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1 Introduction, and k-nearest-neighbors

1.1 Basic setup, random inputs

• Given a random pair (X,Y ) ∈ Rd × R, recall that the function

f0(x) = E(Y |X = x)

is called the regression function (of Y on X). The basic goal in nonparametric regression is
to construct an estimate f̂ of f0, from i.i.d. samples (x1, y1), . . . (xn, yn) ∈ Rd × R that have
the same joint distribution as (X,Y ). We often call X the input, predictor, feature, etc., and
Y the output, outcome, response, etc. Importantly, in nonparametric regression we do not
assume a certain parametric form for f0

• Note for i.i.d. samples (x1, y1), . . . (xn, yn), we can always write

yi = f0(xi) + εi, i = 1, . . . n,

where ε1, . . . εn are i.i.d. random errors, with mean zero. Therefore we can think about the
sampling distribution as follows: (x1, ε1), . . . (xn, εn) are i.i.d. draws from some common joint
distribution, where E(εi) = 0, and then y1, . . . yn are generated from the above model

• In addition, we will assume that each εi is independent of xi. As discussed before, this is
actually quite a strong assumption, and you should think about it skeptically. We make this
assumption for the sake of simplicity, and it should be noted that a good portion of theory
that we cover (or at least, similar theory) also holds without the assumption of independence
between the errors and the inputs

1.2 Basic setup, fixed inputs

• Another common setup in nonparametric regression is to directly assume a model

yi = f0(xi) + εi, i = 1, . . . n,

where now x1, . . . xn are fixed inputs, and ε1, . . . ε are still i.i.d. random errors with E(εi) = 0

• For arbitrary points x1, . . . xn, this is really just the same as starting with the random input
model, and conditioning on the particular values of x1, . . . xn. (But note: once we condition
on the inputs, the errors are only i.i.d. because we have assumed that the errors and inputs
were independent in the first place)
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• Generally speaking, nonparametric regression estimators are not defined with the random or
fixed setups specifically in mind, i.e., there is no real distinction made here. A caveat: some
estimators (like wavelets) do in fact assume evenly spaced fixed inputs, as in

xi = i/n, i = 1, . . . n,

for evenly spaced inputs in the univariate case

• It is also important to mention that the theory is not completely the same between the random
and fixed worlds, and some theoretical statements are sharper when assuming fixed input
points, especially evenly spaced input points

1.3 What we cover here

• We won’t be very precise about which setup we assume—random or fixed inputs—because, as
mentioned before, it doesn’t really matter when defining nonparametric regression estimators
and discussing basic properties

• When it comes to theory, we will mix and match. The goal is to give you a flavor of some
interesting results over a variety of methods, and under different assumptions. A few topics
we will cover into more depth than others, but overall, this will not be a complete coverage.
There are some excellent texts out there that you can consult for more details, proofs, etc.,
and some are listed below. There are surely others too, and you can always come ask one of
us if you are looking for something in particular

– Kernel smoothing, local polynomials

∗ Tsybakov (2009)

– Regression splines, smoothing splines

∗ de Boor (1978)

∗ Green & Silverman (1994)

∗ Wahba (1990)

– Reproducing kernel Hilbert spaces

∗ Scholkopf & Smola (2002)

∗ Wahba (1990)

– Wavelets

∗ Johnstone (2011)

∗ Mallat (2008)

– General references, more theoretical

∗ Gyorfi, Kohler, Krzyzak & Walk (2002)

∗ Wasserman (2006)

– General references, more applied

∗ Simonoff (1996)

∗ Hastie, Tibshirani & Friedman (2009)

• Throughout, our discussion will mostly center around the univariate case, d = 1. Mutlivariate
extensions, d > 1, will be mentioned, but as we will see, these typically become statistically
and computationally inefficient as d grows. A fix is to use structured regression models in high
dimensions, which use the univariate (or low-dimensional) estimators as building blocks, and
we will study these near the end

• Finally, a lot the discussed methods can be extended from nonparametric regression to non-
parametric classification, as we’ll see at the end
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1.4 k-nearest-neighbors regression

• Here’s a basic method to start us off: k-nearest-neighbors regression. We fix an integer k ≥ 1
and define

f̂(x) =
1

k

∑

i∈Nk(x)

yi, (1)

where Nk(x) contains the indices of the k closest points of x1, . . . xn to x

• This is not at all a bad estimator, and you will find it used in lots of applications, in many
cases probably because of its simplicity. By varying the number of neighbors k, we can achieve
a wide range of flexibility in the estimated function f̂ , with small k corresponding to a more
flexible fit, and large k less flexible

• But it does have its limitations, an apparent one being that the fitted function f̂ essentially
always looks jagged, especially for small or moderate k. Why is this? It helps to write

f̂(x) =

n∑

i=1

wi(x)yi, (2)

where the weights wi(x), i = 1, . . . n are defined as

wi(x) =

{
1/k if xi is one of the k nearest points to x

0 else.

Note that wi(x) is discontinuous as a function of x, and therefore so if f̂(x)

• The representation (2) also reveals that the k-nearest-neighbors estimate is in a class of esti-
mates we call linear smoothers, i.e., writing y = (y1, . . . yn) ∈ Rn, the vector of fitted values

ŷ =
(
f̂(x1), . . . f̂(xn)

)
∈ Rn

can simply be expressed as ŷ = Sy. (To be clear, this means that for fixed inputs x1, . . . xn,
the vector of fitted values ŷ is a linear function of y; it does not mean that f̂(x) need behave
linearly as a function of x!) This class is quite large, and contains many popular estimators,
as we’ll see in the coming sections

• The k-nearest-neighbors estimator is consistent, under the random input model, provided we
take k = kn such that kn →∞ and kn/n→ 0; e.g., k =

√
n will do. See Section 6.2 of Gyorfi

et al. (2002)

• Furthermore, assuming that the underlying regression function f0 is Lipschitz continuous, the
k-nearest-neighbors estimate with k = Θ(n2/(2+d)) satisfies

E
(
f̂(X)− f(X)

)2
= O(n−2/(2+d)).

See Section 6.3 of Gyorfi et al. (2002)

• Note that the above rate exhibits a very poor dependence on the dimension d. For a small ε,
think about how large we need to make n to ensure that (1/n)2/(2+d) ≤ ε; rearranged, this
says n ≥ (1/ε)(2+d)/2. That is, as we increase d, we require exponentially more samples n to
achieve an MSE bound of ε

• In fact, this phenomenon is not specific to k-nearest-neighbors. It is a reflection of the curse
of dimensionality, the principle that estimation becomes exponentially harder as the number
of dimensions increases. To circumvent this, we usually turn to structured regression models
in high dimensions, covered near the end
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2 Kernel smoothing, local polynomials

2.1 Kernel smoothing

• Assume for now that d = 1, for simplicity. As in kernel density estimation, kernel regression
or kernel smoothing begins with a kernel function K : R→ R, satisfying

∫
K(x) dx = 1,

∫
xK(x) dx = 0, 0 <

∫
x2K(x) dx <∞.

Two common examples are the Gaussian kernel:

K(x) =
1√
2π

exp(−x2/2),

and the Epanechnikov kernel:

K(x) =

{
3/4(1− x2) if |x| ≤ 1

0 else

• Given a bandwidth h > 0, the (Nadaraya-Watson) kernel regression estimate is defined as

f̂(x) =

n∑

i=1

K

(
x− xi
h

)
yi

n∑

i=1

K

(
x− xi
h

) . (3)

Hence kernel smoothing is also a linear smoother (2), with choice of weights wi(x) = K((x−
xi)/h)/

∑n
j=1K((x− xj)/h)

• In comparison to the k-nearest-neighbors estimator in (1), which can be thought of as a raw
(discontinuous) moving average of nearby outputs, the kernel estimator in (3) is a smooth
moving average of outputs. See Figure 1

• A shortcoming: the kernel regression suffers from poor bias at the boundaries of the domain
of the inputs x1, . . . xn. This happens because of the asymmetry of the kernel weights in such
regions. See Figure 2

2.2 Local polynomials

• We can alleviate this boundary bias issue by moving from a local constant fit to a local linear
fit, or a local higher-order fit

• To build intuition, another way to view the kernel estimator in (3) is the following: at each
input x, it employs the estimate f̂(x) = θ̂, where θ̂ is the minimizer of

n∑

i=1

K

(
x− xi
h

)
(yi − θ)2.

Instead we could consider forming the local estimate f̂(x) = α̂+ β̂x, where α̂, β̂ minimize

n∑

i=1

K

(
x− xi
h

)
(yi − α− βxi)2.

This is called local linear regression
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192 6. Kernel Smoothing Methods

Nearest-Neighbor Kernel
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FIGURE 6.1. In each panel 100 pairs xi, yi are generated at random from the
blue curve with Gaussian errors: Y = sin(4X)+ε, X ∼ U [0, 1], ε ∼ N(0, 1/3). In
the left panel the green curve is the result of a 30-nearest-neighbor running-mean
smoother. The red point is the fitted constant f̂(x0), and the red circles indicate
those observations contributing to the fit at x0. The solid yellow region indicates
the weights assigned to observations. In the right panel, the green curve is the
kernel-weighted average, using an Epanechnikov kernel with (half) window width
λ = 0.2.

6.1 One-Dimensional Kernel Smoothers

In Chapter 2, we motivated the k–nearest-neighbor average

f̂(x) = Ave(yi|xi ∈ Nk(x)) (6.1)

as an estimate of the regression function E(Y |X = x). Here Nk(x) is the set
of k points nearest to x in squared distance, and Ave denotes the average
(mean). The idea is to relax the definition of conditional expectation, as
illustrated in the left panel of Figure 6.1, and compute an average in a
neighborhood of the target point. In this case we have used the 30-nearest
neighborhood—the fit at x0 is the average of the 30 pairs whose xi values
are closest to x0. The green curve is traced out as we apply this definition
at different values x0. The green curve is bumpy, since f̂(x) is discontinuous
in x. As we move x0 from left to right, the k-nearest neighborhood remains
constant, until a point xi to the right of x0 becomes closer than the furthest
point xi′ in the neighborhood to the left of x0, at which time xi replaces xi′ .
The average in (6.1) changes in a discrete way, leading to a discontinuous

f̂(x).
This discontinuity is ugly and unnecessary. Rather than give all the

points in the neighborhood equal weight, we can assign weights that die
off smoothly with distance from the target point. The right panel shows
an example of this, using the so-called Nadaraya–Watson kernel-weighted

Figure 1: Comparing k-nearest-neighbor and Epanechnikov kernels. From Chapter 6 of Hastie et al.
(2009)

• We can rewrite the local linear regression estimate f̂(x). This is just given by a weighted least
squares fit, so

f̂(x) = b(x)T (BTΩB)−1BTΩy,

where b(x) = (1, xi), B in an n × 2 matrix with ith row b(xi) = (1, x), and Ω is an n × n
diagonal matrix with ith diagonal element K((x− xi)/h). We can express this more concisely

as f̂(x) = w(x)T y for w(x) = ΩB(BTΩB)−1b(x), and so local linear regression is a linear
smoother too

• The vector of fitted values ŷ = (f̂(x1), . . . f̂(xn)) can be expressed as

ŷ =




w1(x)T y
...

wn(x)T y


 = B(BTΩB)−1BTΩy,

which should look familiar to you from weighted least squares

• Now we’ll sketch how the local linear fit reduces the bias. Compute at a fixed point x,

E[f̂(x)] =

n∑

i=1

wi(x)f0(xi).

Using a Taylor expansion about x,

E[f̂(x)] = f0(x)

n∑

i=1

wi(x) + f ′0(x)

n∑

i=1

(xi − x)wi(x) +R,

where the remainder term R contains quadratic and higher-order terms, and under regularity
conditions, is small. One can check that in fact for the local linear regression estimator f̂ ,

n∑

i=1

wi(x) = 1 and

n∑

i=1

(xi − x)wi(x) = 0,

and so E[f̂(x)] = f0(x) +R, which means that f̂ is unbiased to first order
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N-W Kernel at Boundary

0.0 0.2 0.4 0.6 0.8 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

O

O

O

O

O

O

O

O

O

O

O

OO
O

OO
O
OO

O

O
O

OO

O

O
O
O

O

O

O

O

O
OO
O

O

OO

O

O
O

O

OO

O

O

O
O

O

O

O
O

O

O

O

O

OO

O

O
O
O

O

O

O O

O
O
OO

O
O
O

O

O
O
O

O

O

O

O

O

O

O

O

O
O

O
O

O
O

O

O

O

O
O

O
O

O

O

O

O

O

O

O

O

O

O

O

O

OO
O

OO
O
OO

O

O
O

OO

O

O
O
O

O

O

•

x0

f̂(x0)

Local Linear Regression at Boundary
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FIGURE 6.3. The locally weighted average has bias problems at or near the
boundaries of the domain. The true function is approximately linear here, but
most of the observations in the neighborhood have a higher mean than the target
point, so despite weighting, their mean will be biased upwards. By fitting a locally
weighted linear regression (right panel), this bias is removed to first order

because of the asymmetry of the kernel in that region. By fitting straight
lines rather than constants locally, we can remove this bias exactly to first
order; see Figure 6.3 (right panel). Actually, this bias can be present in the
interior of the domain as well, if the X values are not equally spaced (for
the same reasons, but usually less severe). Again locally weighted linear
regression will make a first-order correction.

Locally weighted regression solves a separate weighted least squares prob-
lem at each target point x0:

min
α(x0),β(x0)

N∑

i=1

Kλ(x0, xi) [yi − α(x0) − β(x0)xi]
2
. (6.7)

The estimate is then f̂(x0) = α̂(x0) + β̂(x0)x0. Notice that although we fit
an entire linear model to the data in the region, we only use it to evaluate
the fit at the single point x0.

Define the vector-valued function b(x)T = (1, x). Let B be the N × 2
regression matrix with ith row b(xi)

T , and W(x0) the N × N diagonal
matrix with ith diagonal element Kλ(x0, xi). Then

f̂(x0) = b(x0)
T (BT W(x0)B)−1BT W(x0)y (6.8)

=

N∑

i=1

li(x0)yi. (6.9)

Equation (6.8) gives an explicit expression for the local linear regression
estimate, and (6.9) highlights the fact that the estimate is linear in the

Figure 2: Comparing (Nadaraya-Watson) kernel smoothing to local linear regression; the former is
biased at the boundary, the latter is unbiased (to first order). From Chapter 6 of Hastie et al. (2009)

• We don’t have to stop with a local linear fit, we can more generally fit f̂(x) = β̂0 +
∑p
j=1 β̂jx

j ,
where β̂0, . . . β̂p minimize

n∑

i=1

K

(
x− xi
h

)(
yi − β0 −

p∑

j=1

βjx
j
i

)2

.

This is called local polynomial regression

• Again we can express
f̂(x) = b(x)(BTΩB)−1BTΩy = w(x)T y,

where b(x) = (1, x, . . . xp), B is an n× (p+ 1) matrix with ith row b(xi) = (1, xi, . . . x
p
i ), and

Ω is as before. Hence again, local polynomial regression is a linear smoother

• The basic message is that a higher degree in the local polynomial fit can help reduce the bias,
even in the interior of the domain of inputs, but (not surprisingly) this comes at the expense
of an increase in variance

2.3 Error bounds

• Consider the Holder class of functions Σ(k, L), for an integer k ≥ 1 and constant L > 0, which
contains the set of all k− 1 times differentiable functions f : R→ R whose (k− 1)st derivative
is Lipschitz continuous:

|f (k−1)(x)− f (k−1)(z)| ≤ L|x− z|, for any x, z.

(Actually, the function class Σ(γ, L) can also be defined for non-integral γ, but this is not
really important.)

• Consider the fixed inputs model, with appropriate conditions on the spacings of the inputs
x1, . . . xn ∈ [0, 1] (and the error distribution and choice of kernel K). Assuming that the true
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function f0 is in the Holder class Σ(k, L), a Taylor expansion shows that the local polynomial
estimator f̂ of order k − 1 has bounded bias and variance,

∣∣E[f̂(x)]− f0(x)
∣∣ ≤ C1h

k, Var
(
f̂(x)

)
≤ C2

nh
,

over all x ∈ [0, 1]. Hence taking h = Θ(n−1/(2k+1)), the L2 error of f̂ has convergence rate

E‖f̂ − f0‖2L2
= O(n−2k/(2k+1)).

(Here ‖f‖2L2
=
∫ 1

0
f(x)2dx.) See Section 1.6.1 of Tsybakov (2009)

• How fast is this convergence rate? In fact, we can’t broadly do better over the function class
Σ(k, L). If we assume fixed inputs evenly spaced over [0, 1], xi = i/n for i = 1, . . . n, and a
mild condition on the error distribution, the minimax risk is

min
f̂

max
f0∈Σ(k,L)

E‖f̂ − f0‖2L2
= Ω(n−2k/(2k+1)),

where the minimum above is over all estimators f̂ . See Section 2.6.2 of Tsybakov (2009)

• Is this the end of the story? Not at all. We’ll see that by widening our the scope of functions
that we consider, local polynomials are far from optimal

• As an aside, why did we study the Holder class Σ(k, L) anyway? Because it was pretty natural
to assume that f

(k)
0 is Lipschitz after performing a kth order Taylor expansion to compute the

bias and variance

2.4 Multivariate kernels

• Kernel smoothing and local polynomials extend very naturally to higher dimensions, using,
e.g., K(‖x − xi‖2/h) as the kernel weight between points x, xi ∈ Rd. The corresponds to an
isotropic kernel, since it spherically invariant (depends only on the distance between x and xi)

• Computational efficiency and statisical efficiency are both very real concerns when d grows
large, or even just moderately large (say, larger than 10). Boundary effects are greatly ex-
aggerated as d increases, since the fraction of data points near the boundary grows rapidly.
Again, in high dimensions we usually rely on something less flexible, like an additive model,
which we cover near the end

3 Regression splines, smoothing splines

3.1 Splines

• Regression splines and smoothing splines are motivated from a different perspective than ker-
nels and local polynomials; in the latter case, we started off with a special kind of local
averaging, and moved our way up to a higher-order local models. With regression splines and
smoothing splines, we build up our estimate globally, from a set of select basis functions

• These basis functions, as you might guess, are splines. Let’s assume that d = 1, for simplicity.
A kth order spline is a piecewise polynomial function of degree k, that is continuous and has
continuous derivatives of orders 1, . . . k − 1, at its knot points

• Formally, a function f : R → R is a kth order spline with knot points at t1 < . . . < tm, if
f is a polynomial of degree k on each of the intervals (−∞, t1], [t1, t2], . . . [tm,∞), and f (j) is
continuous at t1, . . . tm, for each j = 0, 1, . . . k − 1
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• Splines have some very special properties are have been a topic of interest among statisticians
and mathematicians for a long time. See de Boor (1978) for an in-depth coverage. Roughly
speaking, a spline is a lot smoother than a piecewise polynomial, and so modeling with splines
can serve as a way of reducing the variance of fitted estimators. See Figure 3

5.2 Piecewise Polynomials and Splines 143
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FIGURE 5.2. A series of piecewise-cubic polynomials, with increasing orders of
continuity.

increasing orders of continuity at the knots. The function in the lower
right panel is continuous, and has continuous first and second derivatives
at the knots. It is known as a cubic spline. Enforcing one more order of
continuity would lead to a global cubic polynomial. It is not hard to show
(Exercise 5.1) that the following basis represents a cubic spline with knots
at ξ1 and ξ2:

h1(X) = 1, h3(X) = X2, h5(X) = (X − ξ1)
3
+,

h2(X) = X, h4(X) = X3, h6(X) = (X − ξ2)
3
+.

(5.3)

There are six basis functions corresponding to a six-dimensional linear space
of functions. A quick check confirms the parameter count: (3 regions)×(4
parameters per region) −(2 knots)×(3 constraints per knot)= 6.

Figure 3: Illustration of the effects of enforcing continuity at the knots, across various derivative
orders, for a cubic piecewise polynomial. From Chapter 5 of Hastie et al. (2009)

• A bit of statistical folklore: it is said that a cubic spline is so smooth, that one cannot detect
the locations of its knots by eye!

• How can we parametrize the set of a splines with knots at t1, . . . tm? The most natural way is
to use the truncated power basis, g1, . . . gm+k+1, defined as

g1(x) = 1, g2(x) = x, . . . gk+1(x) = xk,

gk+1+j(x) = (x− tj)k+, j = 1, . . .m.
(4)
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(Here x+ denotes the positive part of x, i.e., x+ = max{x, 0}.) From this we can see that the
space of kth order splines with knots at t1, . . . tm has dimension m+ k + 1

• While these basis functions are natural, a much better computational choice, both for speed
and numerical accuracy, is the B-spline basis. This was a major development in spline theory
and is now pretty much the standard in software; see de Boor (1978) for details

3.2 Regression splines

• A first idea: let’s perform regression on a spline basis. In other words, given inputs x1, . . . xn
and outputs y1, . . . yn, we consider fitting functions f that are kth order splines with knots at
some chosen locations t1, . . . tm. This means expressing f as

f(x) =

m+k+1∑

j=1

βjgj(x),

where β1, . . . βm+k+1 are coefficients and g1, . . . gm+k+1, are basis functions for order k splines
over the knots t1, . . . tm (e.g., the truncated power basis or B-spline basis)

• Letting y = (y1, . . . yn) ∈ Rn, and defining the basis matrix G ∈ Rn×(m+k+1) by

Gij = gj(xi), i = 1, . . . n, j = 1, . . .m+ k + 1,

we can just use linear regression to determine the optimal coefficients β̂ = (β̂1, . . . β̂m+k+1),

β̂ = argmin
β∈Rm+k+1

‖y −Gβ‖22,

which then leaves us with the fitted regression spline f̂(x) =
∑m+k+1
j=1 β̂jgj(x)

• Of course we know that β̂ = (GTG)−1GT y, so the fitted values ŷ = (f̂(x1), . . . f̂(xn)) are

ŷ = G(GTG)−1GT y,

and regression splines are linear smoothers

• This is a classic method, and can work well provided we choose good knots t1, . . . tm; but in
general choosing knots is a tricky business. There is a large literature on knot selection for
regression splines via greedy methods like recursive partitioning

3.3 Natural splines

• A problem with regression splines is that the estimates tend to display erractic behavior, i.e.,
they have high variance, at the boundaries of the input domain. (This is the opposite problem
to that with kernel smoothing, which had poor bias at the boundaries.) This only gets worse
as the polynomial order k gets larger

• A way to remedy this problem is to force the piecewise polynomial function to have a lower
degree to the left of the leftmost knot, and to the right of the rightmost knot—this is exactly
what natural splines do. A natural spline of order k, with knots at t1 < . . . < tm, is a piecewise
polynomial function f such that

– f is a polynomial of degree k on each of [t1, t2], . . . [tm−1, tm],

– f is a polynomial of degree (k − 1)/2 on (−∞, t1] and [tm,∞),

9



– f is continuous and has continuous derivatives of orders 1, . . . k− 1 at its knots t1, . . . tm.

It is implicit here that natural splines are only defined for odd orders k

• What is the dimension of the span of kth order natural splines with knots at t1, . . . tm? Recall
for splines, this was m + k + 1 (the number of truncated power basis functions). For natural
splines, we can compute this dimension by counting:

(k + 1) · (m− 1)︸ ︷︷ ︸
a

+
( (k − 1)

2
+ 1
)
· 2

︸ ︷︷ ︸
b

− k ·m︸ ︷︷ ︸
c

= m.

Above, a is the number of free parameters in the interior intervals [t1, t2], . . . [tm−1, tm], b is
the number of free parameters in the exterior intervals (−∞, t1], [tm,∞), and c is the number
of constraints at the knots t1, . . . tm. The fact that the total dimension is m is amazing; this
is independent of k!

• Note that there is a variant of the truncated power basis for natural splines, and a variant of
the B-spline basis for natural splines. Again, B-splines are the preferred parametrization for
computational speed and stability

• Natural splines of cubic order is the most common special case: these are smooth piecewise
cubic functions, that are simply linear beyond the leftmost and rightmost knots

3.4 Smoothing splines

• Smoothing splines are an interesting creature: at the end of the day, these estimators perform
a regularized regression over the natural spline basis, placing knots at all inputs x1, . . . xn.
Smoothing splines circumvent the problem of knot selection (as they just use the inputs as
knots), and simultaneously, they control for overfitting by shrinking the coefficients of the
estimated function (in its basis expansion)

• What makes them even more interesting is that they can be alternatively motivated directly
from a functional minimization perspective. With inputs x1, . . . xn contained in an interval
[a, b], the smoothing spline estimate f̂ of a given order k is defined as

f̂ = argmin
f

n∑

i=1

(
yi − f(xi)

)2
+ λ

∫ b

a

(
f ((k+1)/2)(x)

)2
dx. (5)

This is an infinite-dimensional optimization problem over all functions f for the which the
criterion is finite. This criterion trades off the least squares error of f over the observed pairs
(xi, yi), i = 1, . . . n, with a penalty term that is large when the ((k + 1)/2)nd derivative of f
is wiggly. The tuning parameter λ ≥ 0 governs the strength of each term in the minimization

• By far the most commonly considered case is k = 3, i.e., cubic smoothing splines, which are
defined as

f̂ = argmin
f

n∑

i=1

(
yi − f(xi)

)2
+ λ

∫ b

a

(
f ′′(x)

)2
dx (6)

• Remarkably, it so happens that the minimizer in the general smoothing spline problem (5) is
unique, and is a natural kth order spline with knots at the input points x1, . . . xn! Here we
follow a proof for the cubic case, k = 3, from Green & Silverman (1994) (see also Exercise 5.7
in Hastie et al. (2009))

10



The key result can be stated as follows: if f̃ is any twice differentiable function on [a, b], and
x1, . . . xn ∈ [a, b], then there exists a natural cubic spline f with knots at x1, . . . xn such that
f(xi) = f̃(xi), i = 1, . . . n and

∫ b

a

f ′′(x)2 dx ≤
∫ b

a

f̃ ′′(x)2 dx.

Note that this would in fact prove that we can restrict our attention in (6) to natural splines
with knots at x1, . . . xn

Proof: the natural spline basis with knots at x1, . . . xn is n-dimensional, so given any n points
zi = f̃(xi), i = 1, . . . n, we can always find a natural spline f with knots at x1, . . . xn that
satisfies f(xi) = zi, i = 1, . . . n. Now define

h(x) = f̃(x)− f(x).

Consider
∫ b

a

f ′′(x)h′′(x) dx = f ′′(x)h′(x)
∣∣∣
b

a
−
∫ b

a

f ′′′(x)h′(x) dx

= −
∫ xn

x1

f ′′′(x)h′(x) dx

= −
n−1∑

j=1

f ′′′(x)h(x)
∣∣∣
xj+1

xj

+

∫ xn

x1

f (4)(x)h′(x) dx

= −
n−1∑

j=1

f ′′′(x+
j )
(
h(xj+1)− h(xj)

)
,

where in the first line we used integration by parts; in the second we used the that f ′′(a) =
f ′′(b) = 0, and f ′′′(x) = 0 for x ≤ x1 and x ≥ xn, as f is a natural spline; in the third we used
integration by parts again; in the fourth line we used the fact that f ′′′ is constant on any open
interval (xj , xj+1), j = 1, . . . n− 1, and that f (4) = 0, again because f is a natural spline. (In
the above, we use f ′′′(u+) to denote limx↓u f ′′′(x).) Finally, since h(xj) = 0 for all j = 1, . . . n,
we have ∫ b

a

f ′′(x)h′′(x) dx = 0.

From this, it follows that

∫ b

a

f̃ ′′(x)2 dx =

∫ b

a

(
f ′′(x) + h′′(x)

)2
dx

=

∫ b

a

f ′′(x)2 dx+

∫ b

a

h′′(x)2 dx+ 2

∫ b

a

f ′′(x)h′′(x) dx

=

∫ b

a

f ′′(x)2 dx+

∫ b

a

h′′(x)2 dx,

and therefore ∫ b

a

f ′′(x)2 dx ≤
∫ b

a

f̃ ′′(x)2 dx, (7)

with equality if and only if h′′(x) = 0 for all x ∈ [a, b]. Note that h′′ = 0 implies that h must
be linear, and since we already know that h(xj) = 0 for all j = 1, . . . n, this is equivalent to
h = 0. In other words, the inequality (7) holds strictly except when f̃ = f , so the solution in
(6) is uniquely a natural spline with knots at the inputs
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3.5 Finite-dimensional form

• The key result presented above tells us that we can choose a basis η1, . . . ηn for the set of kth
order natural splines with knots over x1, . . . xn, and reparametrize the problem (5) as

β̂ = argmin
β∈Rn

n∑

i=1

(
yi −

n∑

j=1

βjηj(xi)
)2

+ λ

∫ b

a

( n∑

j=1

βjη
((k+1)/2)
j (x)

)2

dx. (8)

This is already a finite-dimensional problem, and once we solve for the coefficients β̂ ∈ Rn, we
know that the smoothing spline estimate is simply f̂(x) =

∑n
j=1 β̂jηj(x)

• Defining the basis matrix and penalty matrices N,Ω ∈ Rn×n by

Nij = ηj(xi) and Ωij =

∫ 1

0

η
((k+1)/2)
i (t)η

((k+1)/2)
j (t) dt for i, j = 1, . . . n,

the problem in (8) can be written more succintly as

β̂ = argmin
β∈Rn

‖y −Nβ‖22 + λβΩβ, (9)

which shows the smoothing spline problem to be a type of generalized ridge regression problem.
In fact, the solution in (9) has the explicit form

β̂ = (NTN + λΩ)−1NT y,

and therefore the fitted values ŷ = (f̂(x1), . . . f̂(xn)) are

ŷ = N(NTN + λΩ)−1NT y. (10)

Therefore, once again, smoothing splines are a kind of linear smoother

• A special property of smoothing splines: the fitted values in (10) can be computed in O(n)
operations. This is achieved by forming N from the B-spline basis (for natural splines), and in
this case the matrix NTN + ΩI ends up being banded (with a bandwidth that only depends
on the polynomial order k). In practice, smoothing spline computations are extremely fast

3.6 Reinsch form

• It is informative to rewrite the fitted values in (10) is what is called Reinsch form,

ŷ = N(NTN + λΩ)−1NT y

= N
(
NT
(
I + λ(NT )−1ΩN−1

)
N
)−1

NT y

= (I + λK)−1y, (11)

where K = (NT )−1ΩN−1

• Note that this matrix K does not depend on λ. If we compute an eigendecomposition K =
UDUT , then the eigendecomposition of S = N(NTN + λΩ)−1 = (I + λK)−1 is

S =

n∑

j=1

1

1 + λdj
uju

T
j ,

where D = diag(d1, . . . dn)
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• Therefore the smoothing spline fitted values are ŷ = Sy, i.e.,

ŷ =

n∑

j=1

uTj y

1 + λdj
uj . (12)

An interpretation: smoothing splines perform a regression on the orthonormal basis u1, . . . un ∈
Rn, yet they shrink the coefficients in this regression, with more shrinkage assigned to eigen-
vectors uj that correspond to large eigenvalues dj

• So what exactly are these basis vectors u1, . . . un? These are known as the Demmler-Reinsch
basis, and a lot of their properties can be worked out analytically (Demmler & Reinsch 1975).
Basically: the eigenvectors uj that correspond to smaller eigenvalues dj are smoother, and so
with smoothing splines, we shrink less in their direction. Said differently, by increasing λ in
the smoothing spline estimator, we are tuning out the more wiggly components. See Figure 4
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Figure 4: For a problem with n = 50 evenly spaced inputs over [0, 1], the left plot shows the bottom 7
eigenvectors of the Reinsch operator K. We can see that the smaller the eigenvalue, the “smoother”
the eigenvector. The right plot shows the shrinkage weights wj = 1/(1 + λdj), j = 1, . . . n that are
implicitly used by the smoothing spline estimator (12), over 8 values of λ. We can see that when λ
is larger, the weights decay faster, and hence the smoothing spline estimator places less weight on
the “nonsmooth” eigenvectors

3.7 Kernel smoothing equivalence

• It turns out that the cubic smoothing spline estimator is in some sense asymptotically equiv-
alent to a kernel regression estimator, with an unusual choice of kernel. Recall that both
are linear smoothers; this equivalence is achieved by showing that under some conditions the
smoothing spline weights converge to kernel weights, under the kernel

K(x) =
1

2
exp(−|x|/

√
2) sin(|x|/

√
2 + π/4), (13)

and a local choice of bandwidth h(x) = λ1/4f(x)−1/4, where f(x) is the density of the input
points. That is, the bandwidth adapts to the local distribution of inputs. This result is due
to Silverman (1984), and hence (13) is sometimes called the “Silverman kernel”. See Figure 5
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899 SPLINES AND VARIABLE KERNELS 

smoothing parameter A, but these dependences will not be expressed explicitly. 
The main object of this paper is to investigate the form of G in order to establish 
connections between spline smoothing and kernel (or convolution or moving 
average) smoothing. These connections give insight into the behaviour of the 
spline smoother and also show that splines should provide good results whether 
or not the design points are uniformly spaced. For the special case of regularly 
spaced design points, connections between spline and kernel smoothing have 
been obtained by Cox (1983) and, under the additional assumption of periodicity, 
by Cogburn and Davies (1974). 

Our study of G will show that, under suitable conditions, the weight function 
will be approximately of a form corresponding to smoothing by a kernel function 
K with bandwidth varying according to the local density f of design points. The 
kernel K is given by 

A graph of K is given in Figure 1. The effective local bandwidth demonstrated 
below is ~ l ' ~ f ( t ) - ' ' ~  asymptotically; thus the smoothing spline's behaviour is 
intermediate between fixed kernel smoothing (no dependence on f )  and smooth- 
ing based on an  average of a fixed number of neighbouring values (effective local 
bandwidth proportional to l l f ) .  The desirability of this dependence on a low 
power of f  will be discussed in Section 3. 

The paper is organized as follows. In Section 2 the main theorem is stated and 
discussed. In addition, some graphs of actual weight functions are presented and 
compared with their asymptotic forms. These show that the kernel approximation 
of the weight function is excellent in practice. Section 3 contains some discussion 

FIG.1. The effectiue kernel K .  

Figure 5: The Silverman kernel in (13), which is the (asymptotically) equivalent implicit used by
smoothing splines. Note that it can be negative. From Silverman (1984)

3.8 Multivariate splines

• Splines can be extended to multiple dimensions via the thin-plate spline construction. This
extension is highly nontrivial, especially compared to the (conceptually) simple extension of
kernels to higher dimensions. Another option is to use the tensor-product spline formulation
in higher dimensions. Both of these concepts are discussed in Chapter 7 of Green & Silverman
(1994)

• As per our usual comment, spline smoothing is both statistically and computationally chal-
lenging in multiple dimensions. Additive models built from univariate smoothing splines (or
bivariate thin-plate splines) are a commonly used tool in high dimensions, and we’ll discuss
these near the end

4 Mercer kernels, RKHS

• Smoothing splines are just one example of an estimator of the form

f̂ = argmin
f∈H

n∑

i=1

(
yi − f(xi)

)2
+ λJ(f), (14)

where H is a space of functions, and J is a penalty functional

• Another important subclass of this problem form: we choose the function space H = HK to be
what is called a reproducing kernel Hilbert space, or RKHS, associated with a particular kernel
function K : Rd × Rd → R. To avoid confusion: this is not the same thing as a smoothing
kernel! We’ll adopt the convention of calling this second kind of kernel, i.e., the kind used in
RKHS theory, a Mercer kernel, to differentiate the two

• There is an immense literature on the RKHS framework; here we follow the RKHS treatment
in Chapter 5 of Hastie et al. (2009). Suppose that K is a positive definite kernel; examples
include the polynomial kernel:

K(x, z) = (xT z + 1)k,
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and the Gaussian radial basis kernel:

K(x, z) = exp
(
−δ‖x− z‖22

)
.

Mercer’s theorem tells us that for any positive definite kernel function K, we have an eigenex-
pansion of the form

K(x, z) =

∞∑

i=1

γiφi(x)φi(z),

for eigenfunctions φi(x), i = 1, 2, . . . and eigenvalues γi ≥ 0, i = 1, 2, . . ., satisfying
∑∞
i=1 γ

2
i <

∞. We then define HK , the RKHS, as the space of functions generated by K(·, z), z ∈ Rd,
i.e., elements in HK are of the form

f(x) =
∑

m∈M
αmK(x, zm),

for a (possibly infinite) set M

• The above eigenexpansion of K implies that elements f ∈ HK can be represented as

f(x) =

∞∑

i=1

ciφi(x),

subject to the constraint that we must have
∑∞
i=1 c

2
i /γi < ∞. In fact, this representation is

used to define a norm ‖ · ‖HK
on HK : we define

‖f‖2HK
=

∞∑

i=1

c2i /γi.

• The natural choice now is to take the penalty functional in (14) as this squared RKHS norm,
J(f) = ‖f‖2HK

. This yields the RKHS problem

f̂ = argmin
f∈HK

n∑

i=1

(
yi − f(xi)

)2
+ λ‖f‖2HK

. (15)

A remarkable achievement of RKHS theory is that the infinite-dimensional problem (15) can
be reduced to a finite-dimensional one (as was the case with smoothing splines). This is called
the representer theorem and is attributed to Kimeldorf & Wahba (1970). In particular, this
result tells us that the minimum in (15) is uniquely attained by a function of the form

f(x) =

n∑

i=1

αiK(x, xi),

or in other words, a function f lying in the span of the functions K(·, xi), i = 1, . . . n. Fur-
thermore, we can rewrite the problem (15) in finite-dimensional form, as

α̂ = argmin
α∈Rn

‖y −Kα‖22 + λαTKα, (16)

where K ∈ Rn×n is a symmetric matrix defined by Kij = K(xi, xj) for i, j = 1, . . . n. Once we
have computed the optimal coefficients α̂ in (16), the estimated function f̂ in (15) is given by

f̂(x) =

n∑

i=1

α̂iK(x, xi)
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• The solution in (16) is
α̂ = (K + λI)−1y,

so the fitted values ŷ = (f̂(x1), . . . f̂(xn)) are

ŷ = K(K + λI)−1y = (I + λK−1)−1y,

showing that the RKHS estimator is yet again a linear smoother

• There is something subtle but extremely important about the finite-dimensional problem in
(16): to express a flexible nonparametric function, in multiple dimensions, note that we need
not write down an explicit basis, but need only to define a “kernelized” inner product between
any two input points, i.e., define the entries of the kernel matrix Kij = K(xi, xj). This encodes
a notion of similarity between xi, xj , or equivalently,

K(xi, xi) +K(xj , xj)− 2K(xi, xj)

encodes a notion of distance between xi, xj

• It can sometimes be much easier to define an appropriate kernel than to define explicit basis
functions. Think about, e.g., the case when the input points are images, or strings, or some
other weird objects—the kernel measure is defined entirely in terms of pairwise relationships
between input objects, which can be done even in exotic input spaces

• Given the kernel matrix K, the kernel regression problem (16) is completely specified, and
the solution is implicitly fit to lie in the span of the (infinite-dimensional) RKHS generated
by the chosen kernel. This is a pretty unique way of fitting flexible nonparametric regression
estimates. Note: this idea isn’t specific to regression: kernel classification, kernel PCA, etc.,
are built in the analogous way

5 Linear smoothers

5.1 Degrees of freedom and unbiased risk estimation

• Literally every estimator we have discussed so far, when trained on (xi, yi), i = 1, . . . n, pro-
duces fitted values ŷ = (f̂(x1), . . . f̂(xn)) of the form

ŷ = Sy

for some matrix S ∈ Rn×n depending on the inputs x1, . . . xn—and also possibly on a tuning
parameter such as h in kernel smoothing, or λ in smoothing splines—but not on y. Recall that
such estimators are called linear smoothers

• Consider the input points as fixed, and assume that y has i.i.d. components with mean 0 and
variance σ2. Recall that in this setting, we defined the degrees of freedom of an estimator ŷ

df(ŷ) =
1

σ2

n∑

i=1

Cov(ŷi, yi).

In particular, recall that for linear smoothers ŷ = Sy, the degrees of freedom is

df(ŷ) =

n∑

i=1

Sii = tr(S),

the trace of the smooth matrix S
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• Example: for a regression spline estimator, of polynomial order k, with knots at the locations
t1, . . . tm, recall that ŷ = G(GTG−1)GT y for G ∈ Rn×(m+k+1) the order k spline basis matrix
over the knots t1, . . . tm. Therefore

df(ŷ) = tr
(
G(GTG)−1GT

)
= tr

(
GTG(GTG)−1

)
= m+ k + 1,

i.e., the degrees of freedom of a regression spline estimator is the number of knots + the
polynomial order + 1. The same calculation shows that the degrees of freedom of a regression
natural spline estimator is simply the number of knots (independent of the polynomial order)

• Example: for a smoothing spline estimator, recall that we were able to express the fitted values
as ŷ = (I + λK)−1, i.e., as

ŷ = U(1 + λD)−1UT y,

where UDUT is the eigendecomposition of the Reinsch matrix K = (NT )−1ΩN−1 (which
depended only on the input points x1, . . . xn and the polynomial order k). A smoothing spline
hence has degrees of freedom

df(ŷ) = tr
(
U(1 + λD)−1UT

)
=

n∑

i=1

1

1 + λdj
,

where D = diag(d1, . . . dn). This is a monotone decreasing function in λ, with df(ŷ) = n when
λ = 0, and df(ŷ)→ (k + 1)/2 when λ→∞, the number of zero eigenvalues among d1, . . . dn

• Degrees of freedom is generally a useful concept because it allows us to put two different
procedures on equal footing. E.g., suppose we wanted to compare kernel smoothing versus
smoothing splines; we could tune them to match their degrees of freedom, and then compare
their performances

• A second more concrete motivation for degrees of freedom, recall, comes from the perspective
of unbiased risk estimation, or unbiased test error estimation. In particular,

T̂ =
1

n
‖y − ŷ‖22 +

2σ2

n
df(ŷ)

serves as an unbiased estimate of the test error E‖y′ − ŷ‖22/n, where y′ is an i.i.d. copy of y.
For linear smoothers, this is simply

T̂ =
1

n
‖y − Sy‖22 +

2σ2

n
tr(S) (17)

• Suppose our linear smoother of interest depends on a tuning parameter λ ∈ Λ (representing,
e.g., the bandwidth for kernel smoothing, or the penalty parameter for smoothing splines and
Mercer kernels), and express this by ŷλ = Sλy. Then we could choose the tuning parameter λ
to minimize the estimated risk, as in

λ̂ = argmin
λ∈Λ

1

n
‖y − Sλy‖22 +

2σ2

n
tr(Sλ).

This is just like the Cp criterion, or AIC, in ordinary regression; we could replace the factor of
2 above with log n to obtain something like BIC
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5.2 Leave-one-out and generalized cross-validation

• Of course, cross-validation provides another way to perform error estimation and model selec-
tion. For linear smoothers ŷ = (f̂(x1), . . . f̂(xn)) = Sy, leave-one-out cross-validation is par-
ticularly appealing because in many cases we have the seemingly magical reduction

1

n

n∑

i=1

(yi − f̂−i(xi))2 =
1

n

n∑

i=1

(
yi − f̂(xi)

1− Sii

)2

, (18)

where f̂−i denotes the estimated function trained on all but the ith pair (xi, yi). This provides
an enormous computational savings because it shows that to compute leave-one-out cross-
validation error, we don’t have to actually ever compute f̂−i, i = 1, . . . n

• Why does (18) hold, and for which linear smoothers ŷ = Sy? Just rearranging (18) perhaps
demystifies this seemingly magical relationship and helps to answer these questions. Suppose
we knew that f̂ had the property

f̂−i(xi) =
1

1− Sii
(
f̂(xi)− Siiyi

)
. (19)

That is, to obtain the estimate at xi under the function f̂−i fit on all but (xi, yi), we take the
sum of the linear weights across all but the ith point, f̂(xi)− Siiyi =

∑
i6=j Sijyj , and then

renormalize so that these weights sum to 1

• This is not an unreasonable property; e.g., we can immediately convince ourselves that it holds
for kernel smoothing. A little calculation shows that it also holds for smoothing splines (using
the Sherman-Morrison update formula). How about for k-nearest-neighbors?

• From the special property (19), it is easy to show the leave-one-out formula (18). We have

yi − f̂−i(xi) = yi −
1

1− Sii
(
f̂(xi)− Siiyi

)
=
yi − f̂(xi)

1− Sii
,

and then squaring both sides and summing over n gives (18)

• Finally, generalized cross-validation is a small twist on the right-hand side in (18) that gives
an approximation to leave-one-out cross-validation error. It is defined as by replacing the
appearences of diagonal terms Sii with the average diagonal term tr(S)/n,

GCV(f̂) =
1

n

n∑

i=1

(
yi − f̂(xi)

1− tr(S)/n

)2

.

This can be of computational advantage in some cases where tr(S) is easier to compute that
individual elements Sii, and is also closely tied to the unbiased test error estimate in (17), seen
by making the approximation 1/(1− x)2 ≈ 1 + 2x

6 Locally adaptive estimators

6.1 Wavelet smoothing

• Not every nonparametric regression estimate needs to be a linear smoother (though this does
seem to be incredibly common), and wavelet smoothing is one of the leading nonlinear tools
for nonparametric estimation. The theory of wavelets is quite elegant and we only give a very
terse introduction here; see Mallat (2008) for an excellent reference
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• You can think of wavelets as defining an orthonormal function basis, with the basis functions
exhibiting a highly varied level of smoothness. Importantly, these basis functions also display
spatially localized smoothness at different locations in the input domain. There are actually
many different choices for wavelets bases (Haar wavelets, symmlets, etc.), but these are details
that we will not go into

• Assume that d = 1. Local adaptivity in higher dimensions is still largely an unexplored topic
(multivariate extensions of wavelets are possible, i.e., ridgelets and curvelets, but are complex)

• Consider basis functions, φ1, . . . φn, evaluated over n equally spaced inputs in [0, 1]:

xi = i/n, i = 1, . . . n.

The assumption of evenly spaced inputs is crucial for fast computations; we also typically
assume with wavelets that n is a power of 2. We now form a wavelet basis matrix W ∈ Rn×n,
defined by

Wij = φj(xi), i = 1, . . . n

• The goal, given outputs y = (y1, . . . yn) over the evenly spaced input points, is to represent y
as a sparse combination of the wavelet basis functions. To do so, we first perform a wavelet
transform (multiply by WT ):

θ = WT y,

we threshold the coefficients θ:
θ̂ = Tλ(θ),

and then perform an inverse wavelet transform (multiply by W ):

ŷ = Wθ̂

• The wavelet and inverse wavelet transforms (multiplication by WT and W ) each require O(n)
operations, and are practically extremely fast due do clever pyramidal multiplication schemes
that exploit the special structure of wavelets

• The threshold function Tλ is usually taken to be hard-thresholding, i.e.,

[Tλ(z)]i = zi · 1{|zi| ≥ λ}, i = 1, . . . n,

or soft-thresholding, i.e.,

[Tλ(z)]i =
(
zi − sign(zi)λ

)
· 1{|zi| ≥ λ}, i = 1, . . . n.

These thresholding functions are both also O(n), and computationally trivial, making wavelet
smoothing very fast overall. It should be emphasized that wavelet smoothing is not a linear
smoother, i.e., there is no matrix S here such that ŷ = Sy for all y

• We can write the wavelet smoothing estimate in a more familiar form, following our previous
discussions on basis functions and regularization. For hard-thresholding, we solve

θ̂ = argmin
θ∈Rn

‖y −Wθ‖22 + λ2‖θ‖0,

and then the wavelet smoothing fitted values are ŷ = Wθ̂. Here ‖θ‖0 =
∑n
i=1 1{θi 6= 0}, the

number of nonzero components of θ. For soft-thresholding, the corresponding optimization
problem is

θ̂ = argmin
θ∈Rn

‖y −Wθ‖22 + 2λ‖θ‖1,

and then the wavelet smoothing fitted values are again ŷ = Wθ̂. Here ‖θ‖1 =
∑n
i=1 |θi|, the

`1 norm
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6.2 The strengths of wavelets, the limitations of linear smoothers

• Apart from its sheer computational speed, an important strength of wavelet smoothing is that
it can represent a signal that has a spatially heterogeneous degree of smoothness, i.e., it can
be both smooth and wiggly at different regions of the input domain. The reason that wavelet
smoothing can achieve such local adaptivity is because it selects a sparse number of wavelet
basis functions, by thresholding the coefficients from a basis regression

• Can a linear smoother do the same? We can appeal to convergence theory to give a precise
answer to this question. We consider the function class F (k, L) of all k times (weakly) dif-
ferentiable functions, whose kth derivative satisfies TV(f (k)) ≤ L, with TV(·) being the total
variation operator. A seminal result of Donoho & Johnstone (1998) shows that, assuming
f0 ∈ F (k, L) (and further conditions on the problem setup), the wavelet smoothing estimator
with an appropriately tuned parameter λ converges at the rate n−(2k+2)/(2k+3). These authors
also show that this is the minimax rate of convergence over F (k, L)

• Now, it can be shown that F (k, L) ⊇ Σ(k+ 1, L− 1), where Σ(k+ 1, L− 1) is the order k+ 1
Holder class that we considered previously. From what we know about kernel smoothing, this
estimator converges at the rate

n−(2(k+1))/(2(k+1)+1) = n−(2k+2)/(2k+3),

over Σ(k + 1, L − 1). But how about the larger class F (k, L)? Can kernel smoothing achieve
the same (minimax) rate over this larger class? How about linear smoothers in general?

A remarkable result of Donoho & Johnstone (1998) shows that no linear smoother can attain
the minimax rate over F (k, L), and that a lower bound on the convergence rate achieved by
linear smoothers is n−(2k+1)/(2k+2). There is actually a big difference in these rates:

n−(2k+1)/(2k+2)

n−(2k+2)/(2k+3)
= n(k+1)/((2k+2)(2k+3)) →∞ as n→∞.

Practically, the performance of wavelets and linear smoothers in problems with spatially het-
erogeneous smoothness can be striking as well

• However, you should keep in mind that wavelets are not perfect: a major shortcoming is that
they require a highly restrictive setup: recall that they require evenly spaced inputs, and n to
be power of 2, and there are often further assumptions made about the behavior of the fitted
function at the boundaries of the input domain

• Wavelets are not the end of the story when it comes to local adaptivity. E.g., both kernel
smoothing and smoothing splines can be made to be more locally adaptive by allowing for a
local bandwidth parameter or a local penalty parameter; but this can be difficult to implement
in practice. Next we discuss two different locally adaptive nonparametric estimators. These
only use a single smoothing parameter, and still achieve the minimax rate of convergence over
F (k, L)

6.3 Locally adaptive regression splines

• Locally adaptive regression splines (Mammen & van de Geer 1997), as their name suggests,
can be viewed as variant of smoothing splines that exhibit better local adaptivity. For a given
order k, the estimate is defined as

f̂ = argmin
f

n∑

i=1

(
yi − f(xi)

)2
+ λTV(f (k)), (20)
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where TV(·) is the total variation operator. The minimization domain is infinite-dimensional,
the space of all functions for which the criterion is finite

• Another remarkable variational result, similar to that for smoothing splines, shows that (20)
has a kth order spline as a solution (Mammen & van de Geer 1997). This almost turns the
minimization into a finite-dimensional one, but there is one catch: the knots of this kth order
spline are generally not known, i.e., they need not coincide with the inputs x1, . . . xn. (When
k = 0, 1, they do, but in general, they do not)

• To deal with this issue, we redefine the locally adaptive regression spline estimator to be

f̂ = argmin
f∈Gk

n∑

i=1

(
yi − f(xi)

)2
+ λTV(f (k)), (21)

i.e., we restrict the domain of minimization to be Gk, the space of kth order spline functions
with knots in Tk, where Tk is a subset of {x1, . . . xn} of size n−k−1. The precise definition of
Tk is not important; it is just given by trimming away k + 1 boundary points from the inputs

• As we already know, the space Gk of kth order splines with knots in Tk has dimension |Tk|+
k + 1 = n. Therefore we can choose a basis g1, . . . gn for the functions in Gk, and the problem
in (21) becomes one of finding the coefficients in this basis expansion,

β̂ = argmin
f∈Gk

n∑

i=1

(
yi −

n∑

j=1

βjgj(xi)
)2

+ λTV
{( n∑

j=1

βjgj(xi)
)(k)}

, (22)

and then we have f̂(x) =
∑n
j=1 β̂jgj(x)

• Now define the basis matrix G ∈ Rn×n by

Gij = gj(xi), i = 1, . . . n.

Suppose we choose g1, . . . gn to be the truncated power basis. Denoting Tk = {t1, . . . tn−k−1},
we compute

( n∑

j=1

βjgj(xi)
)(k)

= k! + k!

n∑

j=k+2

βj1{x ≥ tj−k−1},

and so

TV
{( n∑

j=1

βjgj(xi)
)(k)}

= k!

n∑

j=k+2

|βj |.

Hence the locally adaptive regression spline problem (22) can be expressed as

β̂ = argmin
β∈Rn

‖y −Gβ‖22 + λk!

n∑

i=k+2

|βi|. (23)

This is a lasso regression problem on the truncated power basis matrix G, with the first k+ 1
coefficients (those corresponding to the pure polynomial functions, in the basis expansion) left
unpenalized

• This reveals a key difference between the locally adaptive regression splines (23) (originally,
problem (21)) and the smoothing splines (9) (originally, problem (5)). In the first problem,
the total variation penalty is translated into an `1 penalty on the coefficients of the truncated
power basis, and hence this acts a knot selector for the estimated function. That is, at the
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solution in (23), the estimated spline will have knots at a subset of Tk (subset of the input
points x1, . . . xn), with fewer knots when λ is larger. In contrast, recall, at the smoothing
spline solution in (9), the estimated function will have knots at each of the inputs x1, . . . xn.
This is a major difference between the `1 and `2 penalties

• From a computational perspective, the locally adaptive regression spline problem in (23) is
actually a lot harder than the smoothing spline problem in (9). Recall that the latter reduces
to solving a single banded linear system, which takes O(n) operations. On the other hand,
fitting locally adaptive regression splines in (23) requires solving a lasso problem with a dense
n × n regression matrix G; this takes something like O(n3) operations. So when n = 10, 000,
there is a big difference between the two!

• There is a real tradeoff here, because with extra computation comes much improved local
adaptivity of the fits. See Figure 6 for an example. Theoretically, locally adaptive regression
splines (like wavelets) achieve the minimax rate n−(2k+2)/(2k+3) of convergence over F (k, L)
(Mammen & van de Geer 1997). In this regard, as we discussed previously, they have a big
advantage over any linear smoother

6.4 Trend filtering

• At a high level, you can think of trend filtering as computationally efficient version of locally
adaptive regression splines, though their original construction (Steidl et al. 2006, Kim et al.
2009) comes from a fairly different perspective. We will begin by describing their connection
to locally adaptive regression splines, following Tibshirani (2014)

• Revisit the formulation of locally adaptive regression splines in (21), where the minimization
domain is Gk = span{g1, . . . gn}, and g1, . . . gn are the kth order truncated power basis in (4)
having knots in a set Tk ⊆ {x1, . . . xn} with size |Tk| = n− k − 1. The trend filtering problem
is given by replacing Gk with a different function space,

f̂ = argmin
f∈Hk

n∑

i=1

(
yi − f(xi)

)2
+ λTV(f (k)), (24)

where the new domain is Hk = span{h1, . . . hn}. Assuming that the input points are ordered,
x1 < . . . < xn, the functions h1, . . . hn are defined by

hj(x) =

j−1∏

`=1

(x− x`), j = 1, . . . k + 1,

hk+1+j(x) =

k∏

`=1

(x− xj+`) · 1{x ≥ xj+k}, j = 1, . . . n− k − 1.

(25)

(Our convention is to take the empty product to be 1, so that h1(x) = 1.) These are dubbed
the falling factorial basis, and are piecewise polynomial functions, taking an analogous form
to the truncated power basis functions in (4). Loosely speaking, they are given by replacing
an rth order power function in the truncated power basis with an appropriate r-term product,
e.g., replacing x2 with (x−x2)(x−x1), and (x−tj)k with (x−xj+k)(x−xj+k−1) · . . . (x−xj+1)

• Defining the falling factorial basis matrix

Hij = hj(xi), i, j = 1, . . . n,
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Figure 6: The top left plot shows the true regression function, which has inhomogeneous smoothness—
smoother towards the left part of the domain, wigglier towards the right. The top right plot shows
the locally adaptive regression spline estimate with 19 degrees of freedom; notice that it picks up the
right level of smoothness throughout. The bottom left plot shows the smoothing spline fit with the
same degrees of freedom; it picks up the right level of smoothness on the left, but is undersmoothed
on the right. The bottom right panel shows the smoothing spline fit with 33 degrees of freedom;
now it is appropriately wiggly on the right, but oversmoothed on the left. Smoothing splines cannot
simultaneously represent different levels of smoothness at different regions in the domain; the same
is true of any linear smoother
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it is now straightforward to check that the proposed problem of study, trend filtering in (24),
is equivalent to

β̂ = argmin
β∈Rn

‖y −Hβ‖22 + λk!

n∑

i=k+2

|βi|. (26)

This is still a lasso problem, but now in the falling factorial basis matrix H. Compared to the
locally adaptive regression spline problem (23), there may not seem to be much of a difference
here—like G, the matrix H is dense, and solving (26) would be slow. So why did we go to
all the trouble of defining trend filtering, i.e., introducing the somewhat odd basis h1, . . . hn in
(25)?

• The utility of trend filtering (26) is seen after reparametrizing the problem, by inverting H.
Let θ = Hβ, and rewrite the trend filtering problem as

θ̂ = argmin
θ∈Rn

‖y − θ‖22 + λ‖Dθ‖1, (27)

where D ∈ R(n−k−1)×n denotes the last n− k− 1 rows of k! ·H−1. Explicit calculation shows
that D is a banded matrix (Tibshirani 2014, Wang et al. 2014). For simplicity of exposition,
consider the case when xi = i, i = 1, . . . n. Then

D =




−1 1 0 . . . 0 0
0 −1 1 . . . 0 0
...
0 0 0 . . . −1 1


 when k = 0,

D =




1 −2 1 0 . . . 0
0 1 −2 1 . . . 0
0 0 1 −2 . . . 0
...


 when k = 1,

D =




−1 3 −3 1 . . . 0
0 −1 3 −3 . . . 0
0 0 −1 3 . . . 0
...


 when k = 2, etc.

One can therefore interpret D as a kind of discrete derivative operator, of order k + 1. This
also suggests an intuitive interpretation of trend filtering (27) as a discrete approximation to
the original locally adaptive regression spline problem in (20)

• The bandedness of D means that the trend filtering problem (27) can be solved in nearly linear
time (complexity O(n1.5) in the worst case). Hence trend filtering estimates are much easier
to fit than locally adaptive regression splines

• But what of their statistical relevancy? Did switching over to the falling factorial basis in (25)
wreck the strong local adaptivity properties that we cared about in the first place? Fortunately,
the answer is no, and in fact, trend filtering and locally adaptive regression spline estimates
are extremely hard to distinguish in practice. See Figure 7

• Furthermore, one can prove a strong coupling between the truncated power basis (4) and the
falling factorial basis (25), and use this to establish that the locally adaptive regression and
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Figure 7: Trend filtering and locally adaptive regression spline estimates, fit on the same data set as
in Figure 6. The two are tuned at the same level, and the estimates are visually indistinguishable

trend filtering estimates are close. The two are close enough that trend filtering inherits the
minimax optimality of locally adaptive regression splines, i.e., it too converges at the rate
n−(2k+2)/(2k+3) over F (k, L) (Tibshirani 2014, Wang et al. 2014). This means that trend
filtering offers significant improvements over linear smoothers, and yet its computational cost
is not too much steeper than a single banded linear system solve

7 The multivariate case

7.1 The curse of dimensionality

• So far, we’ve looked mostly at the univariate case, d = 1. But as we’ve briefly mentioned, most
everything we’ve discussed so far has a multivariate counterpart; e.g., recall, kernel smoothing
very naturally extends to multiple dimensions; univariate splines can be generalized via thin-
plate splines or tensor-product splines; and Mercer kernels were defined directly in multiple
dimensions. All of these multivariate extensions are capable or producing rich nonparametric
fits in low to moderate dimensions

• But in high dimensions the story is very different; if d is large compared to n, then “true”
multivariate extensions like these ones are problematic, and suffer from poor variance. The
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curse of dimensionality, in rough terms, says that estimation gets exponentially harder as the
number of dimensions increases. (This term usually is attributed to Bellman (1962), who
encountered an analogous issue but in a separate context—dynamic programming)

• This curse of dimensionality is echoed by the role of d in the minimax rates of convergence
of nonparametric regression estimators, across various setups. E.g., recall the Holder class of
functions Σ(k, L) that we defined, in the univariate case, of functions whose (k−1)st derivative
is L-Lipschitz. In higher dimensions, the natural extension of this is the space Σd(k, L) of
functions on Rd whose kth order partial derivatives are all L-Lipschitz. It can be shown that

min
f̂

max
f0∈Σd(k,L)

E
(
f̂(X)− f0(X)

)2
= Ω(n−2k/(2k+d)),

for the random input model, under mild conditions. See Section 3.2. of Gyorfi et al. (2002).
What does this rate mean? Flipped around, this implies that we need n ≥ (1/ε)(2k+d)/(2k) to
achieve an MSE bound of ε, i.e., the sample complexity grows exponentially in d

7.2 Additive models

• Additive models finesse the curse of dimensionality by fitting an estimate that decomposes as
a sum of univariate functions across dimensions. Instead of considering a full d-dimensional
function of the form

f(x) = f(x·1, . . . x·d), (28)

we restrict our attention to functions of the form

f(x) = f1(x·1) + . . . fd(x·d). (29)

(Here the notation x·j denotes the jth component of x ∈ Rd, slightly unusual notation used so
as not to confuse with the labeling of the d-dimensional inputs x1, . . . xn). As each function
fj , j = 1, . . . d is univariate, fitting an estimate of the form (29) is certainly less ambitious
than fitting one of the form (28). On the other hand, the additive framework is still flexible
enough to capture interesting (marginal) behavior in high dimensions

• The choice of modeler (29) need not be regarded as an assumption we make about the true
function f0, just like we don’t always assume that the true model is linear when using linear
regression. In many cases, we fit an additive model because we think it may provide a useful
approximation to the truth, and is able to scale well with the number of dimensions d

• A beautiful result by Stone (1985) encapsulates this idea precisely. This author shows that,
while it may be difficult to estimate an arbitrary regression function f0 in high dimensions, we
can still estimate its best additive approximation f̄0 well. If we assume that each component
function f̄0,j , j = 1, . . . d lies in Holder class Σ(k, L), and we estimate component function
f̂j , j = 1, . . . d using a kth degree spline, then

E‖f̂j − f̄0,j‖L2
= O(n−2k/(2k+1)), j = 1, . . . d.

Thus each component of the best additive approximation f̄0 to f0 can be estimated at the
optimal rate. In other words, though we cannot hope to recover f0 arbitrarily, we can recover
its major structure along the coordinate axes

• Estimation with additive models is actually very simple; we can just choose our favorite uni-
variate smoother (i.e., nonparametric procedure), and cycle through estimating each function
fj , j = 1, . . . d individually (like a block coordinate descent algorithm). Denote our choice of
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univariate smoother by S, so that the fitted function from smoothing y = (y1, . . . yn) ∈ Rn
over the inputs z = (z1, . . . zn) ∈ Rn can be written as

f̂ = S(z, y).

E.g., it is common to choose S to be the cubic smoothing spline smoother, where the tuning
parameter λ selected by generalized cross-validation

• Once S has been chosen, we initialize f̂1, . . . f̂d (say, to all to zero), and repeat the following
steps for j = 1, . . . d, 1, . . . d, . . .:

– define ri = yi −
∑
6̀=j f̂`(xi`), i = 1, . . . n;

– smooth f̂j = S(x·j , r);

– center f̂j = f̂j − 1
n

∑n
i=1 f̂j(xij).

This algorithm is known as backfitting. The last line in the update above is used to remove
the mean from each function f̂j , j = 1, . . . d, otherwise the model would not be identifiable.
Our final estimate therefore takes the form

f̂(x) = ȳ + f̂1(x·1) + . . . f̂d(x·d),

where ȳ = 1
n

∑n
i=1 yi. Hastie & Tibshirani (1990) provide a very nice exposition on the some

of the more practical aspects of backfitting and additive models

7.3 Sparse additive models

• In truly high dimensions, instead of estimating a full set of d additive component functions, we
might choose a smaller number of dimensions and estimate component functions along these
directions only. That is, our estimate would take the form

f̂(x) = ȳ +
∑

j∈A
f̂j(x·j),

where A ⊆ {1, . . . d} is an active set of dimensions. This is a natural idea, but it is a research
topic still very much in development. Some recent works are Lin & Zhang (2006), Ravikumar
et al. (2009), Raskutti et al. (2012)

8 Nonparametric classification

• Lastly, we discuss nonparametric estimators for classification. Indeed, it is pretty easy to build
nonparametric classifiers given our regression tools. For (X,Y ) ∈ Rd × {0, 1}, consider the
regression function

f0(x) = E(Y |X = x) = P(Y = 1|X = x),

which is now the conditional probability of observing class 1, given X = x. Given samples
(x1, y1), . . . (xn, yn) ∈ Rd × {0, 1}, we can use any nonparametric regression method to form
an estimate f̂ of f0, and then define a “plug-in” classifier via

Ĉ(x) =

{
0 if f̂(x) ≤ 1/2

1 if f̂(x) < 1/2
.

This of course estimates the optimal classification rule, sometimes called the Bayes classifier,

C0(x) =

{
0 if f0(x) ≤ 1/2

1 if f0(x) < 1/2
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• What does this look like, e.g., for k-nearest-neighbors? Recall that here the regression estimate
is f̂(x) = 1

k

∑
i∈Nk(x) yi, and so Ĉ(x) = 1 if and only if more than half of the neighbors Nk(x)

of x are of class 1. This is precisely the k-nearest-neighbors classifier that you have likely
already learned, which “votes” based on class memberships of neighboring points to decide the
predicted class

• In general it may seem a bit funny to estimate f0 using a standard nonparametric regression
tool, since these tools are usually defined by a squared error loss criterion, and f0 always lies
between 0 and 1. A somewhat more principle approach would be to change the loss function
so that it is appropriate for the classification setting. E.g., we could instead directly estimate
the conditional log oggs,

f0(x) = log
(P(Y = 1|X = x)

P(Y = 1|X = x)

)
,

and this leads to a nonparametric logistic regression model. Taking, say, the smoothing spline
approach, we could define our estimate by

f̂ = argmin
f

n∑

i=1

(
− yif(xi) + log(1 + e−f(xi))

)
+ λ

∫ b

a

(
f ((k+1)/2)(x)

)2
dx.

Let η1, . . . ηn denote the natural kth order spline basis with knots over the inputs x1, . . . xn, and
define the basis matrix N ∈ Rn×n and penalty matrix Ω ∈ Rn×n just as we did for smoothing
splines in regression,

Nij = ηj(xi) and Ωij =

∫ 1

0

η
((k+1)/2)
i (t)η

((k+1)/2)
j (t) dt for i, j = 1, . . . n.

Then we can reformulate the above problem as

β̂ = argmin
β∈Rn

−yTNβ +

n∑

i=1

log(1 + e−(Nβ)i) + λβTΩβ,

which is a logistic regression problem with a generalized ridge penalty. Our final classifier Ĉ(x)
now outputs class 1 when f̂(x) =

∑n
j=1 β̂jηj(x) > 0, and outputs 0 otherwise

• An approach like the one above extends seamlessly to the additive model setting, and also to
any loss derived from an exponential family distribution. This lies at the heart of generalized
additive models, a framework for producing flexible nonparametric estimates in multiple di-
mensions, whether predicting a continuous response (regression), or binary response (logistic
regression), or counts (Poisson regression), etc. See Hastie & Tibshirani (1990)
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