Homework 1
Due Thursday September 6
Submit as a pdf on Canvas

1. Suppose we toss a fair coin until we get exactly three heads. Describe the sample space \(\Omega \). Let \(X \) denote the number of tosses. Find probability mass function of \(X \).

2. Consider events \(A_1, \ldots, A_n \). Prove that
\[
P \left(\bigcup_{i=1}^{n} A_i \right) \leq \sum_{i=1}^{n} P(A_i).
\]

3. Suppose that \(A \) and \(B \) are independent events. Show that \(A \) and \(B^c \) are independent events.

4. Show that if \(P(A) = 0 \) or \(P(A) = 1 \) then \(A \) is independent of every other event. Show that if \(A \) is independent of itself then \(P(A) \) is either 0 or 1.

5. Let \(X \) have CDF \(F \). Find the CDF of \(Y = \min\{0, X\} \).

6. A random variable \(X \) is stochastically greater than a random variable \(Y \) if \(F_X(t) \leq F_Y(t) \) for all \(t \) and \(F_X(t) < F_Y(t) \) for some \(t \). Prove that, in this case,
\[
P(X > t) \geq P(Y > t) \quad \text{for every } t,
\]
and
\[
P(X > t) > P(Y > t) \quad \text{for some } t.
\]

7. Define
\[
F(x) = \begin{cases}
0 & x \leq 2 \\
\frac{x-2}{2} & 2 \leq x \leq 4 \\
1 & x > 4.
\end{cases}
\]
Prove that \(F \) is a valid CDF. Find the probability density function.

8. The uniform distribution on \([-3, 3]\) has density:
\[
f_X(x) = \frac{1}{6} \quad \text{for } x \in [-3, 3].
\]
Suppose \(X \) has this density.
(a) Find \(P(X = 1) \).
(b) Find \(P(0.5 \leq X \leq 1.5) \).
(c) Find the cdf of \(Y = X^2 \).

9. Let \((X, Y)\) have a uniform distribution on the unit circle in the plane.
 (a) Show that \(X \) and \(Y \) are not independent.
 (b) Find \(P(X^2 + Y^2 < 1/4) \).

10. Let \(Z_1, \ldots, Z_n \sim N(\mu, \sigma^2) \). Let \(T = \sum_{i=1}^{n} Z_i^2 \). Find \(\mathbb{E}[T] \) and \(\text{Var}(T) \).