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Throughout this document, we will assume f : Rp → R is convex.

Definition 1. The subdifferential of f at a point x ∈ Rp is

∂f(x) = {y : ∀z ∈ Rp f(z) ≥ f(x) + yT (z − x)}.

We see from the definition that the subdifferential is a closed set. The subdifferential is also always non-
empty (for convex functions only!). This is a consequence of the Supporting Hyperplane Theorem, which
states that at any point on the boundary of a convex set, there exists at least one supporting hyperplane (i.e. a
plane such that one of the half-spaces it defines contains the entire set). Since the epigraph of a convex function
is a convex set, we can apply the Supporting Hyperplane Theorem to the set of points (x, f(x)), which are
exactly the boundary points of the epigraph.

Similar statements can be made if the domain of f is a subset of Rd. In this case the definition must be
changed accordingly, and the subdifferential won’t be defined (or will be empty, depending on convention) for
points outside the domain, or in its boundary (why do we have to exclude the boundary?).

Subdifferentials are useful in convex optimization problems. The following simple result shows why.

Theorem 2. 0 ∈ ∂f(x) if and only if x minimizes f .

Proof. “If”: Suppose x is a minimum of f . By definition ∀z ∈ Rp we have f(z) ≥ f(x) = f(x)+0T (z−x),
so 0 ∈ ∂f(x).
“Only if”: Suppose 0 ∈ ∂f(x). Then by definition of the subdifferential, ∀z ∈ Rp we have f(z) ≥ f(x) +
0T (z − x) = f(x), so x is a minimum of f .

The geometrical interpretation of ∂f(x) as the set of supporting hyperplanes suggests similarity to the
differential ∇f(x), which describes the tangent hyperplane to f (when it exists). The similarity can also be
seen algebraically, which leads to the following result.

Theorem 3. If f is differentiable at x, then ∂f(x) = {∇f(x)}. Conversely, if ∂f(x) = {g} for some g ∈ Rp,
then∇f(x) exists and is equal to g.

We won’t prove this statement here, though if you recall the definition of the differential it should be clear
why it is true.
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Calculating the subdifferential of a function can sometimes be tricky. Here are some results that are often
useful.

Theorem 4. 1. For α ≥ 0, ∂(αf)(x) = {αy : y ∈ ∂f(x)}.

2. Let h(x) = f(Ax+ b). Then ∂h(x) = {AT y : y ∈ ∂f(Ax+ b)}.

3. For any x ∈ Rp, ∂f(x) is a convex set.

4. Let f1, ..., fm convex, and suppose f(x) =
m∑
i=1

fi(x). Then

∂f(x) =

{
m∑
i=1

yi : yi ∈ ∂fi(x)

}

5. Let f1, ..., fm convex, and suppose f(x) = max
i=1,...,m

fi(x). For any fixed x, if k ∈ {1, ...,m} such that

f(x) = fk(x) (not necessarily unique), then ∂fk(x) ⊆ ∂f(x). In fact

∂f(x) = conv

 ⋃
k:f(x)=fk(x)

∂fk(x)


Proof. 1. Obvious since f(z) ≥ f(x) + yT (z − x) if and only if αf(z) ≥ αf(x) + (αy)T (z − x).

2. Similar to 1.

3. Let y1, y2 ∈ ∂f(x). Then for any z ∈ Rp and θ ∈ (0, 1),

f(z) ≥ max
{
f(x) + yT1 (z − x), f(x) + yT2 (z − x)

}
≥ θ

[
f(x) + yT1 (z − x)

]
+ (1− θ)

[
f(x) + yT2 (z − x)

]
= f(x) + (θy1 + (1− θ)y2)T (z − x)

so θy1 + (1− θ)y2 ∈ ∂f(x).

4. Let yi ∈ ∂fi(x) for i = 1, ...,m. Write

f(z) =

m∑
i=1

fi(z) ≥
m∑
i=1

[
fi(x) + yTi (z − x)

]
= f(x) +

(
m∑
i=1

yi

)T

(z − x)

so
m∑
i=1

yi ∈ ∂f(x), and
{

m∑
i=1

yi : yi ∈ ∂fi(x)
}
⊆ ∂f(x). We will not prove equality here.

5. For some x, let k s.t. f(x) = fk(x), and y ∈ ∂fk(x). Then f(z) ≥ fk(z) ≥ fk(x) + yT (z − x) =
f(x)+yT (z−x), so ∂fk(x) ⊆ ∂f(x). Applying this fact for all k s.t. f(x) = fk(x), and using statement
3, we have

conv

 ⋃
k:f(x)=fk(x)

∂fk(x)

 ⊆ ∂f(x).
Again, we won’t prove the other direction.

The missing parts of the proofs of statements 4 and 5 are somewhat complicated, and can be found in Convex
Analysis by Rockafellar.
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