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1 Stein’s lemma

• In a landmark paper, Stein (1981) derived a beautiful and simple lemma about the standard
normal distribution. Indeed, Stein knew of this result much earlier and wrote about it in
previous papers, but in Stein (1981), the author developed a multivariate extension of this
lemma that led to a remarkable result on unbiased risk estimation. (And, an interesting note:
the paper Stein (1981) itself was actually written in 1974, and rumor has it Stein wasn’t
planning on publishing it, until a colleague convinced him to do so in 1981...)

• We’ll walk through Stein’s univariate and multivariate lemmas on the normal distribution.
Following this, we’ll discuss how they apply to unbiased risk estimation. We note that the
univariate lemma has a converse, and this has become extremely important in its own right,
studied and further developed in probability theory for proving convergence to normality. Stein
didn’t write a lot of papers, but he was a pretty influential guy!

1.1 Univariate lemma

• First, the univariate result. Let Z ∼ N(0, 1). Let f : R → R be absolutely continuous, with
derivative f ′ (and assume that E|f ′(Z)| <∞). Then

E[Zf(Z)] = E[f ′(Z)].

Proof: the easiest way is to use integration by parts. In fact, this way, the proof is really just
one line. Starting from the right-hand side above, with φ denoting the normal density,∫ ∞

−∞
f ′(z)φ(z) dz = f(z)φ(z)

∣∣∣∞
−∞
−
∫ ∞
−∞

f(z)φ′(z) dz.

The first term on the right vanishes, and the proof follows noting that φ′(z) = −zφ(z)

Stein proves this result in an alternate way, that makes the upcoming multivariate proof more
straightforward. Here is his argument:∫ ∞

−∞
f ′(z)φ(z) dz =

∫ ∞
0

f ′(z)

{∫ ∞
z

tφ(t) dt

}
dz −

∫ 0

−∞
f ′(z)

{∫ z

−∞
tφ(t) dt

}
dz

=

∫ ∞
0

tφ(t)

{∫ t

0

f ′(z) dz

}
dt−

∫ 0

−∞
tφ(t)

{∫ 0

t

f ′(z) dz

}
dt

=

∫ ∞
0

tφ(t)
[
f(t)− f(0)

]
dt−

∫ 0

−∞
tφ(t)

[
f(0)− f(t)

]
dt

=

∫ ∞
−∞

tφ(t)f(t) dt.

The first equality follows from φ′(t) = −tφ(t), and the second is by Fubini’s theorem
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• We can extend this result to cover a normal variate with arbitrary mean and variance, X ∼
N(µ, σ2). In this case, we claim that

1

σ2
E[(X − µ)f(X)] = E[f ′(X)].

The proof follows by defining Z = (X−µ)/σ ∼ N(0, 1), and f̃ = f(σz + µ), and then applying
the previous result to Z and f̃

• Before we move on to the multivariate case and unbiased risk estimation, we can already see
how remarkable this last result is. Suppose that X ∼ N(µ, 1), where µ is unknown, and we
had a (potentially) complicated function f , delivering an estimate of µ. Suppose further that
we wanted to estimate Cov(X, f(X)) = E[(X − µ)f(X)]. To get an unbiased estimate of this
covariance, from the definition, we’d have to either know µ, which recall is unknown, or we’d
have to know E[f(X)], which again, will generically depend on the unknown µ (not to mention
that it may be potentially intractable). On the other hand, Stein’s lemma gives us the simple
unbiased estimate: f ′(X)! This is free from µ, and in many cases it is possible to calculate:
just take the derivative of our estimator and evaluate it at the data

1.2 Multivariate lemma

• Now, let X ∼ N(µ, σ2I), an n-dimensional normal variate, with mean µ ∈ Rn and spherical
covariance matrix σ2I ∈ Rn×n. Let f : Rn → R be a function such that, for each i = 1, . . . n
and almost every x−i ∈ Rn−1, the function

f(·, x−i) : R→ R

is absolutely continuous. (Here we write x = (xi, x−i) to decompose a point x ∈ Rn in terms of
its ith component xi, and all other components x−i. Hence f(·, x−i) refers to f as a function
of its ith argument, with all other arguments fixed at x−i.) Stein calls such a function f almost
differentiable

• Note that an almost differentiable function f has partial derivatives almost everywhere; we
will denote the collection of these by ∇f = (∂f/∂x1, . . . ∂f/∂xn)

• Stein’s multivariate result: with such an X, and almost differentiable f (satisfying ‖f(X)‖2 <
∞), we have

1

σ2
E[(X − µ)f(X)] = E[∇f(X)].

Proof: we will assume that X ∼ N(0, I), and then a standardization argument, as before, will
give the result for an arbitrary mean and marginal variance. Fix some i, and X−i; then the
function f(·, X−i) is univariate and we can apply Stein’s univariate lemma. Hence, using the
independence of Xi and X−i,∫ ∞

−∞

∂f

∂xi
(z,X−i)φ(z) dz

=

∫ ∞
0

∂f

∂xi
(z,X−i)

{∫ ∞
z

tφ(t) dt

}
dz −

∫ 0

−∞

∂f

∂xi
(z,X−i)

{∫ z

−∞
tφ(t) dt

}
dz

=

∫ ∞
0

tφ(t)

{∫ t

0

∂f

∂xi
(z,X−i) dz

}
dt−

∫ 0

−∞
tφ(t)

{∫ 0

t

∂f

∂xi
(z,X−i) dz

}
dt

=

∫ ∞
0

tφ(t)
[
f(t,X−i)− f(0, X−i)

]
dt−

∫ 0

−∞
tφ(t)

[
f(0, X−i)− f(t,X−i)

]
dt

=

∫ ∞
−∞

tφ(t)f(t,X−i) dt.
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In other words, we have shown that

E
[
∂f

∂xi
(X)

∣∣∣X−i] = E
[
Xif(Xi, X−i)|X−i

]
.

Taking an expectation over X−i gives the result

• A final remark about the case X ∼ N(µ, σ2I), and a function f : Rn → Rn; note now this
function returns outputs in Rn. Write f = (f1, . . . fn) for the coordinate functions. We will
say that f is almost differentiable provided that each one of its coordinate functions is. Then,
by the last result, for each i = 1, . . . n,

1

σ2
E[(X − µ)fi(X)] = E[∇fi(X)].

Taking the ith equality in the above, and then summing over all i = 1, . . . n gives

1

σ2

n∑
i=1

Cov
(
Xi, fi(X)

)
=

1

σ2

n∑
i=1

E[(Xi − µi)fi(X)] = E
[ n∑
i=1

∂fi
∂xi

(X)

]
.

This should be starting to look familiar ...

2 Stein’s unbiased risk estimate

• Given samples y ∼ N(µ, σ2I), and a function µ̂ : Rn → Rn. You can think about µ̂ as a fitting
procedure that, from y, provides an estimate µ̂(y) of the underlying (unknown) mean µ. For
simplicity in what follows, we will use µ̂ both to refer to this estimate, and to the function
itself

• Stein’s unbiased risk estimate starts by expanding

E‖µ− µ̂‖22 = E‖µ− y + y − µ̂‖22
= nσ2 + E‖y − µ̂‖22 + 2E(µ− y)T

(
y − µ̂

)
= −nσ2 + E‖y − µ̂‖22 + 2

n∑
i=1

Cov(yi, µ̂i)

We have already seen this decomposition, just expressed a little differently. It says that the
risk R = E‖µ− µ̂‖22 of µ̂ satisfies

R = −nσ2 + E‖y − µ̂‖22 + 2σ2df(µ̂),

where E‖y − µ̂‖22 is the expected training error of µ̂, and recall that its degrees of freedom is
defined as

df(µ̂) =
1

σ2

n∑
i=1

Cov(yi, µ̂i)

• Stein’s lemma, as we discussed in the last section, provides an explicit estimate of the degrees
of freedom term df(µ̂), and therefore the risk R. In particular, we know that if µ̂ is almost
differentiable as a function of y, then

R̂ = −nσ2 + ‖y − µ̂‖22 + 2σ2
n∑
i=1

∂µ̂i
∂yi

(y)

is an unbiased estimate for R, i.e., E(R̂) = R. The above estimate R̂ is what we call Stein’s
unbiased risk estimate, or SURE
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• This can be an extremely useful tool. Aside from plainly estimating the risk of an estimator,
we could also use it for model selection purposes: if our estimator depended on a tuning
parameter λ ∈ Λ, denoted µ̂λ, then we could choose this parameter to minimize SURE:

λ̂ = argmin
λ∈Λ

‖y − µ̂λ‖22 + 2σ2
n∑
i=1

∂µ̂λ,i
∂yi

(y)

• Of course, in order for this to be useful, we need to figure out how to compute
∑n
i=1 ∂µ̂i/∂yi

for the estimator µ̂ of interest (and, determine that µ̂ is almost differentiable so that Stein’s
lemma is applicable in the first place). This quantity is called the divergence of µ̂

• Furthermore, if we’re minimizing SURE to choose a tuning parameter λ ∈ Λ, then we need
some kind of concentration argument to show that the resulting parameter λ̂ has good risk
properties

• There is a considerable amount of classic literature that studies the minimization of a SURE-
like risk estimate, for relatively simple procedures (such as linear smoothers) where divergence
(or even exact degrees of freedom) is easily computable. Examples are: Li (1985), Li (1986),
Li (1987), Johnstone (1986), Kneip (1994), Donoho & Johnstone (1995)

• Nowadays, with the more fancy estimators being of interest, it seems to be the trend to simply
write papers about computing divergences. To give some examples: Efron et al. (2004), Zou
et al. (2007), Tibshirani & Taylor (2011), Tibshirani & Taylor (2012) show how to compute
divergences for lasso and generalized lasso estimators; Meyer & Woodroofe (2000) show how
to compute divergences for convex-constrained regression estimators; Mukherjee et al. (2012)
show how to compute divergences for reduced rank regression; Candes et al. (2012), Deledalle
et al. (2012) show how to compute divergences for singular value thresholding ... An exception
is a recent paper by Xie et al. (2012), who not only compute divergences, but also show a kind
of uniform consistency property, for SURE in a hierarchical model

• In the last two sections here, we will walk through how to compute the divergence of the
lasso estimator, and then we will show how concentration arguments can be used provide risk
bounds for a special case: SURE-tuned thresholding estimates. In the next section, we show
how Stein’s unbiased risk estimate can be used to prove a very surprising but fundamental
result about shrinkage and inadmissibility

3 Stein’s paradox

• Let X1, . . . Xd be independent normal variates with unit variance, and means µ1, . . . µd, re-
spectively. Written differently, let X ∼ N(µ, I), where X = (X1, . . . Xd). Let µ̂ = µ̂(X) be
an estimator of µ. Recall that we say that another estimator µ̃ = µ̃(X) strictly dominates µ̂
(with respect to squared loss) if

E|µ− µ̃‖22 ≤ E|µ− µ̂‖22 for all θ, and

E|µ− µ̃‖22 < E|µ− µ̂‖22 for some θ.

In this case, we say that θ̂ is inadmissible. If no such other estimator µ̃ exists, we say that θ̂
is admissible

• In our setup, the most natural estimator of µ is µ̂0(X) = X. After all, this is the maximum
likelihood estimator, and the unbiased estimator with the minimum variance. You may think
that it would also be admissible. In fact, some folks proved this for the special case d = 1 in
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the 1950’s. Stein (1956) showed that the same was true for d = 2. But in this paper, Stein
shocked the statistics community when he showed that the identity estimator µ̂0 was actually
inadmissible when d ≥ 3! This is known as Stein’s paradox

• James & Stein (1961) provided an explicit estimator µ̂JS that strictly dominates µ̂0, which is
by now famous and known as the James-Stein shrinkage estimator. It is defined as

µ̂JS =

(
1− d− 2

‖X‖22

)
X.

This can be viewed as taking the natural estimator µ̂0(X) = X, and shrinking its components
toward 0

• Note that, for each component i, the James-Stein estimator pools together the information
in all of X1, . . . Xd to form the estimate µ̂JS

i of the underlying mean µi. This is a surprising
realization, because X1, . . . Xd were independent. To give an example, suppose that we were
estimating: the mean number of Justin Bieber records sold in the Bahamas, the mean profit
Trader Joe’s makes from its almond butter, and the mean number of deep learning papers
appearing on arXiv each month. Why should our estimate for the number of Bieber albums
sold have anything to do with how much Trader Joe’s charges for its almond butter, or how
many deep learning papers are written?

• Counterintuitive as it may seem, at its heart the James-Stein estimator is a shrinkage device
to reduce variance at the expense of introducing a little bias. What is remarkable, though, is
that this tradeoff is so elegantly navigated that in the end the James-Stein estimator strictly
dominates the identity estimator

• There is an empirical Bayes interpretation of the James-Stein estimator, where we place a
prior µ ∼ N(0, τ2I) on the underlying mean, and estimate τ from the observed data X. Some
people say that this perspective is misleading, since the prior encodes some similarity in the
mean components (they share the same marginal variance) but the original paradox holds in
a frequentist setting where the means are fixed and completely unrelated

• Variants of the usual James-Stein estimator: we do not need to shrink towards zero; we can
actually shrink towards any fixed µ0 ∈ Rd, as in µ0 + (1− (d− 2)/‖X − µ0‖22) · (X − µ0), and
this would still strictly dominate the identity estimator. Moreover, we can shrink towards the
sample mean X̄ = 1

d

∑d
i=1Xi, and still strictly dominate the identity estimator, but here we

would replace d − 2 by d − 3, and would hence require d ≥ 4. Finally, we can just take the
positive part of the shrinkage factor (1 − (d − 2)/‖X‖2)+, i.e., truncate it at zero if it were
to go negative, and this positive-part James-Stein estimator actually strictly dominates the
James-Stein estimator (but is still inadmissible itself!)

• We will not go into many more details about the James-Stein estimator and Stein’s paradox,
but it is a fascinating topic and there is much supporting and related literature. A classic,
nontechnical reference is Efron & Morris (1977); another friendly reference is Samworth (2012)

• But, we will prove that the James-Stein estimator strictly dominates the natural estimator.
How? With SURE! First note that the risk of the identity estimator is

E‖µ̂0 − µ‖22 = E‖X − µ‖22 = d.

Now let’s form Stein’s unbiased risk estimate for µ̂JS:

R̂ = −d+

∥∥∥∥(1− d− 2

‖X‖22

)
X −X

∥∥∥∥2

2

+ 2 ·
d∑
i=1

∂µ̂JS
i

∂Xi
.
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The middle term, i.e., the expected training error, is∥∥∥∥ d− 2

‖X‖22
X

∥∥∥∥2

2

=
(d− 2)2

‖X‖22
.

For the last term, i.e., the divergence term, we compute

∂µ̂JS
i

∂Xi
= 1− d− 2

‖X‖22
+
d− 2

‖X‖42
2Xi ·Xi,

and therefore
d∑
i=1

∂µ̂JS
i

∂Xi
= d− d(d− 2)

‖X‖22
+

2(d− 2)

‖X‖22
= d− (d− 2)2

‖X‖22
.

Adding these together, we get

R̂ = −d+
(d− 2)2

‖X‖22
+ 2d− 2

(d− 2)2

‖X‖22
= d− (d− 2)2

‖X‖22
,

and finally, the risk of the James-Stein estimate is

E(R̂) = d− (d− 2)2 · E
(

1

‖X‖22

)
< d

4 Lasso degrees of freedom

• In this section we show how to use Stein’s lemma to compute the divergence, i.e., the degrees
of freedom, of the lasso estimator. Given y ∈ Rn, X ∈ Rn×p, an outcome vector and predictor
matrix, the lasso problem is

min
β∈Rp

1

2
‖y −Xβ‖22 + λ‖β‖1,

where λ ≥ 0 is a tuning parameter. We will assume that X has columns in general position,
which recall, implies that the lasso solution β̂ is unique

• We will assume that y ∼ N(µ, σ2I), and consider the lasso fit µ̂ = Xβ̂ as an estimate of the
underlying mean µ. We will verify that Xβ̂ is almost differentiable as a function of y, and
then use Stein’s lemma to compute its divergence. This yields an unbiased estimate for the
degrees of freedom of the lasso fit, and hence its risk. Some mathematical details are skipped
in what follows; see Tibshirani & Taylor (2012)

4.1 The lasso dual to the rescue

• The first thing we must do is to check that the lasso fit Xβ̂, is almost differentiable. This is
actually nonobvious and nontrivial

• E.g., is the lasso fit even continuous in y? Recall that we write A = supp(β̂) for the active
set of the lasso solution, and correspondingly, the fit is Xβ̂ = XAβ̂A (where XA indexes the
columns of X in A, and β̂A the components of β̂ in A). As we change y, the active set A
can change, and so you might think that the lasso fit can jump discontinuously at this point.
Certainly this would happen with best subset selection: if we change y, and the active set A
changes, then the best subset selection fit—which is just given by least squares regression on
XA—would change discontinuously. With the lasso, we can express the fit as

Xβ̂ = XA(XT
AXA)−1(XT

Ay − λsA),
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where sA = sign(β̂A) are the signs of active lasso coefficients. This is a sum of two terms; the
first term XA(XT

AXA)−1XT
Ay is exactly the least squares fit of y on XA, and the second term

λXA(XT
AXA)−1sA is a shrinkage term, a result of using an `1 penalty. Now, if this shrinkage

term happened to be defined “just right”, then as we change y and change the active set A,
perhaps the coefficients of variables to leave the active set would gracefully and continously
drop to zero, and coefficients of variables to enter the active set would continuously move form
zero. This would make whole the lasso fit Xβ̂ = XAβ̂A continuous

• Fortuitously, this is indeed the case, and so the lasso fit is continuous at every y. It might
seem a daunting task to prove this, but the lasso dual provides a very simple proof. The
dual perspective even proves that the lasso fit is Lipschitz continuous, which makes it almost
differentiable according to Stein’s notion, taking care of the regularity conditions we need for
Stein’s lemma

• Recall that the lasso dual is

min
u∈Rn

‖y − u‖22 subject to ‖XTu‖∞ ≤ λ,

and the relationship between the dual û and primal β̂ solutions is

Xβ̂ = y − û.

Note that the dual solution û is nothing more than the projection of y onto the convex poly-
hedron C = {u : ‖XTu‖∞ ≤ λ}, which we will denote by û = PC(y). Therefore, the lasso fit
is simply

Xβ̂ = (I − PC)(y),

the residual from projecting y onto C. A picture to show this (just look at the left panel for
now) is given in Figure 1

• The projection onto any convex set is a nonexpansive mapping. In other words, ‖PC(y) −
PC(y′)‖2 ≤ ‖y − y′‖2 for any y, y′. This should be visually clear from the picture. Actually,
the same is true with the residual map: I − PC is also nonexpansive, and hence the lasso fit
is a Lipschitz continuous function (with Lipschitz constant 1). This implies that it meets our
requirement of almost differentiability (a result sometimes called Rademacher’s theorem)

4.2 More from the polyhedral perspective

• Viewing the lasso fit as the residual from projection onto a convex polyhedron, as developed
in above, is actually an even more fruitful perspective. Write this polyhedron as

C = (XT )−1{v : ‖v‖∞ ≤ λ},

where (XT )−1 denotes the preimage operator under the linear map XT . The set {v : ‖v‖∞ ≤
λ} is a hypercube in a Rp. Each face of this cube is determined by a subset A ⊆ {1, . . . p}
of dimensions (that achieve the maximum value |λ|) and signs sA ∈ {−1, 1}|A| (that tell
which side of the cube the face will lie on, for each dimension). Faces of C are just faces of
{v : ‖v‖∞ ≤ λ} run through the inverse image transformation, and so this means that each
face of C is also indexed by a set A ⊆ {1, . . . p} and signs sA ∈ {−1, 1}|A|. The picture above
attempts to convey this relationship with the colored black face in each of the panels

• Now imagine projecting y onto C; it will land on some face. We have just argued that this
face corresponds to a set A and signs sA. One can show that this set A is exactly the active
set of the lasso solution at y, and sA are exactly the active signs
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y

C = {u : ‖XTu‖∞ ≤ λ}

Xβ̂

0
0

û

{v : ‖v‖∞ ≤ λ}

A, sA

(XT )−1

Rn Rp

1

Figure 1: An illustration of the primal-dual relationship for the lasso problem.

• Looking at the picture: we can that see that as we wiggle y around, it will project to the same
face. From the correspondence between faces and active set and signs of lasso solutions, this
means that A, sA do not change as we perturb y, i.e., they are locally constant

• But this isn’t true for all points y, e.g., if y lies on one of the rays emanating from the lower
right corner of the polyhedron in the picture, then we can see that small perturbations of y do
actually change the face that it projects to, which invariably changes the active set and signs
of the lasso solution. However, this is somewhat of an exceptional case, in that such points
can be shown to form a set of Lebesgue measure zero, and therefore we can assure ourselves
that the active set and signs A, sA are locally constant almost everywhere in y

• Finally, let’s re-examine the lasso fit

Xβ̂ = XA(XT
AXA)−1(XT

Ay − λsA).

We have reasoned that for almost every y, the pair A, sA is locally constant, and therefore the
divergence of the lasso fit is simply given by

n∑
i=1

∂(Xβ̂)i
∂yi

= tr
(
XA(XT

AXA)−1XT
A

)
= |A|,

almost everywhere. Stein’s lemma tells us that this means that lasso degrees of freedom is

df(Xβ̂) =
1

σ2

n∑
i=1

Cov
(
yi, (Xβ̂)i

)
= E|A|.

Accordingly, an unbiased estimate for its risk is

R̂ = −nσ2 + ‖y −Xβ̂‖22 + 2σ2|A|

8



4.3 Wait, what? That seems wrong

• To repeat the conclusion of the last subsection, in words, the degrees of freedom of the lasso
fit is the number of selected variables, in expectation. This seems like it can’t be true, as the
lasso uses the data to choose which variables to put in the model, and, least squares regression
on a fixed subset of variables already has degrees of freedom equal to the number of variables.
So how can the degrees of freedom of the lasso fit be equal to the (average) number of selected
variables, and not more?

• The key realization is that the lasso shrinks the coefficients of the selected variables towards
zero, instead of perfoming a full least squares fit. We have seen this already in the expression
for the lasso fitted values. Remarkably, the “surplus” from adaptively building the model is
exactly accounted for by the “deficit” from shrinking the coefficients, so that altogether (in
expectation), the degrees of freedom is simply the number of variables in the model

• Mathematically, it was the shrinkage that was responsible for the continuity, and ultimately,
the almost differentiability of the lasso fit, which is what we needed in order to apply Stein’s
lemma

• What about variable selection procedures that do not employ shrinkage, such as best subset
selection? Intuitively, it seems like their degrees of freedom should be much larger than the
(expected) number of selected variables. But studying this rigorously is a bit difficult because
Stein’s lemma does not generically apply here; these estimators are typically discontinuous in
y. For a modest (and not completely useable) extension of Stein’s lemma, in an attempt to
study such estimators, see Tibshirani (2014)

5 Risk of SURE-tuned thresholding

5.1 Uniform deviation bound for SURE

• Let’s consider a special case of the lasso problem, when X = I:

min
β

1

2
‖y − β‖22 + λ‖β‖1

In this case, as we’ve seen before, the lasso fit is explicitly given by soft-thresholding at the
level λ, i.e.,

β̂λ,i = Sλ(yi) =


yi − λ if yi > λ

0 if yi ∈ [−λ, λ]

yi + λ if yi < λ

, i = 1, . . . n.

• We follow Donoho & Johnstone (1995). Assuming that σ2 = 1 for simplicity, note that SURE
becomes

R̂(λ) = −n+ ‖y − β̂λ‖22 + 2|Aλ|
= n+ ‖y − β̂λ‖22 − 2(n− |Aλ|)

= n+

n∑
i=1

(
min{y2

i , λ
2} − 2 · 1{y2

i ≤ λ2}
)

It will be useful to instead consider a different scaling,

Û(λ) =
R̂(λ)

n
=

1

n

n∑
i=1

(
1 + min{y2

i , λ
2} − 2 · 1{y2

i ≤ λ2}
)
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• Now with r(λ) = R(λ)/n = E‖µ− β̂λ‖22/n denoting the scaled true risk, inspect

Û(λ)− r(λ) =
1

n

n∑
i=1

(
1 + min{y2

i , λ
2} − 2 · 1{y2

i ≤ λ2}
)
− 1

n

n∑
i=1

E(µi − β̂λ,i)2

=
1

n

n∑
i=1

Wi(λ)

where the summands Wi(λ), i = 1, . . . n are independent and have mean zero. This comes
from the fact that the estimation problem here competely decomposes over i = 1, . . . n, and
the unbiased property of SURE

• We will prove below that, uniformly over all µ ∈ Rn,

max
λ∈[0,λ0]

∣∣Û(λ)− r(λ)
∣∣ = OP

( log3/2 n

n1/2

)
,

where λ0 =
√

2 log n. Therefore if SURE happens to pick λ̂ ∈ [0, λ0], then we can be pretty
confident (sure! no pun intended) of the risk r(λ̂) at the selected threshold level

• Interestingly, the SURE rule actually does pretty poorly in the very sparse regime, when the
selected value λ̂ should be close to λ0. Donoho & Johnstone (1995) hence propose a hybrid rule,
which essentially tests for this very sparse regime: it uses a global threshold λ0 =

√
2 log n if

this passes, else it lets SURE select the threshold λ̂. The resulting procedure, called SureShrink,
is used to threshold wavelet coefficients, and this has a provable minimax optimal error rate,
with a completely data adaptive threshold

5.2 Proof of uniform deviation bound

• Now we prove the uniform deviation result. Observe the simple bounds∣∣1 + min{y2
i , λ

2} − 2 · 1{y2
i ≤ λ2}

∣∣ ≤ 1 + λ2

and

E(µi − β̂λ,i)2 = E
(
µi − Sλ(yi)

)2
= E

(
µi − yi + yi − Sλ(yi)

)2
≤ 2E(µi − yi)2 + 2E

(
yi − Sλ(yi)

)2
= 2 + 2E

(
y2
i · 1{y2

i ≤ λ2}+ λ2 · 1{y2
i > λ2}

)
≤ 2(1 + λ2)

Therefore

|Wi(λ)| =
∣∣1 + min{y2

i , λ
2} − 2 · 1{y2

i ≤ λ2} − E(µi − β̂λ,i)2
∣∣ ≤ 3(1 + λ2),

holding for each i = 1, . . . n

• A sum of mean zero, bounded random variables ... so let’s apply Hoeffding’s inequality to the
quantity Û(λ)− r(λ) =

∑n
i=1Wi(λ)/n, giving

P
(∣∣Û(λ)− r(λ)

∣∣ > ε√
n

)
≤ 2 exp

(
− 2ε2

9(1 + λ2)2

)
where ε > 1 is arbitrary, for now
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• For distinct λ < λ′, we let N(λ, λ′) = #{i : λ2 < y2
i ≤ λ′2}, and bound∣∣Û(λ)− Û(λ′)

∣∣ =

∣∣∣∣∣ 1n
n∑
i=1

(
2 · 1{λ2 < y2

i ≤ λ′2}+ min{y2
i , λ

2} −min{y2
i , λ
′2}
)∣∣∣∣∣

≤ 2

n
N(λ, λ′) + λ′2 − λ2.

Furthermore, a tedious but not particularly interesting calculation involving integrals shows
that | ddλr(λ)| ≤ 5λ. Therefore, restricting our attention to λ, λ′ ∈ [0, λ0], with δ = λ′ − λ > 0,
we have ∣∣Û(λ)− r(λ)

∣∣ ≤ 2

n
N(λ, λ′) + (λ′ − λ)(λ′ + λ) + 5λ0(λ′ − λ)

≤ 2

n
N(λ, λ′) + 7δλ0

• Set λj = jδ, across j = 1, 2, 3, . . . such that λj ∈ [0, λ0]. Then

A =
{

max
λ∈[0,λ0]

∣∣Û(λ)− r(λ)
∣∣ ≥ 3ε√

n

}
⊆ D ∪ E,

where
D =

{
max
j

∣∣Û(λ)− r(λ)
∣∣ ≥ ε√

n

}
and

E =
{

max
j

max
|λ−λj |≤δ

∣∣Û(λ)− r(λ)
∣∣ ≥ 2ε√

n

}
• Choosing δ so that δλ0 = o(1/

√
n), we see that, for large enough n,

E ⊆ E′ =
{

max
j

2

n
N(λj , λj + δ) ≥ ε√

n

}
.

Bound EN(λj , λj + δ) = O(δn), so that

E′ ⊆ E′′ =
{

max
j

1

n

(
N(λj , λj + δ)− EN(λj , λj + δ)

)
≥ ε

3
√
n

}
where we again used the fact that δ = o(1/

√
n)

• Another application of Hoeffding’s inequality gives us

P
( 1

n

∣∣∣N(λj , λj + δ)− EN(λj , λj + δ)
∣∣∣ ≥ ε

3
√
n

)
≤ 2 exp(−2ε2/9)

• Finally, using the cardinality of the set {j : tj = jδ ∈ [0, λ0]} and our two Hoeffding bounds,

P (A) ≤ P (D) + P (E′′)

≤ 2λ0

δ

(
exp

(
− 2ε2

9(1 + λ2
0)2

)
+ exp(−2ε2/9)

)
Choose ε = s

√
9/2 · log n(1 + λ2

0). Then

P (A) ≤ 4λ0

δ
n−s

2

• Rephrased, this says that

P
(

max
λ∈[0,λ0]

√
2n

log n(1 + log2 n)

∣∣Û(λ)− r(λ)
∣∣ ≥ s) ≤ 4λ0

δ
n−s

2

proving the desired result, taking, e.g., δ = n−1/4
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