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1 An entirely too brief motivation

1.1 Why optimization?

• Optimization problems are ubiquitous in statistics and machine learning. A huge number of
problems that we consider in these disciplines (and, other disciplines) can indeed be posed as
optimization tasks

• But why bother studying the details? Other people have already understood the importance
of optimization and have provided us with fast software for various optimization algorithms

• Two major reasons: (1) different algorithms can perform (sometimes drastically) better or
worse in different scenarios, and an understanding of why this happens requires an under-
standing of optimization; (2) often times, understanding a problem from the optimization
perspective can contribute to our statistical understanding of the problem as well

• Since this is a theoretical course, we will ignore reason (1), and focus on reason (2)

1.2 Why convexity?

• Simply: because we can broadly understand and solve convex optimization problems. Non-
convex ones are understood and solved more on a case by case basis (this isn’t entirely true)

• Historically, linear programs were the focus in the optimization community, and initially, it
was thought that the major divide was between linear and nonlinear optimization problems;
later people discovered that some nonlinear problems were much harder than others, and the
“right” divide was between convex and nonconvex problems

1.3 Two great references

• There are many great books on convexity and optimization. They can be roughly divided into
books focused on convex analysis (the turf of mathematicians) and books focused on convex
optimization (the turf of engineers). Here are two such books:

– Boyd & Vandenberghe (2004)

– Rockafellar (1970)

Our presentation here is based on these two excellent books, especially Boyd & Vandenberghe
(2004). Combined, the two provide a pretty complete coverage

1.4 A shameless plug

• You should take our Convex Optimization course (10-725/36-725), you’ll learn a lot more
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2 Convex sets

2.1 Basic definitions

• A set C ⊆ Rn is convex provided that, for any x, y ∈ C and θ ∈ [0, 1], we have

θx+ (1− θ)y ∈ C,

i.e., the line segment joining x, y lies entirely in C

• In a more general probabilistic form: if X ∈ Rn is a random variable supported on a convex
set C ⊆ Rn, then E(X) ∈ C

• A convex combination of points x1, . . . xk ∈ Rn is a combination of the form

θ1x1 + θ2x2 + . . .+ θkxk,

where θi ≥ 0, i = 1, . . . k and
∑k
i=1 θi = 1

• The convex hull of a set C is the set of all convex combinations of points in C,

conv(C) =
{
θ1x1 + θ2x2 + . . .+ θkxk : xi ∈ C, θi ≥ 0 for i = 1, . . . k, and

k∑
i=1

θi = 1
}

• If you’ve forgotten, you should remind yourself of the basics of point-set topology: open and
closed sets, closure of a set (written cl(S)), and interior and boundary of a set (written int(S)
and bd(S))

2.2 Some examples

• The empty set ∅ is convex

• Lines, rays, line segments, linear spaces, and affine spaces are all convex

• A hyperplane is convex: this is a set of the form {x : aTx = b}

• A halfspace is convex: this is a set of the form {x : aTx ≤ b}

• A norm ball is convex: given a norm ‖ · ‖ on Rn (e.g., the `p norm, ‖ · ‖p, for p ≥ 1) this has
the form {x : ‖x‖ ≤ t}

• A polyhedron is convex: this is the intersection of some finite number of halfspaces, as in

{x : aTi x ≤ bi, i = 1, . . .m}.

We can abbreviate this as {x : Ax ≤ b}, where b = (b1, . . . bm) ∈ Rm, A ∈ Rm×n with rows ai,
i = 1, . . .m, and the inequality Ax ≤ b is interpreted componentwise

• Note: we can also write a polyhedron as {x : Ax ≤ b, Cx = d}. (Why?)

• Any bounded polyhedron (called a polytope) can also be written as the convex hull of a finite
set of points; this is called its V-representation. The original representation given above, as
an intersection of halfspaces, is called its H-representation

• Simplexes are a special case of polyhedra that are given by taking the convex hull of a set of
points {x0, . . . xk} ⊆ Rn that are affinely independent, which means that x1 − x0, . . . xk − x0

are linearly independent. In particular, this is a k-dimensional simplex in Rn
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• The canonical simplex is the probability simplex, given by the convex hull of {e1, . . . en} ⊆ Rn,
the standard basis vectors in Rn, which can be written as

{θ : θ ≥ 0, 1T θ = 1}.

Note again that the inequality θ ≥ 0 is to be interpreted componentwise (and we will, without
distinction, use 1 to denote the vector of 1s whenever convenient)

• Consider the set of symmetric n× n matrices,

Sn = {X ∈ Rn×n : X = XT }.

Think of this as a vector space of dimension n(n+1)/2. Now consider the subset of this vector
space

Sn+ = {X ∈ Sn : X � 0},
where X � 0 means that X is positive semidefinite. We call Sn+ the positive semidefinite cone,
and it is a convex set (again, think of it as a set in the ambient n(n + 1)/2 vector space of
symmetric matrices)

2.3 Key properties

• Separating hyperplane theorem: if C,D are nonempty, and disjoint (C ∩D = ∅) convex sets,
then there exists a 6= 0 and b such that C ⊆ {x : aTx ≤ b} and D ⊆ {x : aTx ≥ b}

• Supporting hyperplane theorem: if C is a nonempty convex set, and x0 ∈ bd(C), then there
exists a supporting hyperplane to C at x0, i.e., there exists a 6= 0 and b such that aTx0 = b
and C ⊆ {x : aTx ≤ b}

• Closed halfspace representation: if C is a closed convex set, then it can be represented as the
intersection of all halfspaces that contain it,

C =
⋂ {

H : H is a halfspace, and H ⊇ C
}

2.4 Operations that preserve convexity

• Convexity of all sets in Section 2.2 can be verified directly from the definition. Often though,
to check that a set S is convex, it is easier to start with a set of basic sets that we know are
convex (such as those in Section 2.2), and recognize that our set S of interest is given by a
transformation of one of these basic sets, via an operation that preserves convexity

• The intersection of any number of convex sets is convex. This even holds for an (uncountably)
infinite number of sets

E.g., from this we can show that the positive semidefinite cone Sn+ is convex, because

Sn+ =
{
X ∈ Sn : aTXa ≥ 0 for all a ∈ Rn

}
=
⋂
a∈Rn

{X ∈ Sn : aTXa ≥ 0}.

Note that, for a fixed a ∈ Rn, the term aTXa =
∑n
i,j=1 aiajXij is actually a linear function

in X, so the above is an intersection of halfspaces in X, and therefore convex
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• Affine images and affine preimages of convex sets are convex. I.e., if f : Rn → Rm is an affine
function, meaning that f(x) = Ax+ b, and S ⊆ Rn, T ⊆ Rm are convex, then both

f(S) = {f(x) : x ∈ S}

and
f−1(T ) = {x : f(x) ∈ T}

are convex

E.g., from this we can show that the solution set of a linear matrix inequality{
x ∈ Rk : x1A1 + x2A2 + . . .+ xkAk � B

}
,

where A1, . . . Ak, B ∈ Sn is convex. To see this, note that this set is the inverse image of Sn+
under the affine function f : Rk → Sn,

f(x) = B − (x1A1 + x2A2 + . . .+ xkAk)

• Note in particular that both scaling and translation preserve convexity (special cases of affine
images), i.e., if S ⊆ Rn is convex then

αS = {αx : x ∈ S}

is convex for any α ∈ R, and
S + c = {x+ c : x ∈ S}

is convex for any c ∈ Rn

• Perspective images and perpsective preimages of convex sets are also convex. The perspective
function P ∈ Rn+1, with domain dom(P ) = Rn × R++ (here R++ denotes the set of positive
reals), is defined as

P (x, t) = x/t = (x1/t, . . . xn/t).

Then for any convex S ⊆ dom(P ) ⊆ Rn+1, the image

P (S) = {P (z) : z ∈ S}

is convex, and for any convex T ⊆ Rn, the preimage

P−1(T ) = {(x, t) : t > 0, x/t ∈ T}

is also convex

• Linear-fractional images and linear-fractional preimages are convex. A linear-fractional func-
tion is the perspective function composed with an affine function, i.e., if g : Rn × Rm+1 is
affine,

g(x) =

[
A
cT

]
x+

[
b
d

]
,

and P : Rm+1 → Rm is the perspective map, then f = P ◦ g : Rn → Rm is a linear-fractional
function. Note

f(x) =
Ax+ b

cTx+ d
,

with domain dom(f) = {x : cTx+ d > 0}. From what we know already, if S ⊆ dom(f) ⊆ Rn
is convex, then the image f(S) = P (g(S)) is convex, and also, if T ⊆ Rm+1 is convex, the the
preimage f−1(T ) = g−1(P−1(T )) is convex
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E.g., using this we can show the following fact. Let U, V be random variables taking discrete
values in {1, . . . n} and {1, . . .m}, respectively, and let S ⊆ Rnm be a set of joint probabilities
for U, V . In other words, each p ∈ C defines a probability distribution over U, V , as in
pij = P(U = i, V = j). If S is convex, then the set of conditional probabilities of U given V is
also convex.

Why? The set of conditional probabilities of U given V is{
q ∈ Rnm : qij =

pij∑n
k=1 pkj

, for some p ∈ C
}
.

This is the image of C under a linear-fractional function, and is hence convex provided that
C is convex

3 Convex functions

3.1 Basic definitions

• In a rough sense, convex functions are even more important than convex sets, because we use
them more (though this sounds funny, because the two are intimately related)

• A function f : Rn → R is convex if its domain dom(f) is convex, and for any x, y ∈ dom(f)
and θ ∈ [0, 1],

f
(
θx+ (1− θ)y

)
≤ θf(x) + (1− θ)f(y).

In words, the function lies below the line segment joining its evaluations at x, y. A function is
strictly convex if this same inequality holds strictly for x 6= y and θ ∈ (0, 1),

f
(
θx+ (1− θ)y

)
< θf(x) + (1− θ)f(y)

• A function f is concave or strictly concave if −f is convex or strictly convex, respectively

• Affine functions, i.e., such that f(x) = aTx+ b, are both convex and concave (conversely, any
function that is both convex and concave is affine)

• A function f is strongly convex with parameter m > 0 (written m-strongly convex) provided
that

f(x)− m

2
‖x‖22

is a convex function. In rough terms, this means that f is “as least as convex” as a quadratic
function. This is the strongest form of convexity (hence its name), so that strong convexity
implies strict convexity implies convexity

3.2 Some examples

• Examples on R: the exponential function eax is convex for any a ∈ R; the power function xa

is convex on R++ for any a ≥ 1 or a ≤ 0; the negative entropy function x log x is convex on
R++; the log function log x is concave on R++; the power function xa is concave on R++ for
any 0 ≤ a ≤ 1; the affine function ax+ b is both convex and concave

• Norms are convex, i.e., f : Rn → R defined by f(x) = ‖x‖ is a convex function, for any norm
‖ · ‖
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• An important special case is the `p norm, ‖ · ‖p, for p ≥ 1. Recall that this is defined as

‖x‖p =
( n∑
i=1

|xi|p
)1/p

when p <∞, and
‖x‖∞ = max

i=1,...n
|xi|.

• Two other important special cases are the operator (spectral) and trace (nuclear) norms for
matrices. Recall that if X ∈ Rm×n has singular values σ1(X) ≥ σ2(X) ≥ . . . ≥ σr(X) ≥ 0,
where r = rank(X) ≤ min{m,n}, then its operator (or spectral) norm is

‖X‖op = σ1(X),

and its trace (or nuclear) norm is

‖X‖tr =
r∑
i=1

σr(X)

• The indicator function f(x) = IC(x) of a convex set C ⊆ Rn is convex. This is defined as

IC(x) =

{
0 x ∈ C
∞ x /∈ C

• The quadratic function f(x) = 1
2x

TQx+ cTx+ b is convex provided that Q � 0

• The least squares criterion f(x) = ‖Ax− b‖22 = xTATAx− 2bTAx+ bT b is hence convex

• The max function f(x) = max{x1, . . . xn} is convex

• The function f(x) = log(
∑n
i=1 exp(xi)) is convex, and called the log-sum-exp function. This is

often viewed as an (infinitely differentiable) approximation to the max function, since

max{x1, . . . xn} ≤ f(x) ≤ max{x1, . . . xn}+ log n

3.3 Key properties

• A convex function is continuous on the relative interior of its domain; it can only have points
of discontinuity on its relative boundary

• A function is convex if and only its restriction to any line is convex. That is, f : Rn → R is
convex if and only if g(t) = f(x+ tv) is convex in t ∈ R (on its domain {t : x+ tv ∈ dom(f)}),
for all v ∈ Rn

E.g., from this we can show that the function f : Sn → R, f(X) = log detX, with dom(f) =
Sn++ = {X ∈ Sn : X � 0}, is concave

• First-order characterization: suppose that f is differentiable (and write ∇f for its gradient).
Then f is convex if and only if dom(f) is convex, and for all x, y ∈ dom(f),

f(y) ≥ f(x) +∇f(x)T (y − x).

In words, the function always dominates its first order (linear) Taylor approximation. It’s an
analogous story for strict convexity: the condition is that for all x 6= y,

f(y) > f(x) +∇f(x)T (y − x)
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E.g., from the first-order characterization, we can deduce a useful property: if ∇f(x) = 0 for a
convex function f , then f(y) ≥ f(x) for all y, so x is a minimizer of f . Further, if f is strictly
convex, then x is the unique minimizer

• Second-order characterization: suppose that f is twice differentiable (and we write ∇2f for its
Hessian). Then f is convex if and only if dom(f) is convex, and

∇2f(x) � 0

for all x ∈ dom(f). Note that ∇2f(x) � 0 for all x ∈ dom(f) implies strict convexity—but
the converse is not true!

E.g., using this second-order characterization, we can verify the convexity of the quadratic
function f(x) = xTQx+ cTx+ b when Q � 0 (and strict convexity when Q � 0). We can also
verify that f : Rn → R defined by

f(x) = log
( n∑
i=1

exp(xi)
)

is convex

• Strong convexity characterizations: if f is differentiable, then m-strong convexity is equivalent
to dom(f) being convex and

f(y) ≥ f(x) +∇f(x)T (y − x) +
m

2
‖y − x‖22

for all x, y ∈ dom(f). I.e., f is lower bounded by its second order (quadratic) approximation,
rather then only its first order (linear) approximation, which is implied by regular convexity

If f is twice differentiable, then m-strong convexity is equivalent to dom(f) being convex and

∇2f(x) � mI

for all x ∈ dom(f), i.e., the smallest eigenvalue of the Hessian is lower bounded by m, every-
where

• A convex function f has convex level sets,

{x ∈ dom(f) : f(x) ≤ t},

for any t ∈ R. The converse is not true

• Epigraph characterization: a function f is convex if and only if its epigraph

{(x, t) ∈ dom(f)× R : f(x) ≤ t}

is a convex set. This ties together convexity for functions and sets; in fact many properties of
convex functions can be proven from those for convex sets

• Jensen’s inequality: if f is convex, and X is a random variable supported on dom(f), then

f
(
E(X)

)
≤ E

(
f(X)

)
.

This is a more general probabilistic form of the basic inequality for convexity
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3.4 Operations that preserve convexity

• As was true for convex sets, the easiest way to prove convexity of a function is often to show
that it can be built up from simple convex functions, using operations that preserve convexity

• Nonnegative linear combinations: if f1, . . . fm are convex, then

a1f1 + . . .+ amfm

is convex for any a1, . . . am ≥ 0

• Affine composition: if f is convex, then g(x) = f(Ax+ b) is convex

• Pointwise maximum: if f1, . . . fm are convex, then

f(x) = max{f1(x), . . . fm(x)}

are convex. This extends to (uncountably) infinitely many functions: if fs(x) is convex for any
s ∈ S, then

f(x) = max
s∈S

fs(x)

is convex

We can use this to show some fairly nonobvious functions are convex. E.g., the maximum
distance to an arbitrary set C ⊆ Rn,

f(x) = max
y∈C

‖x− y‖,

in any norm ‖ · ‖, is convex. This is because ‖x− y‖ is convex in x for any fixed y. Also, the
optimal weighted least squares cost,

f(w) = min
β∈Rp

n∑
i=1

wi(yi − xTi β)2,

is concave as a function of the weights w ∈ Rn, with domain

dom(f) =
{
w : min

β∈Rp

n∑
i=1

wi(yi − xTi β)2 > −∞
}
.

This is because each
∑n
i=1 wi(yi − xTi β)2, for fixed β, is affine and hence concave in w, so the

pointwise minimum f is also concave

• Partial minimization: if f(x, y) is convex in x, y, and C is a convex and nonempty set, then

g(x) = min
y∈C

f(x, y)

is convex in x, provided that g(x) > −∞ for all x in its domain,

dom(g) = {x : (x, y) ∈ dom(f) for some y ∈ C}

Again, we can use this to show some fairly nonobvious properties. E.g., the minimum distance
to a convex set C,

f(x) = min
y∈C
‖x− y‖,
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in any norm ‖ · ‖, is convex. This is because ‖x − y‖ is convex in x, y, and we have assumed
that C is convex. (N.B. the maximum distance to any set is a convex function.) Also, suppose
that [

A B
BT C

]
� 0

and so
f(x, y) = xTAx+ 2xTBy + yTCy

is convex is x, y. Then we know that

g(x) = min
y∈Rn

f(x, y)

is convex in x; a simple calculation shows that, assuming C is invertible,

g(x) = xT (A−BC−1BT )x.

Therefore, for g to be convex, we know that the Schur complement has to be positive semidef-
inite,

A−BC−1BT � 0

• Composition: this is a bit tricky, as composition rules that preserve convexity (or concavity)
rely on monotonicity conditions. Here are a few results to remember, in the setting f = h ◦ g,
where g : Rn → R, h : R → R, so f : Rn → R. (We assume for simplicity that dom(g) = Rn
and dom(h) = R.)

– f is convex provided that h is convex and nondecreasing, and g is convex

– f is convex provided that h is convex and nonincreasing, and g is concave

– f is concave provided that h is concave and nondecreasing, and g is concave

– f is concave provided that h is concave and nonincreasing, and g is convex

While these rules hold without assuming differentiability of h, g, in order to remember them,
it may help to think of the chain rule on R:

f ′′(x) = h′′(g(x))g′(x)2 + h′(g(x))g′′(x).

Now we can see directly that if, e.g., h is convex and nondecreasing, then h′′ ≥ 0 and h′ ≥ 0,
and if g is convex, then g′′ ≥ 0, so altogether f ′′ ≥ 0

4 Optimization problems

4.1 Basic definitions

• An optimization problem has the form

min
x∈D

f(x)

subject to hi(x) ≤ 0, i = 1, . . .m

`j(x) = 0, j = 1, . . . r.

(1)

Here D = dom(f) ∩⋂mi=1 dom(hi) ∩
⋂r
j=1 dom(`j), the common domain of all functions. The

function f is called the objective or criterion. A feasible point x is a point in D such that all
inequality and equality constraints are met. A solution or minimizer x? is a feasible point that
achieves the minimal criterion value. We will often denote the minimum criterion value by f?.
(We will also often stop explicitly writing x ∈ D, and consider this requirement implicit)
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• A convex optimization problem is an optimization problem in which all functions f, h1, . . . hm
are convex, and all functions `1, . . . `r are affine. (Think: why affine?) Hence, we can express
it as

min
x

f(x)

subject to hi(x) ≤ 0, i = 1, . . .m

Ax = b

(2)

• The problem (2) is of course equivalent to a concave maximization problem, as in

max
x

− f(x)

subject to − hi(x) ≥ 0, i = 1, . . .m

Ax = b.

Often we will not make any distinction, and still call the above a convex optimization problem

4.2 Some examples

• When f is affine, and all h1, . . . hm are affine, problem (2) becomes

min
x∈Rn

cTx

subject to Gx ≤ h
Ax = b,

(3)

and is known as a linear program (LP). This problem is always convex, and is a well-studied
topic (there are entire courses, and entire books about linear programming alone). The feasible
set in (3) is the polyhedron {x : Gx ≤ h, Ax = b}; it is not hard to see that a solution in (3)
always lies at a vertex (exposed point) of this polyhedron

• When f is quadratic, and still all h1, . . . hm are affine, problem (2) becomes

min
x∈Rn

1

2
xTQx+ cTx

subject to Gx ≤ h
Ax = b,

(4)

and is called a quadratic program (QP). This problem is convex provided that Q � 0

• Given yi ∈ {0, 1}, xi ∈ Rp, i = 1, . . . n, the problem

max
β∈Rp

n∏
i=1

( exp(xTi β)

1 + exp(xTi β)

)yi
·
( 1

1 + exp(xTi β)

)1−yi

subject to ‖β‖1 ≤ t,
is an `1 regularized logistic regression problem. Because log is monotone increasing, we can
take the log of the criterion value, and flip its sign, to yield the equivalent problem

min
β∈Rp

n∑
i=1

(
− yi(xTi β) + log

(
1 + exp(xTi β)

))
subject to ‖β‖1 ≤ t.

This is a convex problem because the criterion is a sum of affine functions and log-sum-exp
functions (composed with affine functions), and the `1 norm is convex
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4.3 Key properties

• Perhaps the most important property of convex optimization problems is that any local min-
imizer is a global minimizer. To see this, suppose that x is feasible for (2), and there exists
some R > 0 such that

f(x) ≤ f(y) for all feasible y with ‖x− y‖2 ≤ R.

Such a point x is called a local minimizer. For the sake of contradiction, suppose that x was
not a global minimizer, i.e., there exists some feasible z such that f(z) < f(x). By convexity
of the constraints (and the domain D), the point θz + (1 − θ)x is feasible for any 0 ≤ θ ≤ 1.
Furthermore, by convexity of f ,

f
(
θz + (1− θ)x

)
≤ θf(z) + (1− θ)f(x) < f(x)

for any 0 < θ < 1. Finally, we can choose θ > 0 small enough so that ‖x− (θz+ (1− θ)x)‖2 =
θ‖x− z‖2 ≤ R, and we obtain a contradiction

• Beware of a common misconception: this does not mean that a convex optimization problem
must have a unique minimizer! Simply consider an unconstrained convex problem with f(x) =
c, a constant

• However, we do know that the set of solutions of a convex problem forms a convex set. This
is true because if x and z are solutions, then θx + (1 − θ)z is feasible for any 0 ≤ θ ≤ 1, and
by convexity

f
(
θx+ (1− θ)z

)
≤ θf(x) + (1− θ)f(z) = f?

for any 0 ≤ θ ≤ 1, i.e., f(θx+ (1− θ)z) = f? as f? is optimal, which means that θx+ (1− θ)z
is also a solution

• Furthermore, a convex problem with a strictly convex criterion function f does have a unique
solution. This follows because if x and z were both solutions with x 6= z, then θx+ (1− θ)z is
feasible for any 0 ≤ θ ≤ 1, and by strict convexity

f
(
θx+ (1− θ)z

)
< θf(x) + (1− θ)f(z) = f?

for any 0 < θ < 1, which cannot be the case, because f? is the optimal criterion value

• It can happen that a nonconvex optimization problem, i.e., a problem of the form (1) where at
least one of f, h1, . . . fm is not convex, or at least one of `1, . . . `r is not affine, actually reduces
to a convex optimization problem. So think carefully about whether you can manipulate the
form of the particular problem in your favor

5 Subgradients

5.1 Basic definitions

• Remember that for a convex function f : Rn → R, we have

f(y) ≥ f(x) +∇f(x)T (y − x)

for all x, y ∈ dom(f). I.e., the linear approximation always underestimates f . A subgradient
of f at x ∈ dom(f) is any g ∈ Rn such that

f(y) ≥ f(x) + gT (y − x)

for all y ∈ dom(f)
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• Subgradients always exist for convex functions (to be precise, this is only true on the relative
interior of dom(f)). One can prove this by representing a convex function via its epigraph,
and using the supporting hyperplane theorem

• If f is convex and differentiable at x, then g = ∇f(x) is the unique subgradient at x

• The same definition for subgradients also applies to nonconvex functions f ; but in this case,
subgradients need not exist (even when f is differentiable)

• The set of all subgradients of a f at x is called its subdifferential at x, denoted

∂f(x) =
{
g : g is a subgradient of f at x

}
.

This set ∂f(x) is closed and convex (even when f is nonconvex). For a convex function f (and
x in the relative interior of dom(f)), the set ∂f(x) is nonempty. Note that if f is convex and
differentiable at x, then ∂f(x) = {∇f(x)}; conversely, if f is convex and ∂f(x) = {g}, then f
is differentiable at x and ∇f(x) = g

5.2 Some examples

• Consider the absolute value function, f : R → R, f(x) = |x|. When x 6= 0, f has a unique
unique subgradient g = sign(x). When x = 0, subgradient g can be any element of [−1, 1]

• Consider the `2 norm, f : Rn → R, f(x) = ‖x‖2. When x 6= 0, f has a unique subgradient
g = x/‖x‖2. When x = 0, subgradient g can be any element of the `2 ball, {z : ‖z‖2 ≤ 1}

• Consider the `1 norm, f : Rn → R, f(x) = ‖x‖1. When xi 6= 0, a subgradient g of f has the
unique ith component gi = sign(xi). When xi = 0, gi can be any element of [−1, 1]

• Let f1, f2 : Rn → R be convex, differentiable, and consider f(x) = max{f1(x), f2(x)}.
– When f1(x) > f2(x), f has a unique subgradient g = ∇f1(x)

– When f2(x) > f1(x), f has a unique subgradient g = ∇f2(x)

– When f1(x) = f2(x), g can be any point on the line segment joining ∇f1(x) and ∇f2(x)

• Consider f(x) = IC(x), the indicator function of a convex set C ∈ Rn. Then subgradients of
f at a point x ∈ C are exactly the normal cone of C at x, written ∂IC(x) = NC(x), where

NC(x) =
{
g : gTx ≥ gT y for any y ∈ C

}
5.3 Key properties

• Subgradient calculus: here are several basic rules for subgradients of convex functions.

– Scaling: ∂(af) = a · ∂f provided a > 0

– Addition: ∂(f1 + f2) = ∂f1 + ∂f2

– Affine composition: if g(x) = f(Ax+ b), then

∂g(x) = AT∂f(Ax+ b)

– Finite pointwise maximum: if f(x) = maxi=1,...m fi(x), then

∂f(x) = conv
( ⋃
i:fi(x)=f(x)

∂fi(x)
)
,

the convex hull of union of subdifferentials of all active functions at x

12



• General pointwise maximum: an extension of the finite pointwise maximum rule. If f(x) =
maxs∈S fs(x), then

∂f(x) ⊇ cl
{

conv
( ⋃
s:fs(x)=f(x)

∂fs(x)
)}
,

and under some regularity conditions on S, fs, we get an equality above (a sufficient condition,
e.g., if that S is compact, and the function s 7→ fs(x) are continuous in s for each fixed x)

• Subgradients of norms: an important special case of the above rule. Let f(x) = ‖x‖ for some
arbitrary norm ‖ · ‖, and let ‖ · ‖∗ denote its dual norm—we will return to this later, but for
now, you can think of ‖ · ‖p and ‖ · ‖q being dual, where 1/p+ 1/q = 1. Then

‖x‖ = max
‖z‖∗≤1

zTx,

and hence
∂‖x‖ =

{
y : ‖y‖∗ ≤ 1 and yTx = max

‖z‖∗≤1
zTx

}
• Optimality characterization: certainly one of the most important facts to know about subgra-

dients. For any f (convex or not),

x minimizes f ⇐⇒ 0 ∈ ∂f(x).

Why? This is very easy to show: g = 0 being a subgradient means that for all y ∈ dom(f),

f(y) ≥ f(x) + 0T (y − x) = f(x).

Note the connection to the convex and differentiable case, in which ∂f(x) = {∇f(x)}
This optimality characterization can be very helpful. Here are two examples of putting it to
use. First, consider a closed, convex set C ⊆ Rn. For y ∈ Rn, we define its projection onto C
by

PC(y) = argmin
x∈C

‖y − x‖2.

Using our optimality characterization, we can show that x = PC(y) if and only if

〈y − x, x− u〉 ≥ 0 for all u ∈ C,

which is sometimes called the variational inequality. How to see this? Note that x = PC(y)
minimizes the criterion

f(x) =
1

2
‖y − x‖22 + IC(x)

where IC is the indicator function of C. Hence we know this is equivalent to

0 ∈ ∂f(x) = −(y − x) +NC(x),

i.e.,
y − x ∈ NC(x),

which exactly means that

(y − x)Tx ≥ (y − x)Tu for all u ∈ C.

Rearranging gives the result.

13



As a second example, consider the `1 penalized least squares problem

min
β∈Rn

1

2
‖y − β‖22 + λ‖β‖1.

(This is a lasso problem with identity predictor matrix.) We claim that the solution of this
problem is β̂ = Sλ(y), where Sλ is the soft-thresholding operator, defined as

[Sλ(y)]i =


yi − λ if yi > λ

0 if − λ ≤ yi ≤ λ
yi + λ if yi < −λ

, i = 1, . . . n.

Why? Subgradients of f(β) = 1
2‖y − β‖22 + λ‖β‖1 are

g = β − y + λs,

where si = sign(βi) if βi 6= 0 and si ∈ [−1, 1] if βi = 0. Now just plug in β = Sλ(y) and check
that we can get g = 0

6 Duality

6.1 Basic definitions and properties

• Duality is one of the most useful, and most beautiful, concepts in optimization. It provides us
with an equivalent optimization problem to inspect, that often has complementary properties
to the original (called the primal) problem

• Recall that a general optimization problem has the form

min
x

f(x)

subject to hi(x) ≤ 0, i = 1, . . .m

`j(x) = 0, j = 1, . . . r.

(5)

If f, h1, . . . hm are convex and `1, . . . `r are affine, then this problem is a convex optimization
problem. For now we will not assume convexity and just stick with the general problem (5).
We first define the Lagrangian associated with (5) by

L(x, u, v) = f(x) +

m∑
i=1

uihi(x) +

r∑
j=1

vj`j(x).

Note that L is a function of three (blocks of) variables: x, and u, v which are new variables,
called dual variables, that we have just introduced. In particular, we have u ∈ Rm, v ∈ Rr,
with the implicit domain u ≥ 0 (i.e., implicitly, we define L(x, u, v) = −∞ for u < 0). A trivial
but important property is that for any primal feasible x (i.e., x satisfying the constraints in
(5)) and dual feasible u, v (i.e., such that u ≥ 0), we have

L(x, u, v) = f(x) +

m∑
i=1

uihi(x) +

r∑
j=1

vj`j(x)

≤ f(x) +

m∑
i=1

ui · 0 +

r∑
j=1

vj · 0

= f(x).

In other words, L(·, u, v) provdes a lower bound on f for any dual feasible u, v

14



• Now let C denote primal feasible set,

C = {x : hi(x) ≤ 0, i = 1, . . .m, `j(x) = 0, j = 1, . . . r},
and f? denote the optimal primal criterion value. Then minimizing L(x, u, v) over all x gives
a lower bound on f?

f? ≥ min
x∈C

L(x, u, v) ≥ min
x

L(x, u, v) := g(u, v).

We call g(u, v) the Lagrange dual function, and it provides a lower bound on f? for any dual
feasible u, v

• Finally, the dual problem associated with (5) is given by maximizing this lower bound over all
feasible points,

max
u,v

g(u, v)

subject to u ≥ 0.
(6)

A key property, called weak duality: if we write g? as the dual optimal value, then

f? ≥ g?.
Note that this always holds (even if the primal problem is nonconvex)

• Another key property: the Lagrange dual function g is always concave, regardless of the primal
problem (5). This makes the dual problem (6) always a concave maximization problem, i.e., a
convex optimization problem. Why? According to its definition,

g(u, v) = − max
x

{
− f(x)−

m∑
i=1

uihi(x)−
r∑
j=1

vj`j(x)
}

︸ ︷︷ ︸
pointwise maximum of convex functions in (u, v)

6.2 Some examples

• Consider the quadratic program

min
x∈Rn

1

2
xTQx+ cTx

subject to Ax = b, x ≥ 0

where Q � 0. The Lagrangian is

L(x, u, v) =
1

2
xTQx+ cTx− uTx+ vT (Ax− b)

The Lagrange dual function is

g(u, v) = min
x∈Rn

L(x, u, v) = −1

2
(c− u+AT v)TQ−1(c− u+AT v)− bT v

The dual problem is

max
u∈Rn, v∈nRm

− 1

2
(c− u+AT v)TQ−1(c− u+AT v)− bT v

subject to u ≥ 0,

which is another quadratic program, whose optimal value is g? ≤ f?, where f? is the optimal
value of the primal problem

Figure 1 shows an an example of a QP in 2 dimensions, with no equality constraints (so the
dual QP is also 2 dimensional). Note: it looks like g? = f?. Is this a coincidence?
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Figure 1: The primal and dual criterion surfaces for the quadratic minimization example.

• As another example, consider the quartic minimization problem

min
x∈R

x4 − 50x2 + 100x

subject to x ≥ −4.5.

This is nonconvex (because its criterion is nonconvex). Although it is a pretty messy calcula-
tion, here the dual function g can be derived explicitly (via the analytic formula for roots of a
cubic equation):

g(u) = min
i=1,2,3

F 4
i (u)− 50F 2

i (u) + 100Fi(u),

where for i = 1, 2, 3,

Fi(u) =
−ai

12 · 21/3

(
432(100− u)−

(
4322(100− u)2 − 4 · 12003

)1/2)1/3

−

100 · 21/3 1(
432(100− u)−

(
4322(100− u)2 − 4 · 12003

)1/2)1/3
,

and a1 = 1, a2 = (−1 + i
√

3)/2, a3 = (−1− i
√

3)/2. Without the context of duality it would
be difficult to tell whether or not g is concave ... but we know it must be!

Figure 2 displays the primal and dual criterion functions for this quartic example. Note: it is
evident that g? < f?, i.e., the lower bound constructed from the dual problem is strictly less
than the primal optimal value. Why?

6.3 Strong duality and Slater’s condition

• We have seen an example above in which the dual problem delivers a tight lower bound, in
that g? = f?; this phenomenon is called strong duality

• When does strong duality this hold in general? A sufficient (but not necessary) condition is
called Slater’s condition: if the primal problem (5) is a convex (i.e., f, h1, . . . hm are convex,
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Figure 2: The primal and dual criterion functions for the quartic minimization example.

`1, . . . `r are affine), and there exists at least one strictly feasible x, meaning that

h1(x) < 0, . . . hm(x) < 0 and `1(x) = 0, . . . `r(x) = 0,

then strong duality holds

• This is a pretty weak condition. And it can be further refined: we actually only need strict
inequalities only over functions hi that are not affine

6.4 Duality gap

• In general, given primal feasible x and dual feasible u, v, the quantity

f(x)− g(u, v)

is called the duality gap between x and u, v. Note that

f(x)− f? ≤ f(x)− g(u, v),

so if the duality gap is zero, then x is primal optimal, and similarly, u, v are dual optimal

• This plays a key role in establishing optimality conditions for problems under strong duality,
as we will cover next

7 The KKT conditions

7.1 Statement of conditions

• Given the general problem

min
x

f(x)

subject to hi(x) ≤ 0, i = 1, . . .m

`j(x) = 0, j = 1, . . . r,

the Karush-Kuhn-Tucker conditions (or KKT conditions) are
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– 0 ∈ ∂f(x) +
∑m
i=1 ui∂hi(x) +

∑r
j=1 vj∂`j(x) (stationarity)

– ui · hi(x) = 0 for all i = 1, . . .m (complementary slackness)

– hi(x) ≤ 0, `j(x) = 0 for all i = 1, . . .m, j = 1, . . . r (primal feasibility)

– ui ≥ 0 for all i = 1, . . .m (dual feasibility)

Note that the KKT conditions are a statement about a triplet of variables x, u, v, where x is
a primal variable, and u, v are dual variables, i.e., u, v are associated with the dual problem

max
u,v

g(u, v)

subject to u ≥ 0.

But importantly, we don’t to need to form the dual function g to examine the KKT conditions

7.2 Necessity

• Let x? and u?, v? be primal and dual solutions with zero duality gap (this means that strong
duality holds, e.g., under Slater’s condition). Then the KKT conditions must hold

• Proof: we have

f(x?) = g(u?, v?)

= min
x

f(x) +

m∑
i=1

u?i hi(x) +

r∑
j=1

v?j `j(x)

≤ f(x?) +

m∑
i=1

u?i hi(x
?) +

r∑
j=1

v?j `j(x
?)

≤ f(x?).

In other words, all these inequalities are actually equalities. Two things to learn from this:

1. The point x? minimizes L(x, u?, v?) over x ∈ Rn. Hence the subdifferential of L(x, u?, v?)
must contain 0 at x = x?; this is exactly the stationarity condition

2. We must have
∑m
i=1 u

?
i hi(x

?) = 0, and because each term here is ≤ 0, this implies that
u?i hi(x

?) = 0 for i = 1, . . .m; this is exactly complementary slackness

Primal and dual feasibility obviously hold. Hence, we’ve verified the KKT conditions

• For this direction of the problem, we have assumed nothing a priori about the convexity of our
optimization problem; we have rather assumed strong duality (a zero duality gap) directly

7.3 Sufficiency

• Suppose that x?, u?, v? satisfy the KKT conditions. Then x? is a primal solution and u?, v? is
a dual solution

• Proof: we have

g(u?, v?) = f(x?) +

m∑
i=1

u?i hi(x
?) +

r∑
j=1

v?j `j(x
?)

= f(x?)

where the first equality holds from the stationarity condition, and the second equality holds
from complementary slackness and primal feasibility. Therefore the duality gap is zero (and
x? and u?, v? are primal and dual feasible) so x? and u?, v? are primal and dual optimal
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7.4 Putting it together

• The KKT conditions are always sufficient for optimality, and necessary under strong duality

• Hence, for a problem with strong duality—e.g., under Slater’s condition: the problem is convex
and there exists a point x strictly satisfying its nonaffine inequality contraints—we have

x? and u?, v? are primal and dual solutions

⇐⇒ x? and u?, v? satisfy the KKT conditions

• A warning, concerning the stationarity condition: for a differentiable function f , we do not
know that ∂f(x) = {∇f(x)} unless f is convex. This is a common mistake!

7.5 Some examples

• Consider for Q � 0, the quadratic program

min
x∈Rn

1

2
xTQx+ cTx

subject to Ax = 0

This is a convex problem, with no inequality constraints, so by the KKT conditions: x is a
solution if and only if [

Q AT

A 0

] [
x
u

]
=

[
−c
0

]
for some u. Linear system combines stationarity, primal feasibility (complementary slackness
and dual feasibility are vacuous)

• When the primal problem convex, and unconstrained, the KKT conditions are necessary and
sufficient for optimality. But in this case, the KKT conditions just reduce to the stationarity
condition:

0 ∈ ∂f(x),

which we already know is necessary and sufficient for optimality, from the subgradient char-
acterization

• Consider the `1 penalized problem

min
β∈Rp

f(Xβ) + λ‖β‖1,

where f : Rn → R is a convex, differentiable function, and X ∈ Rn×p is a matrix of predictors
(columns) X1, . . . Xp ∈ Rn. This problem is convex and unconstrained, so the stationarity
condition is necessary and sufficient for optimality, which is

−XT∇f(Xβ) = λs,

where s ∈ ∂‖β‖1, i.e.,

si ∈


{1} if βi > 0

{−1} if βi < 0

[−1, 1] if βi = 0.

Now we can read off an important fact: if |XT
i ∇f(Xβ)| < λ, then βi = 0
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• Consider the graphical lasso problem

min
Θ∈Sp++

− log det Θ + tr(SΘ) + λ‖Θ‖1,

where S ∈ Sp+ is a positive semidefinite sample covariance matrix, and ‖Θ‖1 =
∑p
i,j=1 |Θij |.

The KKT conditions again reduce to the stationary condition,

−Θ−1 + S + Γ = 0,

where Γ ∈ Rp×p has elements Γij ∈ ∂|Θij |, i.e.,

Γij ∈


{1} if Θij > 0

{−1} if Θij < 0

[−1, 1] if Θij = 0.

This stationarity condition actually tells us whole lot about the structure of Θ at optimality.
Let S̃ denote the componentwise soft-thresholded version of S, i.e., with components

S̃ij =


Sij − λ if Sij > λ

0 if − λ ≤ Sij ≤ λ
Sij + λ if Sij < −λ

.

Observe:

– If Θ is block diagonal, then so is Θ−1, with the same block structure. Hence, for all i, j
in different blocks, we must have |Sij | ≤ λ, so S̃ has the same block structure

– If S̃ is block diagonal, then the stationarity condition is satisfied with Γij = 0 for all i, j
in different blocks, and Θ−1 block diagonal. Hence Θ has the same block structure

Therefore, we have shown that the block structure of the minimizer Θ̂ is exactly the same as
the block structure of S̃, the thresholded sample covariance matrix. This makes the graphical
lasso look very simple-minded, in a way!

7.6 Constrained and Lagrange forms

• Often in statistics and machine learning, we’ll switch back and forth between the constrained
form of a problem, where t ∈ R is a tuning parameter,

min
x

f(x) subject to h(x) ≤ t, (C)

and the Lagrange form, where λ ≥ 0 is a tuning parameter,

min
x

f(x) + λ · h(x), (L)

and claim these are equivalent. Is this true (assuming convex f, h)?

• (C) to (L): if problem (C) is strictly feasible, then strong duality holds, and there exists some
λ ≥ 0 (dual solution) such that any solution x? in (C) minimizes

f(x) + λ · (h(x)− t),

so x? is also a solution in (L)
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• (L) to (C): if x? is a solution in (L), then the KKT conditions for (C) are satisfied by taking
t = h(x?), so x? is a solution in (C)

• Conclusion: ⋃
λ≥0

{solutions in (L)} ⊆
⋃
t

{solutions in (C)}
⋃
λ≥0

{solutions in (L)} ⊇
⋃

t such that (C)
is strictly feasible

{solutions in (C)}

Strictly speaking this is not a perfect equivalence (albeit minor nonequivalence). Note: when
the only value of t that leads to a feasible but not strictly feasible constraint set is t = 0, i.e.,

{x : h(x) ≤ t} 6= ∅, {x : h(x) < t} = ∅ =⇒ t = 0

(e.g., this is true if g is a norm), then we do get perfect equivalence

7.7 Solving the primal via the dual

• Recall that under strong duality, given dual optimal u?, v?, any primal solution minimizes
L(x, u?, v?) over x (it satisfies the stationarity condition). In other words, any primal solution
x? solves

min
x

f(x) +

m∑
i=1

u?i hi(x) +

r∑
j=1

v?i `j(x).

Often, solutions of this unconstrained problem can be expressed explicitly, giving an explicit
characterization of primal solutions from dual solutions

• As an exmaple, consider the lasso problem

min
β∈Rp

1

2
‖y −Xβ‖22 + λ‖β‖1.

Its dual function is just a constant (equal to f?). Hence we reparametrize the primal problem

min
β∈Rp, z∈Rn

1

2
‖y − z‖22 + λ‖β‖1 subject to z = Xβ,

so the dual function is now

g(u) = min
β∈Rp, z∈Rn

1

2
‖y − z‖22 + λ‖β‖1 + uT (z −Xβ)

=
1

2
‖y‖22 + min

z∈Rn

(1

2
‖z‖22 − (y − u)T z

)
+ min
β∈Rp

(
λ‖β‖1 − (XTu)Tβ

)
=

1

2
‖y‖22 −

1

2
‖y − u‖22 − I

{
‖XTu‖∞ ≤ λ

}
.

Above, we used the fact that the minimum over β is −∞ if ‖XTu‖∞ > λ, and 0 otherwise.
Therefore, the lasso dual is

max
u∈Rn

1

2

(
‖y‖22 − ‖y − u‖22

)
subject to ‖XTu‖∞ ≤ λ,

or equivalently
min
u∈Rn

‖y − u‖22 subject to ‖XTu‖∞ ≤ λ.
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Strong duality holds here (Slater’s condition), and given a dual solution û, any lasso solution
β̂ satisfies (from the z block of the stationarity condition)

ẑ − y + β̂ = 0,

i.e.,
Xβ̂ = y − û,

So the lasso fit is just the dual residual. Looking back at the dual problem, we can express
the dual solution as û = PC(y), the projection of y onto the convex polyhedron

C = {u : ‖XTu‖∞ ≤ λ}.
Hence, the lasso fit is the residual from projecting y onto the convex polyhedron C. This is
actually quite a fruitful perspective, and we can use it to establish several nontrivial properties
of the lasso. See Figure 3 for a geometric picture

y

C = {u : ‖XTu‖∞ ≤ λ}

Xβ̂

0
0

û

{v : ‖v‖∞ ≤ λ}

A, sA

(XT )−1

Rn Rp

1

Figure 3: An illustration of the primal-dual relationship for the lasso.
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