7])10|Y17...,}/10)dp1dp2...dp10 (1237)
B

where

B:Aﬂ{(pb...,plo): g(pl,...,plo)gc}. (12.38)

The posterior mean involves a 10-dimensional integral over a restricted region A. We can
approximate this integral using simulation.

Let us take a flat prior truncated over A. Except for the truncation, each P, has once again
a Beta distribution. To draw from the posterior we proceed as follows:

(1) Draw P, ~ Beta(Y; + 1,n = Y; + 1),i = 1,..., 10.

@ If P, <P, <--- < Py keep this draw. Otherwise, throw it away and draw again until
you get one you can keep.

(3) Let § = x;- where
j =min{j: P; > 1}. (12.39)
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We repeat this N times to get 61V, ..., 6¥) and take
L
E(0[Y1,.... Yi0) » Z:: (12.40)
Note that § is a discrete variable. We can estimate its probability mass function by
LN
P(6 =x;|Y1,..., Y1) ~ N; (12.41)
For example, consider the following data:

Dose |1 2 3 4 5 6 7 8 9 10
Number of animalsn»; |15 15 15 15 15 15 15 15 15 15
Number of survivorsY; | 0 0 2 2 8 10 12 14 15 14

The posterior draws for py, ..., pip with N = 500 are shown in Figure 12.6. We find that
0 = 5.45 with a 95 percent interval of (5,7).

T T T T
0.0 05 00 10 0.5 00 10 05 00 1.0 05 00 10 05 10

T T T T
0.0 05 00 1.0 05 00 1.0 05 00 1.0 05 00 1.0 05 1.0

Figure 12.6: Posterior distributions of the probabilities P;, i = 1,...,10, for the dose
response data of Example 222.

12.5.2 Importance Sampling

Consider again the integral I = / h(x)f(x)dx where f is a probability density. The basic

Monte Carlo method involves sampling from f. However, there are cases where we may
not know how to sample from f. For example, in Bayesian inference, the posterior density
is obtained by multiplying the likelihood £,,(6) times the prior 7(#), and there is generally
no guarantee that 7(6 | D,,) will be a known distribution like a normal or gamma.
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Importance sampling is a generalization of basic Monte Carlo that addresses this problem.
Let g be a probability density that we know how to sample from. Then

I = /h(m)f(x)dx = /%g(m)dx =E,(Y) (12.42)
where Y = h(X)f(X)/g(X) and the expectation E,(Y") is with respect to g. We can simu-
late Xi,..., Xy ~ g and estimate I by the sample average

N N
>_ 1 1 P(X0) f(X0)
I =— Yi=— —_—. 12.

This is called importance sampling. By the law of large numbers, T5T.

There’s a catch, however. It’s possible that 7 might have an infinite standard error. To
see why, recall that [ is the mean of w(x) = h(x)f(x)/g(x). The second moment of this

quantity is
]EAU}%X))z/(%) g(x)dX:/%dx. (12.44)

If ¢ has thinner tails than f, then this integral might be infinite. To avoid this, a basic
rule in importance sampling is to sample from a density g with thicker tails than f. Also,
suppose that ¢g(x) is small over some set A where f(x) is large. Again, the ratio of f/g
could be large leading to a large variance. This implies that we should choose ¢ to be
similar in shape to f. In summary, a good choice for an importance sampling density g
should be similar to f but with thicker tails. In fact, we can say what the optimal choice of
g is.

Theorem 223. The choice of ¢ that minimizes the variance of Tis

= L) (12.45)
[ ms)1ss)ds
Proof. The variance of w = fh/q is
()~ (B = [ wgtaax— ([ w(x)g(x)dxf (12.46)
_ /%Q(Xm_ (/ %g(x)dx)Q (12.47)
_ /%g@d}(_ (/ h(x)f<x)dx)2. (12.48)
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The second integral does not depend on g, so we only need to minimize the first integral.
From Jensen’s inequality, we have

E,(W?) > (E,(|W]))? (/|h )| f(x) dx). (12.49)

This establishes a lower bound on E,(1W?). However, E - (WW?) equals this lower bound
which proves the claim. O

This theorem is interesting but it is only of theoretical interest. If we did not know how to
sample from f then it is unlikely that we could sample from |h(x)|f(x)/ [ |h(s)|f(s)ds. In
practice, we simply try to find a thick-tailed distribution ¢ which i 1s smnlar to f |h|

Example 224 (Tail probability). Let’s estimate / = P(Z > 3) = .0013 where Z ~ N(0, 1).
Write

[= / h(x) f (x)dx

where f(x) is the standard normal density and h(x) = 1 if x > 3, and O otherwise. The
basic Monte Carlo estimator is I = N~ > h(X;) where X;,..., Xy ~ N(0,1). Using
N = 100 we find (from simulating many times) that E(I) = .0015 and Var(I) = .0039.
Notice that most observations are wasted in the sense that most are not near the right tail.
Now we will estimate this with importance sampling taking ¢ to be a Normal(4,1) density.
We draw values from ¢ and the estimate is now

- Zf(Xi)h(Xi>/g<Xi)'

In this case we find that E(I) = .0011 and Var(I) = .0002. We have reduced the standard
deviation by a factor of 20.

To see how importance sampling can be used in Bayesian inference, consider the posterior

mean § = E[0| X1, ..., X,]. Let g be an importance sampling distribution. Then
JoLO)m(9)dd [ hi(0)g(0)db
El0|X1,...,X,| = =
612, Xl [L@)R(0)d0 — [ ha(6)g(6)db
here 0L(6)(6) LO)(0)
s s
hi(0) = ————=, ho(f) = —+—=
=g "
Let #,...,0y be a sample from g. Then
1 N
<> s, hi(6;
E[0] X1, ..., X,] ~ M
N Zizl ha(6;)
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This looks very simple but, in practice, it is very difficult to choose a good importance
sampler g, especially in high dimensions. With a poor choice of g, the variance of the
estimate is huge. This is the main motivation for more modern methods such as MCMC.

Many variants of the basic importance sampling scheme have been proposed and studied;
see, for example [65] and [80].

12.5.3 Markov Chain Monte Carlo (MCMC)

Consider once more the problem of estimating the integral I = / h(x)f(z)dx. Now we

introduce Markov chain Monte Carlo (MCMC) methods. The idea is to construct a Markov
chain X7, Xs, ..., whose stationary distribution is f. Under certain conditions it will then
follow that

N
% ST h(X:) S Ep(h(X)) = 1. (12.50)
i=1

This works because there is a law of large numbers for Markov chains; see the appendix.

The Metropolis—Hastings algorithm is a specific MCMC method that works as follows.
Let ¢(y|x) be an arbitrary, “friendly” distribution—that is, we know how to sample ef-
ficiently from ¢(y | x). The conditional density ¢(y | x) is called the proposal distribution.
The Metropolis—Hastings algorithm creates a sequence of observations Xy, X, ..., as fol-
lows.

Metropolis—Hastings Algorithm
Choose X, arbitrarily.

Given X, X1,..., X;, generate X, as follows:

1. Generate a proposal or candidate value Y ~ ¢(y | X;).

2. Evaluate r = r(X;,Y) where

r(x,y) = min {— : 1} : (12.51)

3. Set

Xip = { Y  with probability r (12.52)

X, with probability 1 — 7.

A simple way to execute step (3) is to generate U ~ Uniform(0, 1). If U < r set X;;; =Y
otherwise set X;,; = X;. A common choice for ¢(y | x) is N(x, b?) for some b > 0, so that the

334 Statistical Machine Learning, by Han Liu and Larry Wasserman, (©2014



Statistical Machine Learning12.5. SIMULATION METHODS FOR BAYESIAN COMPUTATION

proposal is draw from a normal, centered at the current value. In this case, the proposal
density ¢ is symmetric, ¢(y | x) = ¢(x|y), and r simplifies to

r — min { J{ &)), 1} | (12.53)

By construction, Xy, X, ... is a Markov chain. But why does this Markov chain have f as
its stationary distribution? Before we explain why, let us first do an example.

Example 225. The Cauchy distribution has density
1 1

fx)=—7 el (12.54)

Our goal is to simulate a Markov chain whose stationary distribution is f. As suggested in
the remark above, we take ¢(y | x) to be a N(x,b%). So in this case,

2
r(x,y) = min {%, 1} = min {1_—::—}/2, 1} ) (12.55)

So the algorithm is to draw Y ~ N(X;,b?) and set

{ Y with probability r(X;,Y)
Xipy1 =

X, with probability 1 — r(X;,Y). (12.56)

The simulator requires a choice of b. Figure 12.7 shows three chains of length N = 1,000
using b = .1, b = 1 and b = 10. Setting b = .1 forces the chain to take small steps.
As a result, the chain doesn’t “explore” much of the sample space. The histogram from
the sample does not approximate the true density very well. Setting b = 10 causes the
proposals to often be far in the tails, making r small and hence we reject the proposal
and keep the chain at its current position. The result is that the chain “gets stuck” at
the same place quite often. Again, this means that the histogram from the sample does
not approximate the true density very well. The middle choice avoids these extremes and
results in a Markov chain sample that better represents the density sooner. In summary,
there are tuning parameters and the efficiency of the chain depends on these parameters.
We'll discuss this in more detail later.

If the sample from the Markov chain starts to look like the target distribution f quickly,
then we say that the chain is “mixing well.” Constructing a chain that mixes well is some-
what of an art.

12.5.4 Why It Works

An understanding of why MCMC works requires elementary Markov chain theory, which is
reviewed in an Appendix at the end of this chapter. We describe a Markov chain with the
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Figure 12.7: Three Metropolis chains corresponding to b = .1, b = 1, b = 10, with accep-
tance rates 97%, 76%, and 27%, respectively.

transition kernel p(y|x) which is the probability of making a transition from x to y. We say

/f(}’)p(x|y) dy. This can

be interpreted as follows. Once the chain reaches the distribution f it stays in f. Applying
another step of the chain p(z|y) does not change the distribution. Under approrpriate
conditions, the following is true. If f is a stationary distribution for a Markov chain, then
the data from a sample run of the Markov chain will approximate the distribution f. In
other words, if we can design a Markov chain with stationary distribution f then we can
run the Markov chai and use the resulting data as if it were a sample from f.

that f is a stationary distribution for the Markov chain if f(x) =
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We say that the chain satisfies detailed balance holds with respect to f if

fE)plylr) = f(y)p(zly). (12.57)

Intuitively, suppose we draw once from f then apply one step of the chain. Deatiled
balance means that (x,y) has the same probablity as (y,z). In other words, the chain is
time reversible.

If the chian satisfies detailed balance holds with respect to f then f must be a stationary
distribution. To see this, note that

[ Fptaly) s = / FOIplyle) dy = 160 [ plulo) dy = £(x) (12.58)
which shows that f(z) = [ f(y)p(x|y) dy as required.

Our goal is to show that when p(y|z) is the Markov chain defined by the Metropolis-
Hastings algorithm, then f satisfies detailed balance, and therefore is a stationary distri-
bution for the chain.

Recall the the Metropolis-Hastings algorithm uses a user-chosem distribution ¢(y|x) to-
gether with a accept/reject step. Tis defines a Markov chain with transition probablity
p(y|z) = q(y|z)r(x,y). Consider two points x and y. Either

fx)a(y|x) < f(y)a(x|y) or f(x)q(y|x)> f(y)a(x|y). (12.59)

We will ignore ties (which occur with probability zero for continuous distributions). With-
out loss of generality, assume that f(x)q(y|x) > f(y)¢(x|y). This implies that

_fy)ax]y)
oY) = e

(12.60)

and that 7(y,x) = 1.

Now let p(y|x) be the probability of jumping from x to y. This means that (i) the proposal
distribution must generate y, and (ii) you must accept y. Thus,

oty () = ol [ L 4 Y) )
pylz) = q(y [x)r(xy) = q(y| )f(X)q(y|X) )

q(x|y). (12.61)

Therefore,
fEplylz) = f(y)a(x]y). (12.62)

On the other hand, p(x|y) is the probability of jumping from y to x. This requires two that
(i) the proposal distribution must generate x, and (ii) you must accept x. This occurs with

probability p(y, x) = q(x|y)r(y,x) = ¢(x|y). Hence,
f¥)p(ely) = f(y)a(x]y). (12.63)
Comparing (12.62) and (12.63), we see that we have shown that detailed balance holds.
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12.5.5 Different Flavors of MCMC

There are different types of MCMC algorithm. Here we will consider a few of the most
popular versions.

Random-Walk-Metropolis—-Hastings. In the previous section we considered drawing a
proposal Y of the form

where ¢; comes from some distribution with density ¢. In other words, ¢(y | x) = g(y — x).
We saw that in this case,
o { fy) }
r(x,y) =min< 1, == 5. (12.65)
f(x)

This is called a random-walk-Metropolis—Hastings method. The reason for the name is
that, if we did not do the accept-reject step, we would be simulating a random walk. The
most common choice for g is a N (0, b?). The hard part is choosing b so that the chain mixes
well. As mentioned earlier, a good rule of thumb is to choose b so that about 50 percent of
the proposals are accepted.

Note that this method doesn’t make sense unless X takes values on the whole real line. If
X is restricted to some interval then it is best to transform X. For example, if X € (0, c0)
then you might take Y = log X and then simulate the distribution for Y instead of X.

Independence-Metropolis—-Hastings. This is an importance-sampling version of MCMC.
We draw the proposal from a fixed distribution g. Generally, ¢ is chosen to be an approxi-
mation to f. The acceptance probability becomes

i W9 S ) ()
e = { ' f(x) f(y)} { "g(y) f<x>}- (12.66)

Gibbs Sampling. The two previous methods can be easily adapted, in principle, to work
in higher dimensions. In practice, tuning the chains to make them mix well is hard. Gibbs
sampling is a way to turn a high-dimensional problem into several one-dimensional prob-
lems.

Here’s how it works for a bivariate problem. Suppose that (X,Y’) has density fxy(x,y).
First, suppose that it is possible to simulate from the conditional distributions fx |y (x|y)

and fy | x(y|x). Let (Xo, Yp) be starting values, and assume we have drawn (X, Yp), ..., (X,, Ys).
Then the Gibbs sampling algorithm for getting (X, 1, Y, 1) is:

To see that this is a special case of the Metropolis-Hastings algorithm, suppose that the
current state is (X, Y,) and the proposal is (X,,,Y’), with probability fy|x(Y | X,). Then
the acceptance probability in the Metropolis-Hastings algorithm is

[( X5, Y) fYX(Yn|Xn)}

.6
(X Ya) Fr 2 (Y | X) (12.69)

r(Xn, Ya), (X, Y)) = min{l,
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Gibbs Sampling Iterate until convergence:
Yrr ~ frix(y] Xun) (12.68)
— min?1, =1. (12.70)

This generalizes in the obvious way to higher dimensions, where we cycle through the
variables, sampling one of them at a time, conditioned on the others.

Example 226 (Normal hierarchical model). Gibbs sampling is very useful for hierarchical
models. Here is a simple case. Suppose we have a sample of data from k cities. From
each city we draw n; people and observe how many people Y; have a disease. Thus,
Y; ~ Binomial(n;, p;), allowing for different disease rates in different cities. We can also
think of the p,’s as random draws from some distribution . We can write this model in
the following way:

P o~ F (12.71)
Y| P,=p; ~ Binomial(n;,p;). (12.72)

We are interested in estimating the p;’s and the overall disease rate [ pdn(p).

To proceed, it will simplify matters if we make some transformations that allow us to
use some normal approximations. Let p; = Y;/n;. Recall that p; = N(p;, s;) where s; =
Vi1 = pi)/ns. Let vb; = log(p;/(1 — p;)) and define Z; = ; = log(p;/(1 — ;). By the delta
method, R

i = N (i, 07) (12.73)

where 02 = 1/(np;(1 — p;)). Experience shows that the normal approximation for 1 is
more accurate than the normal approximation for p so we shall work with ), treating
o; as known. Furthermore, we shall take the distribution of the ¢;’s to be normal. The
hierarchical model is now

Vi ~ N(u, ) and Z;|; ~ Ny, 07). (12.74)
As yet another simplification we take 7 = 1. The unknown parameters are 6 = (p, ¢1, . .., Ug).
The likelihood function is
Ly(0) o H f(Wi | ) H f(Zi| ) (12.75)
x Hexp —1(2/} — p)? ¢ exp —L(Z — )% (12.76)
i 2 (2 2o_z2 K3 (]
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If we use the prior f(u) oc 1 then the posterior is proportional to the likelihood. To use
Gibbs sampling, we need to find the conditional distribution of each parameter conditional
on all the others. Let us begin by finding f(u |rest) where “rest” refers to all the other
variables. We can throw away any terms that don’t involve u. Thus,

f(p|rest) oc H exp {_%(% — ,u)Q} (12.77)
X exp {—g(u — b)2} (12.78)

where |
b=+ > . (12.79)

Hence we see that u |rest ~ N(b, 1/k). Next we will find f(¢ | rest). Again, we can throw
away any terms not involving v;, leaving us with

1 1
fnlresy) o xp{ -3 pew{ oz - v} 280
1
x exp{—2—d22(¢i—ei)2} (12.81)
where
il 1
¢;=——7 and d? = 1 (12.82)
1+ ) 1+ )
g; g

and so 1); |rest ~ N(e;,d?). The Gibbs sampling algorithm then involves iterating the
following steps N times:

draw u ~ N(b, 112) (12.83)
draw ¢, ~ N(ey, d?) (12.84)
: : (12.85)

draw ¢, ~ N(e,d3). (12.86)

It is understood that at each step, the most recently drawn version of each variable is used.

We generated a numerical example with & = 20 cities and n = 20 people from each city.
After running the chain, we can convert each v; back into p; by way of p; = e¥i/(1 +
e¥1). The raw proportions are shown in Figure 12.9. Figure 12.8 shows “trace plots”
of the Markov chain for p; and p. Figure 12.9 shows the posterior for i based on the
simulated values. The second panel of Figure 12.9 shows the raw proportions and the
Bayes estimates. Note that the Bayes estimates are “shrunk” together. The parameter 7
controls the amount of shrinkage. We set 7 = 1 but, in practice, we should treat 7 as
another unknown parameter and let the data determine how much shrinkage is needed.
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So far we assumed that we know how to draw samples from the conditionals fx |y (x|y)
and fy|x(y|x). If we don’t know how, we can still use the Gibbs sampling algorithm by
drawing each observation using a Metropolis—Hastings step. Let ¢ be a proposal distribu-
tion for x and let ¢ be a proposal distribution for y. When we do a Metropolis step for X,
we treat Y as fixed. Similarly, when we do a Metropolis step for Y, we treat X as fixed.
Here are the steps:

Gibbs sampling with Metropoplis-Hastings

(1a) Draw a proposal Z ~ q(z | X,,).

(1b) Evaluate

Z.Y, Xnl|Z
r=min{ SO 1} (12:87)
(1c) Set
Ko = X, vith oty 1 — 129
(2a) Draw a proposal Z ~ ¢(z|Y,).
(2b) Evaluate v 2y g
r = min { J{f ((X::’Yn)> gg 7 ‘Yni’ 1} . (12.89)
(2¢) Set
o= {5, Vit probabiy 1~ 1290

Note that in step (1) (and similarly for step (2)), with Y, fixed, sampling from f(Z|Y,) is
equivalent to sampling from f(Z,Y,,), as the ratios are identical:

[(2,Y.) _ [(Z]Y,) (12.91)

fXn, Vo) f(Xn|Ya)

12.5.6 Normalizing Constants

The beauty of MCMC is that we avoid having to compute the normalizing constant

c:/ﬁn(Q)W(e)dQ.
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Figure 12.8: Posterior simulation for Example 226. The top panel shows simulated values
of p;. The bottom panel shows simulated values of ..

But suppose we do want to estimate c. For example, if M; and M, are two models then

ap
cap+c2(l—p)

P(M; | X1,..., X)) = (12.92)

where p is the prior probability of model 1 and ¢, ¢, are the normalizing constants for the
two models. Thus, to do Bayesian model selection requires the normalizing constants.

In general, suppose that f is a probability density function and that

f(0) = cg(0) (12.93)
where ¢(f) > 0 is a known function and ¢ is unknown; typically, ¢(¢) = £,,(0)7(6). Let
01,...,0, be asample from f. Let h be a known probability density function. Define

1 h6)
c=— ) (12.94)
n ; 9(6:)
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RN

Figure 12.9: Example 226. Top panel: posterior histogram of p. Lower panel: raw pro-
portions and the Bayes posterior estimates. The Bayes estimates have been shrunk closer
together than the raw proportions.

Then " L
E() = / % F(0)d0 = / %cg(@)d@ e (12.95)

And if [ h%(0)/g(0)df < oo, then ¢ — ¢ = Op(n=1/2).

12.6 Examples Where Bayesian Inference and Frequentist
Inference Disagree

Bayesian inference is appealing when prior information is available since Bayes’ theorem
is a natural way to combine prior information with data. However, Bayesian inference
is also controversial because it inherently embraces a subjective notion of probability. In
general, Bayesian methods provide no guarantees on long run performance. In some cases,
Bayesian methods can have poor frequency behavior.

Example 227. Normal means. Let D,, = {X;,..., X, } be the data obtained from the
model X ~ N(u;, 1). Suppose we use the flat prior m(uq,...,u,) o< 1. Then, with
= (p1,..., )7, the posterior for p is multivariate Normal with mean E(u|D,) =
(Xi,...,X,) and covariance equal to the identity matrix. Let§ = > | 2. Let C,, = [c,,, 00)
where ¢, is chosen so that P(6 € C,, | D,,) = 0.95. How often, in the frequentist sense, does
C,, trap 0? Stein (1959) showed that

P.(0 €C,) —0, asn — oo.

Thus, there is a sharp difference between P, (0 € C,,) and P(0 € C,, | D,,).
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Example 228. Sampling to a Foregone Conclusion. Let X ~ N(6,1) be a univariate
random variable and Dy = {Xj,..., Xy} be the observed data. Think of X; as some
statistics that compares a new drug to a placebo. Suppose we continue sampling until
Ty > k where Ty = v/ NX y and k is a fixed number, say, k£ = 10. This means that we stop
when the drug appears to be much better than the placebo.

The sample size N is now a random variable. It can be shown that P(N < o0) = 1. It
can also be shown that the posterior p(f| X1, ..., Xy) is the same as if N had been fixed
in advance. That is, the randomness in NV does not affect the posterior. Now if the prior
7(6) is smooth then the posterior is approximately 6 | X1,..., Xy ~ N(Xy,1/N). Hence,
ifCy = Xy + 1.96/\/N then P(§ € Cy | X1,..., Xy) = 0.95. Notice that O is never in Cy
since, when we stop sampling, 7' > 10, and therefore

— _1.96> 10 _1.96>
NTUN T VN VN

Hence, when 0 = 0, Py(6 € Cy) = 0. Thus, the frequentist coverage is

0. (12.96)

Coverage = iIelf Py(§ € Cn) = 0.

This is called sampling to a foregone conclusion and is a serious issue in sequential clinical
trials.

Example 229 (Godambe’s Example). This example is due to V.P. Godambe. Let C =
{c1,...,cn} be a finite set of constants. For simplicity, assume that ¢; € {0,1} (although
this is not important). Let § = N~} Zj\’: , ¢j. Suppose we want to estimate 6. We proceed
as follows. Let Si,...,S, ~ Bernoulli(r) where 7 is known. If S; = 1 you get to see c;.
Otherwise, you do not. (This is an example of survey sampling.) The likelihood function

is
H?TS"(l — )5,

The unknown parameter does not appear in the likelihood. In fact, there are no un-
known parameters in the likelihood. The likelihood function contains no information at
all. Hence, the posterior for 6 is equal to the prior for §. No learning occurs from the data.

We can estimate 6 easily from a frequentist perspective. Let
1N
j=1

Then E(0) = 0. Hoeffding’s inequality implies that
P(|0 — 0] > €) < 26720

Hence, 6 is close to 6 with high probability.
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Example 230 (Flatland (Stone’s Paradox)). Mervyn Stone is Emeritus Professor at Uni-
versity College London. He is famous for his deep work on Bayesian inference as well
as pioneering work on cross-validation, coordinate-free multivariate analysis, as well as
many other topics. He has a famous example described in Stone (1970, 1976, 1982). In
technical jargon, he shows that “a finitely additive measure on the free group with two
generators is nonconglomerable.” In English: even for a simple problem with a discrete
parameters space, Bayesian inference can lead to surprises.

Suppose that Alice wonders randomly in a two dimensional grid-world. She drags an
elastic string with her. The string is taut: if she backs up, the string leaves no slack. She
can only move in four directions: North, South, West, East. She wandera around for awhile
then she stops and buries a treasure. Call this path 6. Here is an example:

<f

My Path. The X is the treasure.

Now Alice takes one more random step. Each direction has equal probability. Call this
path z. So it might look like this:
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One more random step.

Two people, Bob (a Bayesian) and Carla (a classical statistician) want to find the treasure.
There are only four possible paths that could have yielded x, namely:

West (W) North (N)
N O e
N Y T
101 O [ []
T T 0 7 | T ] 1

0 0

East (E) South (S)
N O e
N O I O R
101 O [ []
T 5 7 | T B 1

0 0

Let us call these four paths N, S, W, E. The likelihood is the same for each of these. That
is, p(z]0) = 1/4 for 6 € {N, S, W, E'}. Suppose Bob uses a flat prior. Since the likelihood is
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also flat, his posterior is

P(0 = N|z) = P(6 = S|z) = P(6 = W1z) = P(6 = E|x) = -

W

Let B be the three paths that extend z. In this example, B = {N,W, E}. Then P(0 €
Blz) = 3/4.

Now Carla is very confident and selects a confidence set with only one path, namely, the
path that shortens x. In other words, Carla’s confidence set is C' = B°.

Notice the following strange thing: no matter what 6 is, Carla gets the treasure with
probability 3/4 while Bob gets the treasure with probability 1/4. Thatis, P(f € B|x) = 3/4
but the coverage of B is 1/4. The coverage of C' is 3/4.

Here is quote from Stone (1976): (except that we changed his B and C to Bob and Carla):

“ ... it is clear that when Bob and Carla repeatedly engage in this treasure hunt, Bob
will find that his posterior probability assignment becomes increasingly discrepant
with his proportion of wins and that Carla is, somehow, doing better than [s]he
ought. However, there is no message ... that will allow Bob to escape from his
Promethean situation; he cannot learn from his experience because each hunt is
independent of the other.”

Let A be the event that the final step reduced the length of the string. Using the posterior
above, we see that Bob finds that P(A|x) = 3/4 for each . Since this holds for each z,
Bob deduces that P(A) = 3/4. On the other hand, Bob notes that P(A|f) = 1/4 for every
6. Hence, P(A) = 1/4. Bob has just proved that 3/4 = 1/4.

The apparent contradiction stems from the fact that the prior is improper. Technically this
is an example of the non-conglomerability of finitely additive measures. For a rigorous
explanation of why this happens you should read Stone’s papers. Here is an abbreviated
explanation, from Kass and Wasserman (1996, Section 4.2.1).

Let 7 denotes Bob’s improper flat prior and let 7 (0|x) denote his posterior distribution. Let
7, denote the prior that is uniform on the set of all paths of length p. This is of course a
proper prior. For any fixed z, m,(A|z) — 3/4 as p — co. So Bob can claim that his posterior
distribution is a limit of well-defined posterior distributions. However, we need to look at
this more closely. Let m,(z) = ), f(x|6)m,(f) be the marginal of x induced by =,. Let
X, denote all 2’s of length p or p + 1. When x € X, 7,(0|x) is a poor approximation to
7(0|x) since the former is concentrated on a single point while the latter is concentrated
on four points. In fact, the total variation distance between 7,(f|x) and 7(0|x) is 3/4 for
x € X,. (Recall that the total variation distance between two probability measures P
and @ is d(P, Q) = sup, |P(A) — Q(A)|.) Furthermore, X, is a set with high probability:
my(X,) — 2/3 as p — oc.

While 7,(6|z) converges to m(f|z) as p — oo for any fixed x, they are not close with high
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probability.

Here is another description of the problem. Consider a four sided die whose sides are
labeled with the symbols {a,b,a™!,b7'}. We roll the die several times and we record the
label on the lowermost face (there is a no uppermost face on a four-sided die). A typical
outcome might look like this string of symbols:

a aba*bb baatd

Now we apply an annihilation rule. If « and a~! appear next to each other, we eliminate
these two symbols. Similarly, if b and b~! appear next to each other, we eliminate those
two symbols. So the sequence above gets reduced to:

a abatbb

Let us denote the resulting string of symbols, after removing annihilations, by . Now we
toss the die one more time. We add this last symbol to # and we apply the annihilation
rule once more. This results in a string which we will denote by z.

You get to see = and you want to infer 6.

Having observed z, there are four possible values of # and each has the same likelihood.
For example, suppose = = (a,a). Then # has to be one of the following:

(@), (aaa), (aab™), (aab)
The likelihood function is constant over these four values.

Suppose we use a flat prior on . Then the posterior is uniform on these four possibilities.
Let C = C(z) denote the three values of ¢ that are longer than x. Then the posterior
satisfies

P(0 € Cl|x) =3/4.

Thus C(x) is a 75 percent posterior confidence set.

However, the frequentist coverage of C'(x) is 1/4. To see this, fix any §. Now note that
C'(z) contains ¢ if and only if § concatenated with x is smaller than ¢. This happens only if
the last symbol is annihilated, which occurs with probability 1/4.

So far we have used a flat prior on the set of paths. One can put a proper prior on the
set of paths and compute the posterior but, as we now explain, this does not really help.
First of all, if the prior is proper but very flat, you will get a posterior very similar to the
posterior from the uniform prior and not much changes. On the other hand, it is possible
to choose a specially deisgned prior so that the posterior mimics the freqentist answer. But
this poses a problem. If one chooses a prior to represent one’s beliefs then it will not give
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the good, winning behavior of the frequentist method. But if one choose a prior specifically
to get a posterior that approximates the frequentist answer, then there is no point of doing
Bayesian inference. You might as well just use the frequentist method.

Stone, M. (1970). Necessary and sufficient condition for convergence in probability to
invariant posterior distributions. The Annals of Mathematical Statistics, 41, 1349-1353,

Stone, M. (1976). Strong inconsistency from uniform priors. Journal of the American
Statistical Association, 71, 114-116.

Stone, M. (1982). Review and analysis of some inconsistencies related to improper priors
and finite additivity. Studies in Logic and the Foundations of Mathematics, 104, 413-426.

Kass, R.E. and Wasserman, L. (1996). The selection of prior distributions by formal rules.
Journal of the American Statistical Association, 91, 1343-1370.

12.7 Freedman’s Theorem

Here we discuss and interesting result by David Freedman (Annals of Mathematical Statis-
tics, Volume 36, Number 2 (1965), 454-456). The result gets very little attention. Most
researchers in statistics and machine learning seem to be unaware of the result. The result
says that, “almost all” Bayesian posterior distributions are inconsistent, in a sense we’ll
make precise below. The math is uncontroversial but, as you might imagine, the intepre-
tation of the result is likely to be controversial.

Let Xi,..., X, be aniid sample from a distribution P on the natural numbers I = {1,2,3, ...

Let P be the set of all such distributions. We endow P with the weak* topology. This topol-
ogy can be described as follows: we say that P, — P in the weak” topology iff P, (i) — P(i)
for all 4.

Let 1 denote a prior distribution on P. (More precisely, a prior on an appropriate o-field.)
Let II be all priors. Again, we endow the set with the weak” topology. This means that
pn — piff [ fdp, — [ fdu for all bounded, continuous, real functions f.

Let u,, be the posterior corresponding to the prior p after n observations. We will say that
the pair (P, i) is consistent if
P*(lim p, =dp) =1
n—oo

where P> is the product measure corresponding to P and ¢p is a point mass at P.

Now we need to recall some topology. A set is nowhere dense if its closure has an empty
interior. A set is meager (or first category) if it is a countable union of nowehere dense
sets. Meager sets are small; think of a meager set as the topological version of a null set in
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measure theory.

Theorem 231 (Freedman 1965). The sets of consistent pairs (P, i) is meager.

This means that, in a topological sense, consistency is rare for Bayesian procedures. From
this result, it can also be shown that most pairs of priors lead to inferences that disagree.
(The agreeing pairs are meager.) Or as Freedman says in his paper: “ ... it is easy to prove
that for essentially any pair of Bayesians, each thinks the other is crazy.”

Now, it is possible to choose a prior that will guarantee consistency in the frequentist sense.
However, Freedman’s theorem says that such priors are rare. Why would a Bayesian choose
such a prior? If they choose the prior just to get consistency, this suggests that they are
realy trying to be frequentists. If they choose a prior that truly represents their beliefs,
then Freedman’s theorem implies that the posterior will likely be inconsistent.

12.8 The Bayes-Frequentist Debate

What should we conclude from all this? The important thing is to understand that frequen-
tist and Bayesian methods are answering different questions. Much of the debate about
Bayesian and frequentist inference stems from the fact that people confuse the two. We
can summarize this as follow:

To analyze subjective beliefs in a principled way: use Bayesian inference.
To design methods with long run frequence guarantees: ue frequentist inference.

In general, Bayesian methods does not have good fregency performance and fregentist
methods to do represent anyone’s subjective beliefs. They are different tools and there is
no reason they should be the same. As it happenns, in low-dimensional models with lots
of data, they do tend to be similar. But in high-dimensioal models they are quite different.
Generally, Bayesian methods have poor frequentist behavior when the parameter space is
high dimensional.

12.9 Summary

The following table presents some comparisons between the two approaches.
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Bayesian Frequentist
Probability degree of subjective belief limiting relative frequency
Typical point estimate posterior mean or mode (penalized) maximum likelihood
Optimal estimate Bayes rule minimax estimate
Interval estimate credible interval confidence interval

12.10 Bibliographic Remarks

Some references on Bayesian inference include [13], [34], [54], [72], and [75]. See
[18], [23], [31], [61, [35], [78], and [99] for discussions of some of the technicalities of
nonparametric Bayesian inference. See [8] and [46] for a discussion of Bayesian testing.
See [47] for a discussion of noninformative priors.
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