
Homework 5
Statistical Machine Learning

10/36-702
Due Friday April 20

1. Let X1, . . . , Xn ∼ g(x; p) where

g(x; p) = pf0(x) + (1− p)f1(x).

For simplicity, we will assume that f0 and f1 are one-dimensional Gaussian distributions
with known means and variances. The only unknown is p. The problem is to
estimate p.

(a) Derive the explicit steps for the EM algorithm for finding the MLE of p.

(b) Suppose we take a Bayesian approach with a Beta(α, β) prior for p. The posterior
for p given Xn = (X1, . . . , Xn) is

π(p |X1, . . . , Xn) ∝ Ln(p)π(p)

where the likelihood is

Ln(p) =
n∏
i=1

(pf0(xi) + (1− p)f1(xi))

and the prior is
π(p) ∝ pα−1(1− p)β−1.

Derive the steps for the Gibbs sampling algorithm (by introducing latent variables).

(c) Derive a random walk MCMC algorithm. (You will need to work with a transfor-
mation of p such as ψ = h(p) = log(p/(1 − p)); otherwise the boundaries of the unit
interval will cause problems.)

(d) Implement the algorithms from parts (a), (b) and (c). Simulate n = 25 observations
from the model

1

3
N(0, 1) +

2

3
N(3, 1).

Use a Beta(4, 4) prior distribution over p. For the mle, compare the EM estimate with
the exact MLE (which you can compute numerically). For the Bayesian analysis, show
trace plots and compare the approximate posterior with the exact posterior (obtained
numerically).

(e) Derive the mean field variational approximation of the posterior. Run the varia-
tional approximation for the same data and compare with the exact answer.
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2. Generate n = 400 data points (X1, Y1), . . . , (Xn, Yn) as follows. Take X1, . . . , Xn ∼
Uniform(−1, 1). Take

Yi = m(Xi) + σ(Xi)εi

where ε1, . . . , εn ∼ N(0, 1),

m(x) =


(x+ 2)2/2 −1 ≤ x < −0.5
x/2 + 0.875 −0.5 ≤ x < 0
−5(x− 0.2)2 + 1.075 0 ≤ x < 0.5
x+ 0.125 0.5 ≤ x < 1

and
σ(x) = 0.2− 0.1 cos(2πx).

Randomly split the data into two sets of n = 200 observations each. The first half is
the training data and the second is the testing data.

(a) Estimate m using kernel regression. Use a Gaussian kernel. Choose the bandwidth
by cross-validation (using the test data). Plot the true function, the data and the
estimated function. Plot the residuals. Plot the cross-vaidation function as a function
of h.

(b) Now estimate m using RKHS methods. Specifically, choose m̂ to minimize∑
i=1

(Yi −m(Xi))
2 + λ||m||2K

where the kernel K is K(x, y) = e−(x−y)2/σ2
. There are two tuning parameters, λ and

σ. Choose both by cross-validation (using the test data). Make the same plots as in
(a). Comment on the differences/similarities between the two estimates.

3. Let F denote all real-valued functions on [0, 1] with m continous derivatives. Define
the kernel

K(x, y) =
m−1∑
s=0

xs

s!

ys

s!
+

∫ 1

0

(x− u)m−1
+

(m− 1)!

(y − u)m−1
+

(m− 1)!
du

and inner predict

〈f, g〉 =
m−1∑
s=0

f (s)(0)g(s)(0) +

∫ 1

0

f (m)(x)g(m)(x)dx.

Verify that this kernel has the reproducing property: 〈Kx, f〉 = f(x).

Hint: By Taylor’s theorem with remainder,
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we can write

f(x) =
m−1∑
s=0

xs

s!
f (s)(0) +

∫ 1

0

(x− u)
(m−1)
+

(m− 1)!
f (m)(u)du.

4. Let Y1, . . . , Yn ∼ p where Yi ∈ R. Let

p̂h(y) =
1

n

n∑
i=1

1

h
K

(
||y − Yi||

h

)
.

Let L = {p > λ} and L̂ = {p̂ > λ}. Assume that p is smooth. Also assume that there
exist positive constants δ, c, C such that: if p(x) ∈ [λ− δ, λ+ δ] then

c < |p′(x)| < C.

Prove that
H(L, L̂)

P→ 0

where H is Hausdorff distance.
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