10/36-702 Statistical Machine Learning Homework #2
Solutions

DUE: February 23, 2018

Problem 1 [10 pts.]
Consider the data \((X_1, Y_1), \ldots, (X_n, Y_n)\) where \(X_i \in \mathbb{R}\) and \(Y_i \in \mathbb{R}\). Inspired by the fact that \(E[Y|X=x] = \int y p(x,y) dy / p(x)\), define

\[
\hat{m}(x) = \int \frac{y \hat{p}(x,y) dy}{\hat{p}(x)}
\]

where

\[
\hat{p}(x) = \frac{1}{n} \sum_i \frac{1}{h} K \left(\frac{X_i - x}{h} \right)
\]

and

\[
\hat{p}(x,y) = \frac{1}{n} \sum_i \frac{1}{h^2} K \left(\frac{X_i - x}{h} \right) K \left(\frac{Y_i - y}{h} \right).
\]

Assume that \(\int K(u) du = 1\) and \(\int u K(u) du = 0\). Show that \(\hat{m}(x)\) is exactly the kernel regression estimator that we defined in class.

Solution.

\[
\frac{\int y \cdot \hat{p}(x,y) dy}{\hat{p}(x)} = \frac{1}{nh^2} \int y \frac{1}{n} \sum \frac{1}{h} K \left(\frac{x-X_i}{h} \right) K \left(\frac{y-Y_i}{h} \right) dy
\]

\[
= \frac{\sum K \left(\frac{x-X_i}{h} \right) \int y \frac{1}{h} K \left(\frac{y-Y_i}{h} \right) dy}{\sum K \left(\frac{x-X_i}{h} \right)}
\]

\[
= \frac{\sum K \left(\frac{x-X_i}{h} \right) Y_i}{\sum K \left(\frac{x-X_i}{h} \right)}
\]

\[
= \hat{m}(x).
\]
Problem 2 [15 pts.]

Suppose that \((X, Y)\) is bivariate Normal:

\[
\begin{pmatrix} X \\ Y \end{pmatrix} \sim N \left(\begin{pmatrix} \mu \\ \eta \end{pmatrix}, \begin{pmatrix} \sigma^2 & \rho \sigma \tau \\ \rho \sigma \tau & \tau^2 \end{pmatrix} \right).
\]

(a) (5 pts.) Show that \(m(x) = \mathbb{E}[Y|X = x] = \alpha + \beta x\) and find explicit expressions for \(\alpha\) and \(\beta\).

(b) (5 pts.) Find the maximum likelihood estimator \(\hat{m}(x) = \hat{\alpha} + \hat{\beta} x\).

(c) (5 pts.) Show that \(|\hat{m}(x) - m(x)|^2 = O_P(n^{-1})\).

Solution.

(a) Some simple calculations show

\[Y|X = x \sim N \left(\eta + \frac{\tau}{\sigma} \rho(x - \mu), \left(1 - \rho^2\right) \tau^2 \right), \]

which gives

\[\alpha = \eta - \frac{\tau \rho \mu}{\sigma} \quad \text{and} \quad \beta = \frac{\tau \rho}{\sigma}. \]

(b) Given a sample \((X_1, Y_1), \ldots, (X_n, Y_n)\), the MLEs for the bivariate normal parameters are

\[
\begin{align*}
\hat{\mu} &= \bar{X} \\
\hat{\eta} &= \bar{Y} \\
\hat{\sigma}^2 &= \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2 \\
\hat{\tau}^2 &= \frac{1}{n} \sum_{i=1}^{n} (Y_i - \bar{Y})^2 \\
\hat{\text{Cov}}(X, Y) &= \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y}).
\end{align*}
\]

Note \(\beta = \frac{\tau \rho}{\sigma} = \frac{\tau \rho \sigma}{\sigma^2}\). Then by the equivariance property of the MLE,

\[
\hat{\beta} = \frac{\hat{\text{Cov}}(X, Y)}{\hat{\sigma}^2}
\]

and

\[\hat{\alpha} = \bar{Y} - \hat{\beta} \bar{X}. \]

Again by equivariance,

\[\hat{m}(x) = \hat{\alpha} + \hat{\beta} x. \]
(c) \(\hat{m}(x) \) is an MLE and satisfies the regularity conditions for asymptotic normality. Therefore,

\[
\sqrt{n}(\hat{m}(x) - m(x)) \sim N(0, \Gamma^{-1}(m(x))),
\]

which implies

\[
|\hat{m}(x) - m(x)|^2 = O_p(n^{-1}).
\]
Problem 3 [20 pts.]

Let \(m(x) = \mathbb{E}[Y \mid X = x] \). Let \(X \in [0,1]^d \). Divide \([0,1]^d\) into cubes \(B_1, \ldots, B_N \) whose sides have length \(h \). Given data \((X_1,Y_1), \ldots, (X_n,Y_n)\) define

\[
\hat{m}(x) = \begin{cases}
\frac{1}{n(x)} \sum_i Y_i \mathbb{1}(X_i \in B(x)) & \text{if } n(x) > 0 \\
0 & \text{if } n(x) = 0
\end{cases}
\]

where \(B(x) \) is the cube containing \(x \) and \(n(x) = \sum_i \mathbb{1}(X_i \in B(x)) \). Assume that

\[
|m(y) - m(x)| \leq L\|x - y\|_2
\]

for all \(x, y \) and assume that \(X \) has a uniform density on \([0,1]^d\). You may assume that \(\sup_x \text{Var}(Y \mid X = x) < \infty \).

(a) (10 pts.) Show that

\[
|\mathbb{E}[\hat{m}(x)] - m(x)| \leq C_1 h
\]

for some \(C_1 > 0 \). Also show that

\[
\text{Var}(\hat{m}(x)) \leq \frac{C_2}{n(x)}
\]

for some \(C_2 > 0 \).

(b) (10 pts.) Let \(h \equiv h_n = (C \log n/n)^{1/d} \). Show that, for \(C > 0 \) large enough, \(P(\min n_j = 0) \to 0 \) as \(n \to \infty \) where \(n_j \) is the number of observations in cube \(B_j \).

Solution.

Note: This problem was modified on Piazza to simplify calculations. In particular, we said to take the \(X_i \)'s to be fixed. The random \(X \) bounds can be obtained by taken the results below and applying the law of total expectation and law of total variance, respectively.

(a)

\[
|\mathbb{E}[\hat{m}(x)] - m(x)| = \left| \mathbb{E} \left[\frac{1}{n(x)} \sum_i Y_i \mathbb{1}(X_i \in B(x)) \right] - m(x) \right|
\]

\[
= \left| \frac{1}{n(x)} \sum_i \left(\mathbb{E}[Y_i] - m(x) \right) \mathbb{1}(X_i \in B(x)) \right|
\]

\[
= \left| \frac{1}{n(x)} \sum_i \left(m(X_i) - m(x) \right) \mathbb{1}(X_i \in B(x)) \right|
\]

\[
\leq \frac{1}{n(x)} \sum_i \left| m(X_i) - m(x) \right| \mathbb{1}(X_i \in B(x))
\]

\[
\leq \frac{1}{n(x)} \sum_i L \sqrt{d} h \cdot \mathbb{1}(X_i \in B(x))
\]

\[
= L \sqrt{d} h
\]

Let \(\sup_x \text{Var}(Y \mid X = x) = M \).
\[
\text{Var}(\hat{m}(x)) = \text{Var}\left(\frac{1}{n(x)} \sum_i Y_i \mathbb{1}_{\{X_i \in B(x)\}} \right) \\
= \frac{1}{n^2(x)} \sum_i \text{Var}(Y_i) \mathbb{1}_{\{X_i \in B(x)\}} \\
\leq \frac{M}{n(x)}.
\]

(b)

\[
P(\min_j n_j = 0) = P\left(\bigcup_{j=1}^B \{n_j = 0\} \right) \\
\leq \sum_{j=1}^B P(n_j = 0) \\
= \sum_{j=1}^B n \prod_{i=1}^n (1 - P(X_i \in B_j)) \\
= \frac{1}{h^d} (1 - h^d)^n \\
= \frac{n}{C \log n} \left(1 - \frac{C \log n}{n} \right)^n
\]

Take \(C = 1 \). Then

\[
\frac{n}{C \log n} \left(1 - \frac{C \log n}{n} \right)^n < \frac{n}{C \log n} e^{-\frac{C \log n}{n}} \\
= \frac{n}{C \log n} n^{-C} \\
= \frac{1}{C \log n} \\
\to 0.
\]
Problem 4 [15 pts.]
Consider the RKHS problem
\[
\tilde{f} = \arg \min_{f \in \mathcal{H}} \sum_{i=1}^{n} (y_i - f(x_i))^2 + \lambda \|f\|_{\mathcal{H}}^2, \tag{1}
\]
for some Mercer kernel function \(K: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R} \), with eigenexpansion
\[
K(x, z) = \sum_{i=1}^{\infty} \gamma_i \phi_i(x) \phi_i(z).
\]
Here, \(\phi_1, \phi_2, \ldots \) are the orthonormal eigenfunctions of \(K \). In this problem, you will prove that the above problem is equivalent to the finite dimensional one
\[
\hat{a} = \arg \min_{a \in \mathbb{R}^n} \|y - K \alpha\|_{2}^2 + \lambda \alpha^T K \alpha, \tag{2}
\]
where \(K \in \mathbb{R}^{n \times n} \) denotes the kernel matrix \(K_{ij} = K(x_i, x_j) \). Recall that the inner product \(\langle \cdot, \cdot \rangle_{\mathcal{H}} \) on \(\mathcal{H} \), between functions \(f = \sum_{i=1}^{\infty} c_i \phi_i \) and \(g = \sum_{i=1}^{\infty} d_i \phi_i \) can be written as
\[
\langle f, g \rangle_{\mathcal{H}} = \sum_{i=1}^{\infty} c_i d_i / \gamma_i
\]
where \(\gamma_1, \gamma_2, \ldots \) are the eigenvalues of the kernel \(K \). Also recall that the functions \(K(\cdot, x_i), i = 1, \ldots, n \) are called the representers of evaluation. Recall that
\[
\begin{align*}
\bullet & \quad \langle f, K(\cdot, x_i) \rangle_{\mathcal{H}} = f(x_i), \text{ for any function } f \in \mathcal{H} \\
\bullet & \quad \|f\|_{\mathcal{H}}^2 = \sum_{i,j=1}^{n} \alpha_i \alpha_j K(x_i, x_j) \text{ for any function } f = \sum_{i=1}^{n} \alpha_i K(\cdot, x_i).
\end{align*}
\]

(a) (5 pts.) Let \(f = \sum_{i=1}^{n} \alpha_i K(\cdot, x_i) \), and consider defining a function \(\tilde{f} = f + \rho \), where \(\rho \) is any function orthogonal to \(K(\cdot, x_i), i = 1, \ldots, n \). Using the properties of the representers, prove that \(\tilde{f}(x_i) = f(x_i) \) for all \(i = 1, \ldots, n \), and \(\|\tilde{f}\|_{\mathcal{H}}^2 \geq \|f\|_{\mathcal{H}}^2 \).

(b) (10 pts.) Conclude from part (a) that in the infinite-dimensional problem (1), we need only consider functions of the form \(f = \sum_{i=1}^{n} \alpha_i K(\cdot, x_i) \), and that this in turn reduces to (2).

Solution.

(a) Since \(f, \tilde{f} \in \mathcal{H}_K \), for all \(i = 1, \ldots, n \)
\[
\tilde{f}(x_i) = \langle \tilde{f}, K(\cdot, x_i) \rangle_{\mathcal{H}_K}
= \langle f, K(\cdot, x_i) \rangle_{\mathcal{H}_K} + \langle \rho, K(\cdot, x_i) \rangle_{\mathcal{H}_K}
= \langle f, K(\cdot, x_i) \rangle_{\mathcal{H}_K}
= f(x_i).
\]
Also, because
\[
\langle \rho, f \rangle_{\mathcal{H}_K} = \left(\rho, \sum_{i=1}^{n} \alpha_i K(\cdot, x_i) \right)_{\mathcal{H}_K}
= \sum_{i=1}^{n} \alpha_i \langle \rho, K(\cdot, x_i) \rangle_{\mathcal{H}_K}
= 0,
\]
we have,

\[
\| \tilde{f} \|_{\mathcal{H}_K}^2 = \langle f, f \rangle_{\mathcal{H}_K} + \langle \rho, \rho \rangle_{\mathcal{H}_K} + 2 \langle \rho, f \rangle_{\mathcal{H}_K}
\]

\[
= \| f \|_{\mathcal{H}_K}^2 + \| \rho \|_{\mathcal{H}_K}^2
\]

\[
\geq \| f \|_{\mathcal{H}_K}^2.
\]

(b) For any \(\tilde{f} \in \mathcal{H}_K \), let \(\bar{y} = (\tilde{f}(x_1), \ldots, \tilde{f}(x_n))^T \in \mathbb{R}^n \). Let \(f \in \mathcal{H}_K \) be \(f = \sum_{i=1}^n \alpha_i K(\cdot, x_i) \), where \(\alpha = K^{-1} \bar{y} \). Then

\[
\langle \tilde{f} - f, K(\cdot, x_i) \rangle_{\mathcal{H}_K} = \langle \tilde{f}, K(\cdot, x_i) \rangle_{\mathcal{H}_K} - \sum_{j=1}^n \alpha_j \langle K(\cdot, x_j), K(\cdot, x_i) \rangle_{\mathcal{H}_K}
\]

\[
= \tilde{f}(x_i) - \sum_{j=1}^n \alpha_j K(x_i, x_j)
\]

\[
= \tilde{f}(x_i) - [K(K^{-1} \bar{y})]_i
\]

\[
= \tilde{f}(x_i) - f(x_i)
\]

\[
= 0.
\]

Hence, \(\tilde{f} - f \perp K(\cdot, x_i) \) for all \(i = 1, \ldots, n \), and from (a), this implies \(\tilde{f}(x_i) = f(x_i) \) for all \(i = 1, \ldots, n \), and \(\| \tilde{f} \|_{\mathcal{H}_K}^2 \geq \| f \|_{\mathcal{H}_K}^2 \), where equality holds if and only if \(\tilde{f} = f \). Therefore,

\[
\sum_{i=1}^n (y_i - f(x_i))^2 + \lambda \| f \|_{\mathcal{H}_K}^2 \leq \sum_{i=1}^n (y_i - \tilde{f}(x_i))^2 + \lambda \| \tilde{f} \|_{\mathcal{H}_K}^2,
\]

where equality holds if and only if \(\tilde{f} = f \). Hence if \(\tilde{f} = \text{argmin}_{f \in \mathcal{H}_K} \sum_{i=1}^n (y_i - f(x_i))^2 + \lambda \| f \|_{\mathcal{H}_K}^2 \), then \(\tilde{f} = \sum_{i=1}^n \alpha_i K(\cdot, x_i) \) with \(\alpha = K^{-1} \bar{y} \). So we only need to consider functions of the form \(f = \sum_{i=1}^n \alpha_i K(\cdot, x_i) \). By plugging in, we have

\[
\sum_{i=1}^n (y_i - f(x_i))^2 \lambda \| f \|_{\mathcal{H}_K}^2 = \sum_{i=1}^n \left(y_i \sum_{j=1}^n \alpha_j K(x_i, x_j) \right)^2 + \lambda \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j K(x_i, x_j)
\]

\[
= \| y - K\alpha \|_2^2 + \lambda \alpha^T K \alpha.
\]
Problem 5 [15 pts.]

Let \(X = (X(1), \ldots, X(d)) \in \mathbb{R}^d \) and \(Y \in \mathbb{R} \). In the questions below, make any reasonable assumptions that you need but state your assumptions.

(a) (5 pts.) Prove that \(\mathbb{E}(Y - m(X))^2 \) is minimized by choosing \(m(x) = \mathbb{E}(Y | X = x) \).

(b) (5 pts.) Find the function \(m(x) \) that minimizes \(\mathbb{E}|Y - m(X)| \). (You can assume that the conditional cdf \(F(y | X = x) \) is continuous and strictly increasing, for every \(x \).)

(c) (5 pts.) Prove that \(\mathbb{E}(Y - \beta^T X)^2 \) is minimized by choosing \(\beta_\ast = B^{-1} \alpha \) where \(B = \mathbb{E}(XX^T) \) and \(\alpha = (\alpha_1, \ldots, \alpha_d) \) and \(\alpha_j = \mathbb{E}(YX(j)) \).

Solution.

(a) Let \(g(x) \) be any function of \(x \). Then
\[
\mathbb{E}(Y - g(X))^2 = \mathbb{E}(Y - m(X) + m(X) - g(X))^2 \\
= \mathbb{E}(Y - m(X))^2 + \mathbb{E}(m(X) - g(X))^2 + 2\mathbb{E}((Y - m(X))(m(X) - g(X))) \\
\geq \mathbb{E}(Y - m(X))^2 + 2\mathbb{E}((Y - m(X))(m(X) - g(X))) \\
= \mathbb{E}(Y - m(X))^2 + 2\mathbb{E}((Y|X) - m(X))(m(X) - g(X)) \\
= \mathbb{E}(Y - m(X))^2 + 2\mathbb{E}(m(X) - m(X))(m(X) - g(X)) \\
= \mathbb{E}(Y - m(X))^2
\]

(b) Let \(g(x) \) be any function of \(x \). Recall that
\[
\mathbb{E}[|Y - g(X)|] = \mathbb{E}\{\mathbb{E}[|Y - g(X)|] | X = x}\}
\]

The idea is to choose \(c \) such that \(\mathbb{E}[|Y - c | | X = x] \) is minimized. Now define:
\[
r(c) = \mathbb{E}[|Y - c | | X = x] = \int |y - c| p_{Y|X=x}(y) dy.
\]

The function \(h_y(c) = |y - c| \) is differentiable everywhere except when \(y = c \). Thus for \(c \neq y \)
\[
h'_y(c) = \begin{cases}
1 & c > y \\
-1 & c < y \\
1(c > y) - 1(c < y).
\end{cases}
\]

Since \(Y \) is continuous and has a density function, \(P(Y = c) = 0 \). So to minimize \(r(c) \) we can differentiate under the integral sign and set the derivative equal to 0 to obtain:
\[
r'(c) = \int h'_y(c)p_{Y|X=x}(y) dy = \int_{-\infty}^c p_{Y|X=x}(y) dy - \int_c^\infty p_{Y|X=x}(y) dy \\
= 2 \int_{-\infty}^c p_{Y|X=x}(y) dy - 1 = 0 \\
\iff \int_{-\infty}^c p_{Y|X=x}(y) dy = \frac{1}{2},
\]
so that \(c = m(x) \), which is the median of \(p_{Y|X=x}(y) \). It is a minimum since \(r'(c) < 0 \) for \(c < m(x) \) and \(r'(c) > 0 \) for \(c > m(x) \). Since \(m \) minimizes \(\mathbb{E}[|Y - c| \mid X = x] \) at every \(x \) for any \(g \) we get

\[
\mathbb{E}[|Y - g(X)| - |Y - m(X)||X = x] \geq 0
\]

which implies

\[
R(g) - R(m) = \mathbb{E}[|Y - g(X)| - |Y - m(X)|] = \mathbb{E}\{\mathbb{E}[|Y - g(X)| - Y - m(X)||X]\} \geq 0.
\]

(c) By setting the first derivative of the loss function equal to 0 we obtain:

\[
\frac{\partial R(\beta)}{\partial \beta} = 0
\]

\[
\Rightarrow \frac{\partial \mathbb{E}(Y - \beta^T X)^2}{\partial \beta} = 0
\]

\[
\Rightarrow \mathbb{E}[-2X(Y - \beta^T X)] = 0
\]

\[
\Rightarrow 2B\beta - 2\alpha = 0
\]

\[
\Rightarrow \beta_* = B^{-1}\alpha,
\]

where we can exchange the derivative and expectation by the dominated convergence theorem. The loss function \(R(\beta) \) is strictly convex so \(\beta_* \) is its unique minimum.
Problem 6 [25 pts.]

Suppose that \(Y_i = \beta^T X_i + \epsilon_i \) for \(i = 1, \ldots, n \). Let \(X \) be the \(n \times d \) design matrix. Assume that \(X^T X = I \) (the identity matrix). Let \(\hat{\beta} \) minimize

\[
\frac{1}{n} \sum_i (Y_i - \beta^T X_i)^2 + \lambda P(\beta).
\]

Find an explicit form for \(\hat{\beta} \) for three cases: (i) (10 pts.) \(P(\beta) = \|\beta\|_0 \), (ii) (10 pts.) \(P(\beta) = \|\beta\|_1 \) and (iii) (5 pts.) \(P(\beta) = \|\beta\|_2^2 \).

Solution.

(i) Note that

\[
\frac{1}{2} \|y - X\beta\|_2^2 + \lambda \|\beta\|_0 = \frac{1}{2} y^T y - \beta^T X^T y + \frac{1}{2} \beta^T X^T X \beta + \lambda \|\beta\|_0
\]

\[
= \frac{1}{2} y^T X X^T y - \sum_{j=1}^{p} \beta_j (X^T y)_j + \frac{1}{2} \beta^T \beta + \lambda \sum_{j=1}^{p} \mathbb{1}(\beta_j \neq 0) + \frac{1}{2} y^T (I - XX^T) y
\]

\[
= \sum_{j=1}^{p} \left(\frac{1}{2} \beta^2_j - \beta_j (X^T y)_j^2 + \lambda \mathbb{1}(\beta_j \neq 0) \right) + \frac{1}{2} y^T (I - XX^T) y
\]

\[
= \sum_{j=1}^{p} \left(\frac{1}{2} (\beta_j - X_j^T y)^2 + \lambda \mathbb{1}(\beta_j \neq 0) \right) + \frac{1}{2} y^T (I - XX^T) y.
\]

Then

\[
\frac{1}{2} (\beta_j - X_j^T y)^2 + \lambda \mathbb{1}(\beta_j \neq 0) \geq \frac{1}{2} (X_j^T y)^2 \mathbb{1}(\beta_j = 0) + \lambda \mathbb{1}(\beta_j \neq 0)
\]

\[
\geq \min \left\{ \frac{1}{2} (X_j^T y)^2, \lambda \right\}
\]

and equality holds if and only if

\[
\beta_j = \begin{cases}
0 & \text{if } \frac{1}{2} (X_j^T y)^2 < \lambda \\
0 \text{ or } X_j^T y & \text{if } \frac{1}{2} (X_j^T y)^2 = \lambda \\
X_j^T y & \text{if } \frac{1}{2} (X_j^T y)^2 > \lambda.
\end{cases}
\]

Hence

\[
\|y - X\beta\|_2^2 + \lambda \|\beta\|_0 = \sum_{j=1}^{p} \left((\beta_j - X_j^T y)^2 + \lambda \mathbb{1}(\beta_j \neq 0) \right) + y^T (I - XX^T) y
\]

\[
\geq \sum_{j=1}^{p} \min \left\{ (X_j^T y)^2, \lambda \right\} + y^T (I - XX^T) y
\]

and equality holds if and only if

\[
\beta_j = \begin{cases}
0 & \text{if } |X_j^T y| < \sqrt{\lambda} \\
0 \text{ or } X_j^T y & \text{if } |X_j^T y| = \sqrt{\lambda} \\
X_j^T y & \text{if } |X_j^T y| > \sqrt{\lambda}.
\end{cases}
\]
(ii) First write
\[
\min_{\beta} \|y - X\beta\|_2^2 + \lambda \|\beta\| = \min_{\beta} (y - X\beta)^T (y - X\beta) + \lambda \sum_j |\beta_j| \\
= \min_{\beta} -2y^T X\beta + \beta^T X^T X\beta + \lambda \sum_j |\beta_j| \\
= \min_{\beta} -2 \sum_j (X^T y) \beta_j + \sum_j \beta_j^2 + \lambda \sum_j |\beta_j|.
\]

Now note the last line is simply equivalent to
\[
\min_{\beta_j} -2(X^T y) \beta_j + \beta_j^2 + \lambda |\beta_j| \\
\iff \min_{\beta_j} -2\hat{\beta}_j^{OLS} \beta_j + \beta_j^2 + \lambda |\beta_j|
\]
for all \(j = 1, \ldots, p\).

When \(\hat{\beta}_j^{OLS} \geq 0\), then \(\bar{\beta}_j \geq 0\) so
\[
-2\hat{\beta}_j^{OLS} \beta_j + \beta_j^2 + \lambda |\beta_j| = -2\hat{\beta}_j^{OLS} \beta_j + \beta_j^2 + \lambda \beta_j.
\]

Differentiating with respect to \(\beta_j\), setting equal to zero, and solving gives
\[
\bar{\beta}_j = (\hat{\beta}_j^{OLS} - \frac{\lambda}{2}) 1_{(\hat{\beta}_j^{OLS} \geq \frac{\lambda}{2})}.
\]

When \(\hat{\beta}_j^{OLS} \leq 0\), the analogous steps give
\[
\bar{\beta}_j = (\hat{\beta}_j^{OLS} + \frac{\lambda}{2}) 1_{(\hat{\beta}_j^{OLS} \leq -\frac{\lambda}{2})}.
\]

Putting them together gives
\[
\bar{\beta}_j = \begin{cases}
\hat{\beta}_j^{OLS} - \frac{\lambda}{2} & \hat{\beta}_j^{OLS} \geq \frac{\lambda}{2} \\
0 & \hat{\beta}_j^{OLS} \in \left(-\frac{\lambda}{2}, \frac{\lambda}{2}\right) \\
\hat{\beta}_j^{OLS} + \frac{\lambda}{2} & \hat{\beta}_j^{OLS} \leq -\frac{\lambda}{2}.
\end{cases}
\]
(iii) Here the objective function is differentiable everywhere. Taking the gradient w.r.t. β we have

$$\nabla_{\beta} \left(\frac{1}{n} \| y - X\beta \|_2^2 + \lambda \| \beta \|_2^2 \right) = -\frac{2}{n} X^T(y - X\beta) + 2\lambda \beta.$$

Setting this equal to 0 and solving for β gives

$$\hat{\beta} = (I + n\lambda I)^{-1} X^T y.$$ (3)

Since the objective is strictly convex, (3) is the unique solution.