Homework 2 Statistical Machine Learning 10/36-702 Due Friday Feb 10

1. Verify the subdifferentials given in the Convexity chapter, equations (1.128), (1.129) and (1.131).

Hint for 1.128: By Hölder's inequality, for any $1 < q < \infty$, any $u \in B^{q'}(1)$, and any $z \in \mathbb{R}^p$,

$$||z||_q \ge u^T z$$

where 1/q + 1/q' = 1 (why?). But, for any $u \notin B^{q'}(1)$, there exists $z \in \mathbb{R}^p$ such that $||z||_q < u^T z$ (consider, for example, $z_i = \operatorname{sign}(u_i)|u_i|^{q'/q}$). *Hint for 1.131:* $||z||_{\infty} ||u||_1 \ge u^T z$ for all u, z (why?).

- 2. Consider Example 1.132 in the Optimization chapter. The KKT conditions are given on page 20. Derive these KKT conditions. (Note: there may be a factor of 1/n missing in 1.139).
- 3. Let $Z_i \sim N(\mu_i, 1)$ for i = 1, ..., N. Suppose we divide the N observations into G groups:

$$G_{1} = \{\mu_{1}, \dots, \mu_{n_{1}}\}$$

$$G_{2} = \{\mu_{n_{1}+1}, \dots, \mu_{n_{2}}\}$$

$$\vdots = \vdots$$

Thus there are n_j observations in the j^{th} group and $\sum_{j=1}^G n_j = N$. We want to estimate $\mu = (\mu_1, \ldots, \mu_N)$. Let $\hat{\mu} = (\hat{\mu}_1, \ldots, \hat{\mu}_N)$ minimize

$$\sum_{j=1}^{N} (Z_j - \mu_j)^2 + \lambda ||\mu||_1 + \gamma \sum_{j=1}^{G} ||\mu_{\mathcal{G}_j}||_2$$

where

$$||\mu_{\mathcal{G}_j}||_2^2 = \sum_{i \in \mathcal{G}_j} \mu_i^2$$

and $||\mu||_1 = \sum_{j=1}^N |\mu_j|.$

4. Let $X_1, \ldots, X_n \sim P$ where P has density p on [0, 1]. Let ψ_1, ψ_2, \ldots , be an orthonormal basis for $L_2[0, 1]$. Thus, $\int_0^1 \psi_j^2(x) dx = 1$ and $\int_0^1 \psi_j(x) \psi_k(x) dx = 0$ for $j \neq k$. You may assume that $\sup_j \sup_x |\psi_j(x)| \leq C < \infty$. Assume that $\int p^2(x) dx < \infty$. Thus we can write

$$p(x) = \sum_{j=1}^{\infty} \theta_j \, \psi_j(x)$$

where $\theta_j = \int_0^1 \psi_j(x) p(x) dx$. Assume that

$$\sum_{j=1}^{\infty} \theta_j^2 j^{2p} \le C$$

for some p > 1/2. Define an estimator

$$\widehat{p}(x) = \sum_{j=1}^{J_n} \widehat{\theta}_j \psi_j(x)$$

where

$$\widehat{\theta}_j = \frac{1}{n} \sum_{i=1}^n \psi_j(X_i).$$

(a) Show that the variance of $\hat{p}(x)$ is bounded by $C_1 J_n/n$ for some constant C_1 .

(b) Show that

$$\int (p(x) - \overline{p}(x))^2 dx \le \frac{C_2}{J_n^{2p}}$$

for some C_2 , where $\overline{p}(x) = \mathbb{E}(\widehat{p}(x))$.

(c) Show that

$$\mathbb{E}\int_0^1 (\widehat{p}(x) - p(x))^2 dx \le \frac{C_2}{J_n^{2p}} + \frac{C_1 J_n}{n}.$$

(d) Confirm that the upper bound on the risk is minimized by choosing $J_n \simeq n^{\frac{1}{2p+1}}$. With this choice of J_n we see that

$$\mathbb{E} \int_0^1 (\hat{p}(x) - p(x))^2 dx = O\left(n^{-\frac{2p}{2p+1}}\right).$$