
Function Spaces

A function space is a set of functions F that has some structure. Often a nonparametric
regression function or classifier is chosen to lie in some function space, where the assumed
structure is exploited by algorithms and theoretical analysis. Here we review some basic
facts about function spaces.

As motivation, consider nonparametric regression. We observe (X1, Y1), . . . , (Xn, Yn) and
we want to estimate m(x) = E(Y |X = x). We cannot simply choose m to minimize the
training error

∑
i(Yi −m(Xi))

2 as this will lead to interpolating the data. One approach is
to minimize

∑
i(Yi −m(Xi))

2 while restricting m to be in a well behaved function space.

1 Hilbert Spaces

Let V be a vector space. A norm is a mapping ‖ · ‖ : V → [0,∞) that satisfies

1. ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

2. ‖ax‖ = a‖x‖ for all a ∈ R.

3. ‖x‖ = 0 implies that x = 0.

An example of a norm on V = Rk is the Euclidean norm ‖x‖ =
√∑

i x
2
i . A sequence

x1, x2, . . . in a normed space is a Cauchy sequence if ‖xm − xn‖ → 0 as m,n → ∞. The
space is complete if every Cauchy sequence converges to a limit. A complete, normed space
is called a Banach space.

An inner product is a mapping 〈·, ·〉 : V ×V → R that satisfies, for all x, y, z ∈ V and a ∈ R:

1. 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 if and only if x = 0

2. 〈x, y + z〉 = 〈x, y〉+ 〈x, z〉

3. 〈x, ay〉 = a〈x, y〉

4. 〈x, y〉 = 〈y, x〉

An example of an inner product on V = Rk is 〈x, y〉 =
∑

i xiyi. Two vectors x and y are

orthogonal if 〈x, y〉 = 0. An inner product defines a norm ‖v‖ =
√
〈v, v〉. We then have the

Cauchy-Schwartz inequality
|〈x, y〉| ≤ ‖x‖ ‖y‖. (1)
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A Hilbert space is a complete, inner product space. Every Hilbert space is a Banach space
but the reverse is not true in general. In a Hilbert space, we write fn → f to mean that
||fn− f || → 0 as n→∞. Note that ||fn− f || → 0 does NOT imply that fn(x)→ f(x). For
this to be true, we need the space to be a reproducing kernel Hilbert space which we discuss
later.

If V is a Hilbert space and L is a closed subspace then for any v ∈ V there is a unique
y ∈ L, called the projection of v onto L, which minimizes ‖v − z‖ over z ∈ L. The set of
elements orthogonal to every z ∈ L is denoted by L⊥. Every v ∈ V can be written uniquely
as v = w + z where z is the projection of v onto L and w ∈ L⊥. In general, if L and M are
subspaces such that every ` ∈ L is orthogonal to every m ∈M then we define the orthogonal
sum (or direct sum) as

L⊕M = {`+m : ` ∈ L,m ∈M}. (2)

A set of vectors {et, t ∈ T} is orthonormal if 〈es, et〉 = 0 when s 6= t and ‖et‖ = 1 for all t ∈ T .
If {et, t ∈ T} are orthonormal, and the only vector orthogonal to each et is the zero vector,
then {et, t ∈ T} is called an orthonormal basis. Every Hilbert space has an orthonormal
basis. A Hilbert space is separable if there exists a countable orthonormal basis.

Theorem 1 Let V be a separable Hilbert space with countable orthonormal basis {e1, e2, . . .}.
Then, for any x ∈ V , we have x =

∑∞
j=1 θjej where θj = 〈x, ej〉. Furthermore, ‖x‖2 =∑∞

j=1 θ
2
j , which is known as Parseval’s identity.

The coefficients θj = 〈x, ej〉 are called Fourier coefficients.

The set Rd with inner product 〈v, w〉 =
∑

j vjwj is a Hilbert space. Another example of a

Hilbert space is the set of functions f : [a, b] → R such that
∫ b
a
f 2(x)dx < ∞ with inner

product
∫
f(x)g(x)dx. This space is denoted by L2(a, b).

2 Lp Spaces

Let F be a collection of functions taking [a, b] into R. The Lp norm on F is defined by

‖f‖p =

(∫ b

a

|f(x)|pdx

)1/p

(3)

where 0 < p <∞. For p =∞ we define

‖f‖∞ = sup
x
|f(x)|. (4)
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Sometimes we write ‖f‖2 simply as ‖f‖. The space Lp(a, b) is defined as follows:

Lp(a, b) =

{
f : [a, b]→ R : ‖f‖p <∞

}
. (5)

Every Lp is a Banach space. Some useful inequalities are:

Cauchy-Schwartz
(∫

f(x)g(x)dx
)2 ≤ ∫ f 2(x)dx

∫
g2(x)dx

Minkowski ‖f + g‖p ≤ ‖f‖p + ‖g‖p where p > 1

Hölder ‖fg‖1 ≤ ‖f‖p‖g‖q where (1/p) + (1/q) = 1.

Special Properties of L2. As we mentioned earlier, the space L2(a, b) is a Hilbert space.

The inner product between two functions f and g in L2(a, b) is
∫ b
a
f(x)g(x)dx and the norm

of f is ‖f‖2 =
∫ b
a
f 2(x) dx. With this inner product, L2(a, b) is a separable Hilbert space.

Thus we can find a countable orthonormal basis φ1, φ2, . . .; that is, ‖φj‖ = 1 for all j,∫ b
a
φi(x)φj(x)dx = 0 for i 6= j and the only function that is orthogonal to each φj is the zero

function. (In fact, there are many such bases.) It follows that if f ∈ L2(a, b) then

f(x) =
∞∑
j=1

θjφj(x) (6)

where

θj =

∫ b

a

f(x)φj(x) dx (7)

are the coefficients. Also, recall Parseval’s identity∫ b

a

f 2(x)dx =
∞∑
j=1

θ2j . (8)

The set of functions {
n∑
j=1

ajφj(x) : a1, . . . , an ∈ R

}
(9)

is the called the span of {φ1, . . . , φn}. The projection of f =
∑∞

j=1 θjφj(x) onto the span of
{φ1, . . . , φn} is fn =

∑n
j=1 θjφj(x). We call fn the n-term linear approximation of f . Let

Λn denote all functions of the form g =
∑∞

j=1 ajφj(x) such that at most n of the aj’s are
non-zero. Note that Λn is not a linear space, since if g1, g2 ∈ Λn it does not follow that g1+g2
is in Λn. The best approximation to f in Λn is fn =

∑
j∈An θj φj(x) where An are the n

indices corresponding to the n largest |θj|’s. We call fn the n-term nonlinear approximation
of f .
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The Fourier basis on [0, 1] is defined by setting φ1(x) = 1 and

φ2j(x) =
1√
2

cos(2jπx), φ2j+1(x) =
1√
2

sin(2jπx), j = 1, 2, . . . (10)

The cosine basis on [0, 1] is defined by

φ0(x) = 1, φj(x) =
√

2 cos(2πjx), j = 1, 2, . . . . (11)

The Legendre basis on (−1, 1) is defined by

P0(x) = 1, P1(x) = x, P2(x) =
1

2
(3x2 − 1), P3(x) =

1

2
(5x3 − 3x), . . . (12)

These polynomials are defined by the relation

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n. (13)

The Legendre polynomials are orthogonal but not orthonormal, since∫ 1

−1
P 2
n(x)dx =

2

2n+ 1
. (14)

However, we can define modified Legendre polynomials Qn(x) =
√

(2n+ 1)/2 Pn(x) which
then form an orthonormal basis for L2(−1, 1).

The Haar basis on [0,1] consists of functions{
φ(x), ψjk(x) : j = 0, 1, . . . , k = 0, 1, . . . , 2j − 1

}
(15)

where

φ(x) =

{
1 if 0 ≤ x < 1
0 otherwise,

(16)

ψjk(x) = 2j/2ψ(2jx− k) and

ψ(x) =

{
−1 if 0 ≤ x ≤ 1

2

1 if 1
2
< x ≤ 1.

(17)

This is a doubly indexed set of functions so when f is expanded in this basis we write

f(x) = αφ(x) +
∞∑
j=1

2j−1∑
k=1

βjkψjk(x) (18)

where α =
∫ 1

0
f(x)φ(x) dx and βjk =

∫ 1

0
f(x)ψjk(x) dx. The Haar basis is an example of a

wavelet basis.
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Let [a, b]d = [a, b]× · · · × [a, b] be the d-dimensional cube and define

L2

(
[a, b]d

)
=

{
f : [a, b]d → R :

∫
[a,b]d

f 2(x1, . . . , xd) dx1 . . . dxd <∞

}
. (19)

Suppose that B = {φ1, φ2, . . .} is an orthonormal basis for L2([a, b]). Then the set of functions

Bd = B ⊗ · · · ⊗ B =

{
φi1(x1)φi2(x2) · · ·φid(xd) : i1, i2, . . . , id ∈ {1, 2, . . . , }

}
, (20)

is called the tensor product of B, and forms an orthonormal basis for L2([a, b]
d).

3 Hölder Spaces

Let β be a positive integer.1 Let T ⊂ R. The Holder space H(β, L) is the set of functions
g : T → R such that

|g(β−1)(y)− g(β−1)(x)| ≤ L|x− y|, for all x, y ∈ T. (21)

The special case β = 1 is sometimes called the Lipschitz space. If β = 2 then we have

|g′(x)− g′(y)| ≤ L |x− y|, for all x, y.

Roughly speaking, this means that the functions have bounded second derivatives.

There is also a multivariate version of Holder spaces. Let T ⊂ Rd. Given a vector s =
(s1, . . . , sd), define |s| = s1 + · · ·+ sd, s! = s1! · · · sd!, xs = xs11 · · ·x

sd
d and

Ds =
∂s1+···+sd

∂xs11 · · · ∂x
sd
d

.

The Hölder class H(β, L) is the set of functions g : T → R such that

|Dsg(x)−Dsg(y)| ≤ L‖x− y‖β−|s| (22)

for all x, y and all s such that |s| = β − 1.

If g ∈ H(β, L) then g(x) is close to its Taylor series approximation:

|g(u)− gx,β(u)| ≤ L‖u− x‖β (23)

where

gx,β(u) =
∑
|s|≤bβc

(u− x)s

s!
Dsg(x). (24)

1It is possible to define Holder spaces for non-integers but we will not need this generalization.
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In the case of β = 2, this means that

|g(u)− [g(x) + (x− u)T∇g(x)]| ≤ L||x− u||2.

We will see that in function estimation, the optimal rate of convergence over H(β, L) under
L2 loss is O(n−2β/(2β+d)).

4 Sobolev Spaces

Let f be integrable on every bounded interval. Then f is weakly differentiable if there exists
a function f ′ that is integrable on every bounded interval, such that

∫ y
x
f ′(s)ds = f(y)−f(x)

whenever x ≤ y. We call f ′ the weak derivative of f . Let Djf denote the jth weak derivative
of f .

The Sobolev space of order m is defined by

Wm,p =
{
f ∈ Lp(0, 1) : ‖Dmf‖ ∈ Lp(0, 1)

}
. (25)

The Sobolev ball of order m and radius c is defined by

Wm,p(c) =
{
f : f ∈ Wm,p, ‖Dmf‖p ≤ c

}
. (26)

For the rest of this section we take p = 2 and write Wm instead of Wm,2

Theorem 2 The Sobolev space Wm is a Hilbert space under the inner product

〈f, g〉 =
m−1∑
k=0

f (k)(0)g(k)(0) +

∫ 1

0

f (k)(x)g(k)(x) dx. (27)

Define

K(x, y) =
m−1∑
k=1

1

k!
xkyk +

∫ x∧y

0

(x− u)m−1(y − u)m−1

(m− 1)!2
du. (28)

Then, for each f ∈ Wm we have
f(y) = 〈f,K(·, y)〉 (29)

and
K(x, y) = 〈K(·, x), K(·, y)〉. (30)

We say that K is a kernel for the space and that Wm is a reproducing kernel Hilbert space
or RKHS. See Section 7 for more on reproducing kernel Hilbert spaces.

6



It follows from Mercer’s theorem (Theorem 4) that there is an orthonormal basis {e1, e2, . . . , }
for L2(a, b) and real numbers λ1, λ2, . . . such that

K(x, y) =
∞∑
j=1

λj ej(x) ej(y). (31)

The functions ej are eigenfunctions of K and the λj’s are the corresponding eigenvalues,∫
K(x, y) ej(y) dy = λjej(x). (32)

Hence, the inner product defined in (27) can be written as

〈f, g〉 =
∞∑
j=0

θj βj
λj

(33)

where f(x) =
∑∞

j=0 θjej(x) and g(x) =
∑∞

j=0 βjej(x).

Next we discuss how the functions in a Sobolev space can be parameterized by using another
convenient basis. An ellipsoid is a set of the form

Θ =

{
θ :

∞∑
j=1

a2jθ
2
j ≤ c2

}
(34)

where aj is a sequence of numbers such that aj → ∞ as j → ∞. If Θ is an ellipsoid and if
a2j ∼ (πj)2m as j →∞, we call Θ a Sobolev ellipsoid and we denote it by Θm(c).

Theorem 3 Let {φj, j = 0, 1, . . .} be the Fourier basis:

φ1(x) = 1, φ2j(x) =
1√
2

cos(2jπx), φ2j+1(x) =
1√
2

sin(2jπx), j = 1, 2, . . . (35)

Then,

Wm(c) =

{
f : f =

∞∑
j=1

θjφj,

∞∑
j=1

a2jθ
2
j ≤ c2

}
(36)

where aj = (πj)m for j even and aj = (π(j − 1))m for j odd. Thus, a Sobolev space
corresponds to a Sobolev ellipsoid with aj ∼ (πj)2m.

Note that (36) allows us to define the Sobolev space Wm for fractional values of m as well
as integer values. A multivariate version of Sobolev spaces can be defined as follows. Let
α = (α1, . . . , αd) be non-negative integers and define |α| = α1 + · · · + αd. Given x =
(x1, . . . , xd) ∈ Rd write xα = xα1

1 · · ·x
αd
d and

Dα =
∂|α|

∂xα1
1 · · · ∂x

αd
d

. (37)
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Then the Sobolev space is defined by

Wm,p =

{
f ∈ Lp

(
[a, b]d

)
: Dαf ∈ Lp([a, b]d) for all |α| ≤ m

}
. (38)

We will see that in function estimation, the optimal rate of convergence over Wβ,2 under L2

loss is O(n−2β/(2β+d)).

5 Besov Spaces*

Functions in Sobolev spaces are homogeneous, meaning that their smoothness does not vary
substantially across the domain of the function. Besov spaces are richer classes of functions
that include inhomogeneous functions.

Let

∆
(r)
h f(x) =

r∑
k=0

(−1)k
(
r

k

)
f(x+ kh). (39)

Thus, ∆
(0)
h f(x) = f(x) and

∆
(r)
h f(x) = ∆

(r−1)
h f(x+ h)−∆

(r−1)
h f(x). (40)

Next define
wr,p(f ; t) = sup

|h|≤t
‖∆(r)

h f‖p (41)

where ‖g‖p =
{∫
|g(x)|pdx

}1/p
. Given (p, q, ς), let r be such that r − 1 ≤ ς ≤ r. The Besov

seminorm is defined by

‖f‖ςp,q =

[∫ ∞
0

(h−ςwr,p(f ;h))q
dh

h

]1/q
. (42)

For q =∞ we define

‖f‖ςp,∞ = sup
0<h<1

wr,p(f ;h)

hς
. (43)

The Besov space Bς
p,q(c) is defined to be the set of functions f mapping [0, 1] into R such

that
∫
|f |p <∞ and ‖f‖ςp,q ≤ c.

Besov spaces include a wide range of familiar function spaces. The Sobolev space Wm,2

corresponds to the Besov ball Bm
2,2. The generalized Sobolev space Wm,p which uses an Lp

norm on the mth derivative is almost a Besov space in the sense that Bm
p,1 ⊂ Wp(m) ⊂ Bm

p,∞.
The Hölder space Hα with α = k + β is equivalent to Bk+β

∞,∞, and the set T consisting of
functions of bounded variation satisfies B1

1,1 ⊂ T ⊂ B1
1,∞.
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6 Entropy and Dimension

Given a norm ‖ · ‖ on a function space F , a sphere of radius ε is a set of the form {f ∈
F : ‖f − g‖ ≤ ε} for some g. A set of spheres covers F if F is contained in their union.
The covering number N(ε, ‖ · ‖) is the smallest number of spheres of radius ε required to
cover F . We drop the dependence on the norm ‖ · ‖ when it is understood from context.
The metric entropy of F is H(ε) = logN(ε). The class F has dimension d if, for all small ε,
N(ε) = c(1/ε)d for some constant c.

A finite set {f1, . . . , fk} is an ε-net if ‖fi − fj‖ > ε for all i 6= j. The packing number M(ε)
is the size of the largest ε-net, and the packing entropy is V (ε) = logM(ε). The packing
entropy and metric entropy are related by

M(2ε) ≤ H(ε) ≤M(ε). (44)

Here are some common spaces and their entropies:

Space H(ε)

Sobolev Wm,p ε−d/m

Besov Bς
pq ε−d/ς

Hölder Hα ε−d/α

7 Mercer Kernels and Reproducing Kernel Hilbert Spaces

Intuitively, a reproducing kernel Hilbert space (RKHS) is a class of smooth functions defined
by an object called a Mercer kernel. Here are the details.

Mercer Kernels. A Mercer kernel is a continuous function K : [a, b]× [a, b]→ R such that
K(x, y) = K(y, x), and such that K is positive semidefinite, meaning that

n∑
i=1

n∑
j=1

K(xi, xj)cicj ≥ 0 (45)

for all finite sets of points x1, . . . , xn ∈ [a, b] and all real numbers c1, . . . , cn. The function

K(x, y) =
m−1∑
k=1

1

k!
xkyk +

∫ x∧y

0

(x− u)m−1(y − u)m−1

(m− 1)!2
du (46)

introduced in the Section 4 on Sobolev spaces is an example of a Mercer kernel. The most
commonly used kernel is the Gaussian kernel

K(x, y) = e−
||x−y||2

σ2 .
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Theorem 4 (Mercer’s theorem) Suppose that K : X×X → R is symmetric and satisfies
supx,yK(x, y) <∞, and define

TKf(x) =

∫
X
K(x, y) f(y) dy (47)

suppose that Tk : L2(X )→ L2(X) is positive semidefinite; thus,∫
X

∫
X
K(x, y) f(x) f(y) dx dy ≥ 0 (48)

for any f ∈ L2(X ). Let λi,Ψi be the eigenfunctions and eigenvectors of TK, with∫
X
K(x, y)Ψi(y) dy = λiΨi(x). (49)

Then
∑

i λi <∞, supx Ψi(x) <∞, and

K(x, y) =
∞∑
i=1

λiΨi(x) Ψj(y), (50)

where the convergence is uniform in x, y.

This gives the mapping into feature space as

x 7→ Φ(x) =
(√

λ1Ψ1(x),
√
λ2Ψ2(x), . . .

)>
(51)

The positive semidefinite requirement for Mercer kernels is generally difficult to verify. But
the following basic results show how one can build up kernels in pieces.

If K1 : X × X → R and K2 : X × X → R are Mercer kernels then so are the following:

K(x, y) = K1(x, y) +K2(x, y) (52)

K(x, y) = cK1(x, y) +K2(x, y) for c ∈ R+ (53)

K(x, y) = K1(x, y) + c for c ∈ R+ (54)

K(x, y) = K1(x, y)K2(x, y) (55)

K(x, y) = f(x) f(y) for f : X −→ R (56)

K(x, y) = (K1(x, y) + c)d for θ1 ∈ R+ and d ∈ N (57)

K(x, y) = exp
(
K1(x, y)/σ2

)
for σ ∈ R (58)

K(x, y) = exp
(
−(K1(x, x)− 2K1(x, y) +K1(y, y))/2σ2

)
(59)

K(x, y) = K1(x, y)/
√
K1(x, x)K1(y, y) (60)
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RKHS. Given a kernel K, let Kx(·) be the function obtained by fixing the first coordinate.
That is, Kx(y) = K(x, y). For the Gaussian kernel, Kx is a Normal, centered at x. We can
create functions by taking liner combinations of the kernel:

f(x) =
k∑
j=1

αjKxj(x).

Let H0 denote all such functions:

H0 =

{
f :

k∑
j=1

αjKxj(x)

}
.

Given two such functions f(x) =
∑k

j=1 αjKxj(x) and g(x) =
∑m

j=1 βjKyj(x) we define an
inner product

〈f, g〉 = 〈f, g〉K =
∑
i

∑
j

αiβjK(xi, yj).

In general, f (and g) might be representable in more than one way. You can check that
〈f, g〉K is independent of how f (or g) is represented. The inner product defines a norm:

||f ||K =
√
〈f, f, 〉 =

√∑
j

∑
k

αjαkK(xj, xk) =
√
αTKα

where α = (α1, . . . , αk)
T and K is the k × k matrix with Kjk = K(xj, xk).

The Reproducing Property. Let f(x) =
∑

i αiKxi(x). Note the following crucial prop-
erty:

〈f,Kx〉 =
∑
i

αiK(xi, x) = f(x).

This follows from the definition of 〈f, g〉 where we take g = Kx. This implies that

〈Kx, Kx〉 = K(x, x).

This is called the reproducing property. It also implies that Kx is the representer of the
evaluation functional.

The completion of H0 with respect to || · ||K is denoted by HK and is called the
RKHS generated by K.

To verify that this is a well-defined Hilbert space, you should check that the following
properties hold:

〈f, g〉 = 〈g, f〉
〈cf + dg, h〉 = c〈f, h〉+ c〈g, h〉
〈f, f〉 = 0 iff f = 0.
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The last one is not obvious so let us verify it here. It is easy to see that f = 0 implies that
〈f, f〉 = 0. Now we must show that 〈f, f〉 = 0 implies that f(x) = 0. So suppose that
〈f, f〉 = 0. Pick any x. Then

0 ≤ f 2(x) = 〈f,Kx〉2 = 〈f,Kx〉 〈f,Kx〉
≤ ||f ||2 ||Kx||2 = 〈f, f〉2 ||Kx||2 = 0

where we used Cauchy-Schwartz. So 0 ≤ f 2(x) ≤ 0 which means that f(x) = 0.

Evaluation Functionals. A key property of RKHS’s is the behavior of the evaluation
functional. The evaluation functional δx assigns a real number to each function. It is defined
by δxf = f(x). In general, the evaluation functional is not continuous. This means we
can have fn → f but δxfn does not converge to δxf . For example, let f(x) = 0 and
fn(x) =

√
nI(x < 1/n2). Then ||fn − f || = 1/

√
n → 0. But δ0fn =

√
n which does not

converge to δ0f = 0. Intuitively, this is because Hilbert spaces can contain very unsmooth
functions.

But in an RKHS, the evaluation functional is continuous. Intuitively, this means that the
functions in the space are well-behaved. To see this, suppose that fn → f . Then

δxfn = 〈fnKx〉 → 〈fKx〉 = f(x) = δxf

so the evaluation functional is continuous. In fact:

A Hilbert space is a RKHS if and only if the evaluation functionals are
continuous.

Examples. Here are some examples of RKHS’s.

Example 5 Let H be all functions f on R such that the support of the Fourier transform
of f is contained in [−a, a]. Then

K(x, y) =
sin(a(y − x))

a(y − x)

and

〈f, g〉 =

∫
fg.

Example 6 Let H be all functions f on (0, 1) such that∫ 1

0

(f 2(x) + (f ′(x))2)x2dx <∞.
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Then
K(x, y) = (xy)−1

(
e−xsinh(y)I(0 < x ≤ y) + e−ysinh(x)I(0 < y ≤ x)

)
and

||f ||2 =

∫ 1

0

(f 2(x) + (f ′(x))2)x2dx.

Example 7 The Sobolev space of order m is (roughly speaking) the set of functions f such
that

∫
(f (m))2 <∞. For m = 1 and X = [0, 1] the kernel is

K(x, y) =

{
1 + xy + xy2

2
− y3

6
0 ≤ y ≤ x ≤ 1

1 + xy + yx2

2
− x3

6
0 ≤ x ≤ y ≤ 1

and

||f ||2K = f 2(0) + f ′(0)2 +

∫ 1

0

(f ′′(x))2dx.

Spectral Representation. Suppose that supx,yK(x, y) < ∞. Define eigenvalues λj and
orthonormal eigenfunctions ψj by∫

K(x, y)ψj(y)dy = λjψj(x).

Then
∑

j λj <∞ and supx |ψj(x)| <∞. Also,

K(x, y) =
∞∑
j=1

λjψj(x)ψj(y).

Define the feature map Φ by

Φ(x) = (
√
λ1ψ1(x),

√
λ2ψ2(x), . . .).

We can expand f either in terms of K or in terms of the basis ψ1, ψ2, . . .:

f(x) =
∑
i

αiK(xi, x) =
∞∑
j=1

βjψj(x).

Furthermore, if f(x) =
∑

j ajψj(x) and g(x) =
∑

j bjψj(x), then

〈f, g〉 =
∞∑
j=1

ajbj
λj

.

Roughly speaking, when ||f ||K is small, then f is smooth.
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Representer Theorem. Let ` be a loss function depending on (X1, Y1), . . . , (Xn, Yn) and

on f(X1), . . . , f(Xn). Let f̂ minimize

`+ g(||f ||2K)

where g is any monotone increasing function. Then f̂ has the form

f̂(x) =
n∑
i=1

αiK(xi, x)

for some α1, . . . , αn.

RKHS Regression. Define m̂ to minimize

R =
∑
i

(Yi −m(Xi))
2 + λ||m||2K .

By the representer theorem, m̂(x) =
∑n

i=1 αiK(xi, x). Plug this into R and we get

R = ||Y −Kα||2 + λαTKα

where Kjk = K(Xj, Xk) is the Gram matrix. The minimizer over α is

α̂ = (K + λI)−1Y

and m̂(x) =
∑

j α̂jK(Xi, x). The fitted values are

Ŷ = Kα̂ = K(K + λI)−1Y = LY.

So this is a linear smoother. We will discuss this in detail later.

Support Vector Machines. Suppose Yi ∈ {−1,+1}. Recall the the linear SVM minimizes
the penalized hinge loss:

J =
∑
i

[1− Yi(β0 + βTXi)]+ +
λ

2
||β||22.

The dual is to maximize ∑
i

αi −
1

2

∑
i,j

αiαjYiYj〈Xi, Xj〉

subject to 0 ≤ αi ≤ C.

The RKHS version is to minimize

J =
∑
i

[1− Yif(Xi)]+ +
λ

2
||f ||2K .
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The dual is the same except that 〈Xi, Xj〉 is replaced with K(Xi, Xj). This is called the
kernel trick.

The Kernel Trick. This is a fairly general trick. In many algorithms you can replace 〈xi, xj〉
with K(xi, xj) and get a nonlinear version of the algorithm. This is equivalent to replacing
x with Φ(x) and replacing 〈xi, xj〉 with 〈Φ(xi),Φ(xj)〉. However, K(xi, xj) = 〈Φ(xi),Φ(xj)〉
and K(xi, xj) is much easier to compute.

In summary, by replacing 〈xi, xj〉 with K(xi, xj) we turn a linear procedure into a nonlinear
procedure without adding much computation.

Hidden Tuning Parameters. There are hidden tuning parameters in the RKHS. Consider
the Gaussian kernel

K(x, y) = e−
||x−y||2

σ2 .

For nonparametric regression we minimize
∑

i(Yi − m(Xi))
2 subject to ||m||K ≤ L. We

control the bias variance tradeoff by doing cross-validation over L. But what about σ?

This parameter seems to get mostly ignored. Suppose we have a uniform distribution on a
circle. The eigenfunctions of K(x, y) are the sines and cosines. The eigenvalues λk die off
like (1/σ)2k. So σ affects the bias-variance tradeoff since it weights things towards lower
order Fourier functions. In principle we can compensate for this by varying L. But clearly
there is some interaction between L and σ. The practical effect is not well understood.

Now consider the polynomial kernel K(x, y) = (1 + 〈x, y〉)d. This kernel has the same
eigenfunctions but the eigenvalues decay at a polynomial rate depending on d. So there is
an interaction between L, d and, the choice of kernel itself.
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