(1) Let $X_1, \ldots, X_n \sim \text{Unif}(0, 1)$. Compute the bias and variance of the histogram density estimator with binwidth h for this distribution. Show that the optimal value of h is $h = 1$.

(2) Let $X_1, \ldots, X_n \sim P$ where p has a density p on \mathbb{R}. Assume that $p(x) > 0$ for each $x \in \mathbb{R}$. Given $c_1, \ldots, c_k \in \mathbb{R}$, the population k-means risk is

$$R(k) = \inf_{c_1, \ldots, c_k} \mathbb{E}\left(\min_{j=1, \ldots, k} |X - c_j|^2 \right).$$

Show that $R(k)$ is strictly decreasing in k.

(3) Let $(X_1, Y_1), \ldots, (X_n, Y_n)$ be iid. Suppose that $X_1, \ldots, X_n \sim P$ has a density p on $[0, 1]$ where $0 < c \leq p(x) \leq C < \infty$ for all $x \in [0, 1]$. Assume that the density p is known. Assume that $Y_i = m(X_i) + \epsilon_i$ where $\epsilon_1, \ldots, \epsilon_n$ are iid with mean 0 and variance σ^2. Assume that m, m', m'', m''', p, p', p'', p''' are bounded and continuous functions. Let $x \in (0, 1)$ and define

$$\hat{m}(x) = \frac{1}{n} \sum_{i=1}^n Y_i \frac{1}{n} K\left(\frac{x-X_i}{h} \right)$$

where K is a smooth, symmetric, kernel with bounded support. Show that

$$\mathbb{E}[\hat{m}(x)] = m(x) + Ch^2 + O(h^3).$$

(4) Let $(X_1, Y_1), \ldots, (X_n, Y_n)$ be iid. Suppose that $Y_i \in \{0, 1\}$ and $X_i \in [0, 1]$. Let $\theta = P(Y_i = 1)$. Assume that $0 < \theta < 1$. Suppose that

$$X_i | Y_i = 1 \sim p_1$$

and

$$X_i | Y_i = 0 \sim p_0$$

where p_0 and p_1 are densities on $[0, 1]$. Assume that, for some constants, c and C,

$$0 < c \leq p_j(x) \leq C < \infty$$

for all $x \in [0, 1]$ and $j = 0, 1$.

Let \hat{p}_0 be an estimate of p_0 and let \hat{p}_1 be an estimate of p_1. Define

$$\hat{h}(x) = \begin{cases} 1 & \text{if } \hat{m}(x) \geq 1/2 \\ 0 & \text{if } \hat{m}(x) < 1/2 \end{cases}$$
where
\[\hat{m}(x) = \frac{\hat{\theta} \hat{p}_1(x)}{\hat{\theta} \hat{p}_1(x) + (1 - \hat{\theta}) \hat{p}_0(x)}, \]
\[\hat{\theta} = n^{-1} \sum_{i=1}^{n} Y_i, \]

Suppose that
\[\sup_x |\hat{p}_0(x) - p_0(x)| \xrightarrow{P} 0, \quad \text{and} \quad \sup_x |\hat{p}_1(x) - p_1(x)| \xrightarrow{P} 0. \]

Show that
\[\mathbb{P}(Y \neq \hat{h}(X)) - \mathbb{P}(Y \neq h_*(X)) \xrightarrow{P} 0 \]
as \(n \to \infty \), where \(h_* \) is the Bayes classifier, and \(\mathbb{P} \) is probability with respect to \(X \) and \(Y \), but not with respect to \(\hat{h} \).

(5) Let \(p \) be a bounded continuous density defined on a bounded subset \(S \subset \mathbb{R} \). Assume further that \(p \) has bounded, continuous first and second derivatives. Let \(Y_1, \ldots, Y_n \sim p \) and let
\[\hat{p}_h(y) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{h} K \left(\frac{y - Y_i}{h} \right). \]

Let \(p_h(x) = \mathbb{E}[\hat{p}_h(x)] \).

(a) Show that, for any \(t > 0 \), \(\mathbb{P}(|\hat{p}_h(x) - p_h(x)| > t) \to 0 \) as long as \(nh \to \infty \).

(b) Let \(C_h = \{ x : p_h(x) > \lambda \} \) and let \(\hat{C}_h = \{ x : \hat{p}_h(x) > \lambda \} \). Show that \(\hat{C}_h \) is a consistent estimator of \(C_h \) in the following sense: (i) if \(p_h(x) > \lambda \) then \(\mathbb{P}(x \in \hat{C}_h) \to 1 \) and (ii) if \(p_h(x) < \lambda \) then \(\mathbb{P}(x \notin \hat{C}_h) \to 1 \).

(6) Let \(Y_i = \beta^T X_i + \epsilon_i \) where \(Y_i \in \mathbb{R}, X_i \in \mathbb{R}^d \) and \(\epsilon_i \sim N(0, \sigma^2) \). Recall that the ridge estimator is
\[\hat{\beta} = (X^T X + \lambda I)^{-1} X^T Y, \]
where \(X \in \mathbb{R}^{n \times d} \), \(Y = (Y_1, \ldots, Y_n) \) and \(\lambda \geq 0 \). Find \(\mathbb{E}[\hat{\beta}|X_1, \ldots, X_n] \) and \(\text{Var}[\hat{\beta}|X_1, \ldots, X_n] \). Show that \(\text{Var}[\hat{\beta}|X_1, \ldots, X_n] \to 0 \) as \(\lambda \to \infty \). Show that the bias tends to 0 as \(\lambda \to 0 \) if \(d < n \).

(7) Let \((X, Y) \sim P \), and consider predicting the value of \(Y \) from \(X \). That is, consider choosing a function \(f \) to minimize
\[\mathbb{E}[(Y - f(X))^2]. \]

Show that the function minimizing this is given by
\[f(x) = \frac{\int y \cdot p_{X,Y}(x, y) dy}{p_X(x)}, \]
where \(p_{X,Y} \) is the joint density of \((X, Y) \), and \(p_X \) is the density of \(X \).