
Nonparametric Bayesian Methods

1 What is Nonparametric Bayes?

In parametric Bayesian inference we have a model M = {f(y|θ) : θ ∈ Θ} and data
Y1, . . . , Yn ∼ f(y|θ). We put a prior distribution π(θ) on the parameter θ and compute the
posterior distribution using Bayes’ rule:

π(θ|Y ) =
Ln(θ)π(θ)

m(Y )
(1)

where Y = (Y1, . . . , Yn), Ln(θ) =
∏

i f(Yi|θ) is the likelihood function and

m(y) = m(y1, . . . , yn) =

∫
f(y1, . . . , yn|θ)π(θ)dθ =

∫ n∏
i=1

f(yi|θ)π(θ)dθ

is the marginal distribution for the data induced by the prior and the model. We call m the
induced marginal. The model may be summarized as:

θ ∼ π

Y1, . . . , Yn|θ ∼ f(y|θ).

We use the posterior to compute a point estimator such as the posterior mean of θ. We can
also summarize the posterior by drawing a large sample θ1, . . . , θN from the posterior π(θ|Y )
and the plotting the samples.

In nonparametric Bayesian inference, we replace the finite dimensional model {f(y|θ) : θ ∈
Θ} with an infinite dimensional model such as

F =

{
f :

∫
(f ′′(y))2dy <∞

}
(2)

Typically, neither the prior nor the posterior have a density function with respect to a
dominating measure. But the posterior is still well defined. On the other hand, if there
is a dominating measure for a set of densities F then the posterior can be found by Bayes
theorem:

πn(A) ≡ P(f ∈ A|Y ) =

∫
A
Ln(f)dπ(f)∫

F Ln(f)dπ(f)
(3)

where A ⊂ F , Ln(f) =
∏

i f(Yi) is the likelihood function and π is a prior on F . If there
is no dominating measure for F then the posterior stull exists but cannot be obtained by
simply applying Bayes’ theorem. An estimate of f is the posterior mean

f̂(y) =

∫
f(y)dπn(f). (4)
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A posterior 1− α region is any set A such that πn(A) = 1− α.

Several questions arise:

1. How do we construct a prior π on an infinite dimensional set F?

2. How do we compute the posterior? How do we draw random samples from the poste-
rior?

3. What are the properties of the posterior?

The answers to the third question are subtle. In finite dimensional models, the inferences
provided by Bayesian methods usually are similar to the inferences provided by frequentist
methods. Hence, Bayesian methods inherit many properties of frequentist methods: consis-
tency, optimal rates of convergence, frequency coverage of interval estimates etc. In infinite
dimensional models, this is no longer true. The inferences provided by Bayesian methods do
not necessarily coincide with frequentist methods and they do not necessarily have properties
like consistency, optimal rates of convergence, or coverage guarantees.

2 Distributions on Infinite Dimensional Spaces

To use nonparametric Bayesian inference, we will need to put a prior π on an infinite di-
mensional space. For example, suppose we observe X1, . . . , Xn ∼ F where F is an unknown
distribution. We will put a prior π on the set of all distributions F . In many cases, we
cannot explicitly write down a formula for π as we can in a parametric model. This leads
to the following problem: how we we describe a distribution π on an infinite dimensional
space? One way to describe such a distribution is to give an explicit algorithm for drawing
from the distribution π. In a certain sense, “knowing how to draw from π” takes the place
of “having a formual for π.”

The Bayesian model can be written as

F ∼ π

X1, . . . , Xn|F ∼ F.

The model and the prior induce a marginal distribution m for (X1, . . . , Xn),

m(A) =

∫
PF (A)dπ(F )

where

PF (A) =

∫
IA(x1, . . . , xn)dF (x1) · · · dF (xn).
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We call m the induced marginal. Another aspect of describing our Bayesian model will be
to give an algorithm for drawing X = (X1, . . . , Xn) from m.

After we observe the data X = (X1, . . . , Xn), we are interested in the posterior distribution

πn(A) ≡ π(F ∈ A|X1, . . . , Xn). (5)

Once again, we will describe the posterior by giving an algorithm for drawing randonly from
it.

To summarize: in some nonparametric Bayesian models, we describe the prior distribution
by giving an algorithm for sampling from the prior π, the marginal m and the posterior πn.

3 Three Nonparametric Problems

We will focus on three specific problems. The four problems and their most common fre-
quentist and Bayesian solutions are:

Statistical Problem Frequentist Approach Bayesian Approach
Estimating a cdf empirical cdf Dirichlet process
Estimating a density kernel smoother Dirichlet process mixture
Estimating a regression function kernel smoother Gaussian process

4 Estimating a cdf

Let X1, . . . , Xn be a sample from an unknown cdf (cumulative distribution function) F where
Xi ∈ R. The usual frequentist estimate of F is the empirical distribution function

Fn(x) =
1

n

n∑
i=1

I(Xi ≤ x). (6)

Recall that for every ε > 0 and every F ,

PF
(

sup
x
|Fn(x)− F (x)| > ε

)
≤ 2e−2nε

2

. (7)

Setting εn =
√

1
2n

log
(
2
α

)
we have

inf
F

PF

(
Fn(x)− εn ≤ F (x) ≤ Fn(x) + εn for all x

)
≥ 1− α (8)
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where the infimum is over all cdf’s F . Thus,
(
Fn(x)− εn, Fn(x) + εn

)
is a 1− α confidence

band for F .

To estimate F from a Bayesian perspective we put a prior π on the set of all cdf’s F and then
we compute the posterior distribution on F given X = (X1, . . . , Xn). The most commonly
used prior is the Dirichlet process prior which was invented by the statistician Thomas
Ferguson in 1973.

The distribution π has two parameters, F0 and α and is denoted by DP(α, F0). The parame-
ter F0 is a distribution function and should be thought of as a prior guess at F . The number
α controls how tightly concentrated the prior is around F0. The model may be summarized
as:

F ∼ π

X1, . . . , Xn|F ∼ F

where π = DP(α, F0).

How to Draw From the Prior. To draw a single random distribution F from Dir(α, F0) we
do the following steps:

1. Draw s1, s2, . . . independently from F0.

2. Draw V1, V2, . . . ∼ Beta(1, α).

3. Let w1 = V1 and wj = Vj
∏j−1

i=1 (1− Vi) for j = 2, 3, . . ..

4. Let F be the discrete distribution that puts mass wj at sj, that is, F =
∑∞

j=1wjδsj
where δsj is a point mass at sj.

It is clear from this description that F is discrete with probability one. The construction
of the weights w1, w2, . . . is often called the stick breaking process. Imagine we have a stick
of unit length. Then w1 is is obtained by breaking the stick a the random point V1. The
stick now has length 1 − V1. The second weight w2 is obtained by breaking a proportion
V2 from the remaining stick. The process continues and generates the whole sequence of
weights w1, w2, . . .. See Figure 1. It can be shown that if F ∼ Dir(α, F0) then the mean is
E(F ) = F0.

You might wonder why this distribution is called a Dirichlet process. The reason is this.
Recall that a random vector P = (P1, . . . , Pk) has a Dirichlet distribution with parameters
(α, g1, . . . , gk) (with

∑
j gj = 1) if the distribution of P has density

f(p1, . . . , pk) =
Γ(α)∏k

j=1 Γ(αgj)

k∏
j=1

p
αgj−1
j
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V1 V2(1 − V1)
w1 w2

…

…

Figure 1: The stick breaking process shows how the weights w1, w2, . . . from the Dirichlet
process are constructed. First we draw V1, V2, . . . ∼ Beta(1, α). Then we set w1 = V1, w2 =
V2(1− V1), w3 = V3(1− V1)(1− V2), . . ..

over the simplex {p = (p1, . . . , pk) : pj ≥ 0,
∑

j pj = 1}. Let (A1, . . . , Ak) be any partition
of R and let F ∼ DP(α, F0) be a random draw from the Dirichlet process. Let F (Aj) be
the amount of mass that F puts on the set Aj. Then (F (A1), . . . , F (Ak)) has a Dirichlet
distribution with parameters (α, F0(A1), . . . , F0(Ak)). In fact, this property characterizes the
Dirichlet process.

How to Sample From the Marginal. One way is to draw from the induced marginal m is
to sample F ∼ π (as described above) and then draw X1, . . . , Xn from F . But there is an
alternative method, called the Chinese Restaurant Process or infinite Pólya urn (Blackwell
1973). The algorithm is as follows.

1. Draw X1 ∼ F0.

2. For i = 2, . . . , n: draw

Xi|X1, . . . Xi−1 =

{
X ∼ Fi−1 with probability i−1

i+α−1
X ∼ F0 with probability α

i+α−1

where Fi−1 is the empirical distribution of X1, . . . Xi−1.

The sample X1, . . . , Xn is likely to have ties since F is discrete. Let X∗1 , X
∗
2 , . . . denote the

unique values of X1, . . . , Xn. Define cluster assignment variables c1, . . . , cn where ci = j
means that Xi takes the value X∗j . Let nj = |{i : cj = j}|. Then we can write

Xn =

{
X∗j with probability

nj

n+α−1
X ∼ F0 with probability α

n+α−1 .

In the metaphor of the Chinese restaurant process, when the nth customer walks into the
restaurant, he sits at table j with probability nj/(n+α− 1), and occupies a new table with
probability α/(n + α − 1). The jth table is associated with a “dish” X∗j ∼ F0. Since the
process is exchangeable, it induces (by ignoring X∗j ) a partition over the integers {1, . . . , n},
which corresponds to a clustering of the indices. See Figure 2.
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X1
* X2

* X3
* X4

* X5
* …

Figure 2: The Chinese restaurant process. A new person arrives and either sits at a table
with people or sits at a new table. The probability of sitting at a table is proportional to
the number of people at the table.

How to Sample From the Posterior. Now suppose that X1, . . . , Xn ∼ F and that we place a
Dir(α, F0) prior on F .

Theorem 1 Let X1, . . . , Xn ∼ F and let F have prior π = Dir(α, F0). Then the posterior
π for F given X1, . . . , Xn is Dir

(
α + n, F n

)
where

F n =
n

n+ α
Fn +

α

n+ α
F0. (9)

Since the posterior is again a Dirichlet process, we can sample from it as we did the prior
but we replace α with α+ n and we replace F0 with F n. Thus the posterior mean is F n is a
convex combination of the empirical distribution and the prior guess F0. Also, the predictive
distribution for a new observation Xn+1 is given by F n.

To explore the posterior distribution, we could draw many random distribution functions
from the posterior. We could then numerically construct two functions Ln and Un such that

π
(
Ln(x) ≤ F (x) ≤ Un(x) for all x|X1, . . . , Xn

)
= 1− α.

This is a 1− α Bayesian confidence band for F . Keep in mind that this is not a frequentist
confidence band. It does not guarantee that

inf
F

PF (Ln(x) ≤ F (x) ≤ Un(x) for all x) = 1− α.

When n is large, F n ≈ Fn in which case there is little difference between the Bayesian and
frequentist approach. The advantage of the frequentist approach is that it does not require
specifiying α or F0.

Example 2 Figure 3 shows a simple example. The prior is DP(α, F0) with α = 10 and
F0 = N(0, 1). The top left plot shows the discrete probabilty function resulting from a single
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Figure 3: The top left plot shows the discrete probabilty function resulting from a single
draw from the prior which is a DP(α, F0) with α = 10 and F0 = N(0, 1). The top right
plot shows the resulting cdf along with F0. The bottom left plot shows a few draws from
the posterior based on n = 25 observations from a N(5,1) distribution. The blue line is the
posterior mean and the red line is the true F . The posterior is biased because of the prior.
The bottom right plot shows the empirical distribution function (solid black) the true F
(red) the Bayesian postrior mean (blue) and a 95 percnt frequentist confidence band.

draw from the prior. The top right plot shows the resulting cdf along with F0. The bottom
left plot shows a few draws from the posterior based on n = 25 observations from a N(5,1)
distribution. The blue line is the posterior mean and the red line is the true F . The posterior
is biased because of the prior. The bottom right plot shows the empirical distribution function
(solid black) the true F (red) the Bayesian postrior mean (blue) and a 95 percnt frequentist
confidence band.

5 Density Estimation

Let X1, . . . , Xn ∼ F where F has density f and Xi ∈ R. Our goal is to estimate f . The
Dirichlet process is not a useful prior for this problem since it produces discrete distributions
which do not even have densities. Instead, we use a modification of the Dirichlet process.
But first, let us review the frequentist approach.
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The most common frequentist estimator is the kernel estimator

f̂(x) =
1

n

n∑
i=1

1

h
K

(
x−Xi

h

)
where K is a kernel and h is the bandwidth. A related method for estimating a density is
to use a mixture model

f(x) =
k∑
j=1

wjf(x; θj).

For example, of f(x; θ) is Normal then θ = (µ, σ). The kernel estimator can be thought of as
a mixture with n components. In the Bayesian approach we would put a prior on θ1, . . . , θk,
on w1, . . . , wk and a prior on k. We could be more ambitious and use an infinite mixture

f(x) =
∞∑
j=1

wjf(x; θj).

As a prior for the parameters we could take θ1, θ2, . . . to be drawn from some F0 and we could
take w1, w2, . . . , to be drawn from the stick breaking prior. (F0 typically has parameters that
require further priors.) This infinite mixture model is known as the Dirichlet process mixture
model. This infinite mixture is the same as the random distribution F ∼ DP(α, F0) which
had the form F =

∑∞
j=1wjδθj except that the point mass distributions δθj are replaced by

smooth densities f(x|θj).

The model may be re-expressed as:

F ∼ DP(α, F0) (10)

θ1, . . . , θn|F ∼ F (11)

Xi|θi ∼ f(x|θi), i = 1, . . . , n. (12)

(In practice, F0 itself has free parameters which also require priors.) Note that in the DPM,
the parameters θi of the mixture are sampled from a Dirichlet process. The data Xi are not
sampled from a Dirichlet process. Because F is sampled from from a Dirichlet process, it
will be discrete. Hence there will be ties among the θi’s. (Recall our erlier discussion of the
Chinese Restaurant Process.) The k < n distinct values of θi can be thought of as defining
clusters. The beauty of this model is that the discreteness of F automatically creates a
clustering of the θj’s. In other words, we have implicitly created a prior on k, the number of
distinct θj’s.

How to Sample From the Prior. Draw θ1, θ2, . . . , F0 and draw w1, w2, . . . , from the stsick
breaking process. Set f(x) =

∑∞
j=1wjf(x; θj). The density f is a random draw from the

prior. We could repeat this process many times resulting in many randomly drawn densities
from the prior. Plotting these densities could give some intuition about the structure of the
prior.
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Figure 4: Samples from a Dirichlet process mixture model with Gaussian generator, n = 500.

How to Sample From the Prior Marginal. The prior marginal m is

m(x1, x2, . . . , xn) =

∫ n∏
i=1

f(xi|F ) dπ(F ) (13)

=

∫ n∏
i=1

(∫
f(xi|θ) p(θ|F ) dF (θ)

)
dP (G) (14)

If we wnat to draw a sample from m, we first draw F from a Dirichlet process with parameters
α and F0, and then generate θi independently from this realization. Then we sample Xi ∼
f(x|θi).

As before, we can also use the Chinese restaurant representation to draw the θj’s sequentially.
Given θ1, . . . , θi−1 we draw θj from

αF0(·) +
n−1∑
i=1

δθi(·). (15)

Let θ∗j denote the unique values among the θi, with nj denoting the number of elements in
the cluster for parameter θ∗i ; that is, if c1, c2, . . . , cn−1 denote the cluster assignments θi = θ∗ci
then nj = |{i : ci = j}|. Then we can write

θn =

{
θ∗j with probability

nj

n+α−1
θ ∼ F0 with probability α

n+α−1 .
(16)

How to Sample From the Posterior. We sample from the posterior by Gibbs sampling; we
may discuss that later.
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To understand better how to use the model, we consider how to use the DPM for estimating
density using a mixture of Normals. There are numerous implementations. We consider one
due to Ishwaran et al. (2002). The first step (in this particular approach) is to replace the
infinite mixture with a large but finite mixture. Thus we replace the stick-breaking process
with V1, . . . , VN−1 ∼ Beta(1, α) and w1 = V1, w2 = V2(1−V1), . . .. This generates w1, . . . , wN
which sum to 1. Replacing the infinite mixture with the finite mixture is a numerical trick
not an inferential step and has little numerical effect as long as N is large. For example,
they show tha when n = 1, 000 it suffices to use N = 50. A full specification of the resulting
model, including priors on the hyperparameters is:

θ ∼ N(0, A)

α ∼ Gamma(η1, η2)

µ1, . . . , µN ∼ N(θ, B2)
1

σ2
1

, . . . ,
1

σ2
N

∼ Gamma(ν1, ν2)

K1, . . . , Kn ∼
N∑
j=1

wjδj

Xi ∼ N(µi, σ
2
i ) i = 1, . . . , n

The hyperparemeters A,B, γ1, γ2, ν1, ν2 still need to be set. Compare this to kernel density
estimation whihc requires the single bandwidth h. Ishwaran et al use A = 1000, ν1 = ν2 =
η1 = η2 = 2 and they take B to be 4 ties the standard deviation of the data. It is now
possible to wite down a Gibbs sampling algorithm for sampling from the posterior.

6 Nonparametric Regression

Consider the nonparametric regression model

Yi = m(Xi) + εi, i = 1, . . . , n (17)

where E(εi) = 0. The frequentist kernel estimator for m is

m̂(x) =

∑n
i=1 Yi K

(
||x−Xi||

h

)
∑n

i=1K
(
||x−Xi||

h

) (18)

where K is a kernel and h is a bandwidth. The Bayesian version requires a prior π on the
set of regression functions M. A common choice is the Gaussian process prior.

A stochastic process m(x) indexed by x ∈ X ⊂ Rd is a Gaussian process if for each
x1, . . . , xn ∈ X the vector (m(x1),m(x2), . . . ,m(xn)) is Normally distributed:

(m(x1),m(x2), . . . ,m(xn)) ∼ N(µ(x), K(x)) (19)
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where Kij(x) = K(xi, xj) is a Mercer kernel.

Let’s assume that µ = 0. Then for given x1, x2, . . . , xn the density of the Gaussian process
prior of m = (m(x1), . . . ,m(xn)) is

π(m) = (2π)−n/2|K|−1/2 exp

(
−1

2
mTK−1m

)
(20)

Under the change of variables m = Kα, we have that α ∼ N(0, K−1) and thus

π(α) = (2π)−n/2|K|−1/2 exp

(
−1

2
αTKα

)
(21)

Under the additive Gaussian noise model, we observe Yi = m(xi) + εi where εi ∼ N(0, σ2).
Thus, the log-likelihood is

log p(y|m) = − 1

2σ2

∑
i

(yi −m(xi))
2 + const (22)

and the log-posterior is

log p(y|m) + log π(m) = − 1

2σ2
‖y −Kα‖22 −

1

2
αTKα + const (23)

= − 1

2σ2
‖y −Kα‖22 −

1

2
‖α‖2K + const (24)

What functions have high probability according to the Gaussian process prior? The prior
favors αTK−1α being small. Suppose we consider an eigenvector v of K, with eigenvalue λ,
so that Kv = λv. Then we have that

1

λ
= vTK−1v (25)

Thus, eigenfunctions with large eigenvalues are favored by the prior. These correspond to
smooth functions; the eigenfunctions that are very wiggly correspond to small eigenvalues.

In this Bayesian setup, MAP estimation corresponds to Mercer kernel regression, which
regularizes the squared error by the RKHS norm ‖α‖2K . The posterior mean is

E(α|Y ) =
(
K + σ2I

)−1
Y (26)

and thus
m̂ = E(m|Y ) = K

(
K + σ2I

)−1
Y. (27)

We see that m̂ is nothing but a linear smoother and is, in fact, very similar to the frequentist
kernel smoother.

Unlike kernel regression, where we just need to choose a bandwidth h, here we need to choose
the function K(x, y). This is a delicate matter.
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Figure 5: Mean of a Gaussian process

Now, to compute the predictive distribution for a new point Yn+1 = m(xn+1) + εn+1, we note
that (Y1, . . . , Yn) ∼ N(0, (K + σ2I)α). Let k be the vector

k = (K(x1, xn+1), . . . , K(xn, xn+1)) (28)

Then (Y1, . . . , Yn+1) is jointly Gaussian with covariance(
K + σ2I k
kT k(xn+1, xn+1) + σ2

)
(29)

Therefore, conditional distribution of Yn+1 is

Yn+1|Y1:n, x1:n ∼ N
(
kT (K + σ2I)−1Y, k(xn+1, xn+1) + σ2 − kT (K + σ2I)−1k

)
(30)

Note that the above variance differs from the variance estimated using the frequentist
method. However, Bayesian Gaussian process regression and kernel regression often lead
to similar results. The advantages of the kernel regression is that it requires a single param-
eter h that can be chosen by cross-valdiation and its theoretical properties are simple and
well-understood.

7 Theoretical Properties of Nonparametric Bayes

In this section we briefly discuss some theoretical properties of nonparametric Bayesian
methods. We will focus on density estimation. In frequentist nonparametric inference,
procedures are required to have certain guarantees such as consistency and minimaxity.
Similar reasoning can be applied to Bayesian procedures. It is desirable, for example, that
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the posterior distribution πn has mass that is concentrated near the true density function f .
More specifically, we can ask three specific questions:

1. Is the posterior consistent?

2. Does posterior concentrate at the optimal rate?

3. Does posterior have correct coverage?

7.1 Consistency

Let f0 denote the true density. By consistency we mean that, when f0 ∈ A, πn(A) should
converge, in some sense, to 1. According to Doob’s theorem, consistency holds under very
weak conditions.

To state Doob’s theorem we need some notation. The prior π and the model define a joint
distribution µn on sequences Y n = (Y1, . . . , Yn), namely, for any B ∈ Rn,1

µn(Yn ∈ B) =

∫
P(Y n ∈ B|f)dπ(f) =

∫
B

f(y1) · · · f(yn)dπ(f). (31)

In fact, the model and prior determine a joint distribution µ on the set of infinite sequences2

Y∞ = {Y ∞ = (y1, y2, . . . , )}.

Theorem 3 (Doob 1949) For every measurable A,

µ
(

lim
n→∞

πn(A) = I(f0 ∈ A)
)

= 1. (32)

By Doob’s theorem, consistency holds except on a set of probability zero. This sounds good
but it isn’t; consider the following example.

Example 4 Let Y1, . . . , Yn ∼ N(θ, 1). Let the prior π be a point mass at θ = 0. Then the
posterior is point mass at θ = 0. This posterior is inconsistent on the set N = R − {0}.
This set has probability 0 under the prior so this does not contradict Doob’s theorem. But
clearly the posterior is useless.

Doob’s theorem is useless for our purposes because it is solopsistic. The result is with respect
to the Bayesian’s own distribution µ. Instead, we want to say that the posterior is consistent
with respect to P0, the distribution generating the data.

1More precisely, for any Borel set B.
2More precisely, on an appropriate σ-field over the set of infinite sequences.
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To continue, let us define three types of neighborhoods. Let f be a density and let Pf be
the corresponding probability measure. A Kullback-Leibler neighborhood around Pf is

BK(p, ε) =

{
Pg :

∫
f(x) log

(
f(x)

g(x)

)
dx ≤ ε

}
. (33)

A Hellinger neighborhood around Pf is

BH(p, ε) =

{
Pg :

∫
(
√
f(x)−√g(x))2 ≤ ε2

}
. (34)

A weak neighborhood around Pf is

BW (P, ε) =

{
Q : dW (P,Q) ≤ ε

}
(35)

where dW is the Prohorov metric

dW (P,Q) = inf

{
ε > 0 : P (B) ≤ Q(Bε) + ε, for all B

}
(36)

where Bε = {x : infy∈B ‖x − y‖ ≤ ε}. Weak neighborhoods are indeed very weak: if
Pg ∈ BW (Pf , ε) it does not imply that g resembles f .

Theorem 5 (Schwartz 1963) If

π(BK(f0, ε)) > 0, for all ε > 0 (37)

then, for any δ > 0,
πn(BW (P, δ))

a.s.→ 1 (38)

with respect to P0.

This is still unsatisfactory since weak neighborhoods are large. Let N(M, ε) denote the
smallest number of functions f1, . . . , fN such that, for each f ∈ M, there is a fj such that
f(x) ≤ fj(x) for all x and such that supx(fj(x)− f(x)) ≤ ε. Let H(M, ε) = logN(M, ε).

Theorem 6 (Barron, Schervish and Wasserman (1999) and Ghosal, Ghosh and Ramamoorthi (1999))
Suppose that

π(BK(f0, ε)) > 0, for all ε > 0. (39)

Further, suppose there exists M1,M2, . . . such that π(Mc
j) ≤ c1e

−jc2 and H(Mj, δ) ≤ c3j
for all large j. Then, for any δ > 0,

πn(BH(P, δ))
a.s.→ 1 (40)

with respect to P0.

14



Example 7 Recall the Normal means model

Yi = θi +
1√
n
εi, i = 1, 2, . . . (41)

where εi ∼ N(0, σ2). We want to infer θ = (θ1, θ2, . . .). Assume that θ is contained in the
Sobolev space

θ ∈ Θ =

{
θ :

∑
i

θ2i i
2p <∞

}
. (42)

Recall that the estimator θ̂i = biYi is minimax for this Sobolev space where bi is an appropriate
constant. In fact the Efromovich-Pinsker estimator is adaptive minimax over the smoothness
index p. A simple Bayesian analysis is to use the prior π that treats each θi as independent
random variables and θi ∼ N(0, τ 2i ) where τ 2i = i−2q. Have we really defined a prior on Θ?
We need to make sure that π(Θ) = 1. Fix K > 0. Then,

π
(∑

i

θ2i i
2p > K

)
≤
∑

i Eπ(θ2i )i
2p

K
=

∑
i τ

2
i i

2p

K
=

∑
i

1
i2(q−p)

K
. (43)

The numerator is finite as long as q > p + (1/2). Assuming q > p + (1/2) we then see that
π(
∑2

i i
2p > K)→ 0 as K →∞ which shows that π puts all its mass on Θ. But, as we shall

see below, the condition q > p + (1/2) is guaranteed to yield a posterior with a suboptimal
rate of convergence.

7.2 Rates of Convergence

Here the situation is more complicated. Recall the Normal means model

Yi = θi +
1√
n
εi, i = 1, 2, . . . (44)

where εi ∼ N(0, σ2). We want to infer θ = (θ1, θ2, . . .) ∈ Θ from Y = (Y1, Y2, . . . , ). Assume
that θ is contained in the Sobolev space

θ ∈ Θ =

{
θ :

∑
i

θ2i i
2p <∞

}
. (45)

The following results are from Zhao (2000), Shen and Wasserman (2001), and Ghosal, Ghosh
and van der Vaart (2000).

Theorem 8 Put independent Normal priors θi ∼ N(0, τ 2i ) where τ 2i = i−2q. The Bayes
estimator attains the optimal rate only when q = p+ (1/2). But then:

π(Θ) = 0 and π(Θ|Y ) = 0. (46)
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7.3 Coverage

Suppose πn(A) = 1− α. Does this imply that

Pnf0(f0 ∈ A) ≥ 1− α? (47)

or even
lim inf
n→∞

inf
f0

Pnf0(f0 ∈ A) ≥ 1− α? (48)

Recall what happens for parametric models: if A = (−∞, a] and

P(θ ∈ A|data) = 1− α (49)

then

Pθ(θ ∈ A) = 1− α +O

(
1√
n

)
(50)

and, moreover, if we use the Jeffreys’ prior then

Pθ(θ ∈ A) = 1− α +O

(
1

n

)
. (51)

Is the same true for nonparametric models? Unfortunately, no; counterexamples are given
by Cox (1993) and Freedman (1999). In their examples, one has:

πn(A) = 1− α (52)

but
lim inf
n→∞

inf
f0

Pf0(f0 ∈ A) = 0! (53)
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