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Chapter 14

Simulation

Simulation refers to the general strategy of drawing from a simple distribu-
tion in order to sample from a more complicated distribution, or to approximate
a function. In this chapter we show how simulation can be used to approxi-
mate integrals. Our leading example is the problem of computing integrals in
Bayesian inference, but the techniques are widely applicable. The simulation
methods we discuss include Monte Carlo integration, importance sampling,
and Markov chain Monte Carlo (MCMC).

14.1 Introduction

Suppose that we wish to draw a random sample X from a distribution F . Since F (X) is uni-
formly distributed over the interval (0, 1), a basic strategy is to sample U ⇠ Uniform(0, 1),
and then output X = F�1(U). This is an example of simulation; we sample from a dis-
tribution that is easy to draw from, in this case Uniform(0, 1), and use it to sample from
a more complicated distribution F . As another example, suppose that we wish to estimate
the integral

R 1
0 h(x) dx for some complicated function h. The basic simulation approach is

to draw N samples Xi ⇠ Uniform(0, 1) and estimate the integral as

Z 1

0
h(x) dx ⇡

1

N

NX

i=1

h(Xi). (14.1)

This converges to the desired integral by the law of large numbers.
Simulation methods are especially useful in Bayesian inference, where complicated

distributions and integrals are of the essence; let us briefly review the main ideas. Given a
prior ⇡(✓) and data Xn = (X1, . . . , Xn) the posterior density is

⇡(✓ |Xn) =
Ln(✓)⇡(✓)

c
(14.2)
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where Ln(✓) is the likelihood function and

c =

Z
Ln(✓)⇡(✓) d✓ (14.3)

is the normalizing constant. The posterior mean is

✓ =

Z
✓⇡(✓ |Xn)d✓ =

R
✓Ln(✓)⇡(✓)d✓

c
. (14.4)

If ✓ = (✓1, . . . , ✓k) is multidimensional, then we might be interested in the posterior for
one of the components, ✓1, say. This marginal posterior density is

⇡(✓1 |X
n) =

Z Z
· · ·

Z
⇡(✓1, . . . , ✓k |X

n)d✓2 · · · d✓k (14.5)

which involves high-dimensional integration. When ✓ is high-dimensional, it may not be
feasible to calculate these integrals analytically. Simulation methods will often be helpful.

14.2 Basic Monte Carlo Integration

Suppose we want to evaluate the integral

I =

Z b

a
h(x) dx (14.6)

for some function h. If h is an “easy” function like a polynomial or trigonometric function,
then we can do the integral in closed form. If h is complicated there may be no known
closed form expression for I . There are many numerical techniques for evaluating I such
as Simpson’s rule, the trapezoidal rule and Gaussian quadrature. Monte Carlo integration
is another approach for approximating I which is notable for its simplicity, generality and
scalability.

Begin by writing

I =

Z b

a
h(x)dx =

Z b

a
w(x)f(x)dx (14.7)

where w(x) = h(x)(b� a) and f(x) = 1/(b� a). Notice that f is the probability density
for a uniform random variable over (a, b). Hence,

I = Ef (w(X)) (14.8)

where X ⇠ Uniform(a, b). If we generate X1, . . . , XN ⇠ Uniform(a, b), then by the law
of large numbers

bI ⌘ 1

N

NX

i=1

w(Xi)
P
�!E(w(X)) = I. (14.9)
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This is the basic Monte Carlo integration method. We can also compute the standard error
of the estimate

bse =
s
p
N

(14.10)

where

s2 =

PN
i=1(Yi �

bI)2

N � 1
(14.11)

where Yi = w(Xi). A 1�↵ confidence interval for I is bI± z↵/2 bse. We can take N as large
as we want and hence make the length of the confidence interval very small.

14.12 Example. Let h(x) = x3. Then, I =
R 1
0 x3dx = 1/4. Based on N = 10, 000

observations from a Uniform(0, 1) we get bI = .248 with a standard error of .0028. 2

A generalization of the basic method is to consider integrals of the form

I =

Z b

a
h(x)f(x)dx (14.13)

where f(x) is a probability density function. Taking f to be a Uniform(a, b) gives us the
special case above. Now we draw X1, . . . , XN ⇠ f and take

bI ⌘ 1

N

NX

i=1

h(Xi) (14.14)

as before.

14.15 Example. Let

f(x) =
1
p
2⇡

e�x2/2 (14.16)

be the standard normal pdf. Suppose we want to compute the cdf at some point x:

I =

Z x

�1

f(s)ds = �(x). (14.17)

Write
I =

Z
h(s)f(s)ds (14.18)

where

h(s) =

⇢
1 s < x
0 s � x.

(14.19)

Now we generate X1, . . . , XN ⇠ N(0, 1) and set

bI =
1

N

X

i

h(Xi) =
number of observations  x

N
. (14.20)

For example, with x = 2, the true answer is �(2) = .9772 and the Monte Carlo estimate
with N = 10, 000 yields .9751. Using N = 100, 000 we get .9771. 2



304 Chapter 14. Simulation

14.21 Example (Bayesian inference for two binomials). Let X ⇠ Binomial(n, p1) and
Y ⇠ Binomial(m, p2). We would like to estimate � = p2 � p1. The mle is b� = bp2 � bp1 =
(Y/m)� (X/n). We can get the standard error bse using the delta method, which yields

bse =

r
bp1(1� bp1)

n
+

bp2(1� bp2)
m

(14.22)

and then construct a 95 percent confidence interval b� ± 2 bse. Now consider a Bayesian
analysis. Suppose we use the prior ⇡(p1, p2) = ⇡(p1)⇡(p2) = 1, that is, a flat prior on
(p1, p2). The posterior is

⇡(p1, p2 |X,Y ) / pX1 (1� p1)
n�X pY2 (1� p2)

m�Y . (14.23)

The posterior mean of � is

� =

Z 1

0

Z 1

0
�(p1, p2)⇡(p1, p2 |X,Y ) =

Z 1

0

Z 1

0
(p2 � p1)⇡(p1, p2 |X,Y ). (14.24)

If we want the posterior density of � we can first get the posterior cdf

F (c |X,Y ) = P (�  c |X,Y ) =

Z

A
⇡(p1, p2 |X,Y ) (14.25)

where A = {(p1, p2) : p2 � p1  c}, and then differentiate F . But this is complicated; to
avoid all these integrals, let’s use simulation.

Note that ⇡(p1, p2 |X,Y ) = ⇡(p1 |X)⇡(p2 |Y ) which implies that p1 and p2 are inde-
pendent under the posterior distribution. Also, we see that p1 |X ⇠ Beta(X+1, n�X+1)

and p2 |Y ⇠ Beta(Y+1,m�Y+1). Hence, we can simulate (P (1)
1 , P (1)

2 ), . . . , (P (N)
1 , P (N)

2 )
from the posterior by drawing

P (i)
1 ⇠ Beta(X + 1, n�X + 1) (14.26)

P (i)
2 ⇠ Beta(Y + 1,m� Y + 1) (14.27)

for i = 1, . . . , N . Now let �(i) = P (i)
2 � P (i)

1 . Then,

� ⇡
1

N

X

i

�(i). (14.28)

We can also get a 95 percent posterior interval for � by sorting the simulated values, and
finding the .025 and .975 quantile. The posterior density f(� |X,Y ) can be obtained by
applying density estimation techniques to �(1), . . . , �(N) or, simply by plotting a histogram.
For example, suppose that n = m = 10, X = 8 and Y = 6. From a posterior sample of
size 1000 we get a 95 percent posterior interval of (�0.52, 0.20). The posterior density can
be estimated from a histogram of the simulated values as shown in Figure 14.1. 2
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Figure 14.1. Posterior of � from simulation.

14.29 Example (Bayesian inference for dose response). Suppose we conduct an experi-
ment by giving rats one of ten possible doses of a drug, denoted by x1 < x2 < . . . < x10.
For each dose level xi we use n rats and we observe Yi, the number that survive. Thus
we have ten independent binomials Yi ⇠ Binomial(n, pi). Suppose we know from bi-
ological considerations that higher doses should have higher probability of death; thus,
p1  p2  · · ·  p10. We want to estimate the dose at which the animals have a 50 percent
chance of dying—this is called the LD50. Formally, � = xj⇤ where

j⇤ = min
�
j : pj �

1
2

 
. (14.30)

Notice that � is implicitly just a complicated function of p1, . . . , p10 so we can write � =
g(p1, . . . , p10) for some g. This just means that if we know (p1, . . . , p10) then we can find
�. The posterior mean of � is

Z Z
· · ·

Z

A
g(p1, . . . , p10)⇡(p1, . . . , p10 |Y1, . . . , Y10) dp1dp2 . . . dp10. (14.31)

The integral is over the region

A = {(p1, . . . , p10) : p1  · · ·  p10}. (14.32)

The posterior cdf of � is

F (c |Y1, . . . , Y10) = P(�  c |Y1, . . . , Y10) (14.33)

=

Z Z
· · ·

Z

B
⇡(p1, . . . , p10 |Y1, . . . , Y10) dp1dp2 . . . dp10 (14.34)
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where

B = A \

(
(p1, . . . , p10) : g(p1, . . . , p10)  c

)
. (14.35)

The posterior mean involves a 10-dimensional integral over a restricted region A. We can
approximate this integral using simulation.

Let us take a flat prior truncated over A. Except for the truncation, each Pi has once
again a Beta distribution. To draw from the posterior we proceed as follows:

(1) Draw Pi ⇠ Beta(Yi + 1, n� Yi + 1), i = 1, . . . , 10.
(2) If P1  P2  · · ·  P10 keep this draw. Otherwise, throw it away and draw again

until you get one you can keep.
(3) Let � = xj⇤ where

j⇤ = min{j : Pj >
1
2}. (14.36)

We repeat this N times to get �(1), . . . , �(N) and take

E(� |Y1, . . . , Y10) ⇡
1

N

X

i

�(i). (14.37)

Note that � is a discrete variable. We can estimate its probability mass function by

P(� = xj |Y1, . . . , Y10) ⇡
1

N

NX

i=1

I(�(i) = xj). (14.38)

For example, consider the following data:

Dose 1 2 3 4 5 6 7 8 9 10
Number of animals ni 15 15 15 15 15 15 15 15 15 15
Number of survivors Yi 0 0 2 2 8 10 12 14 15 14

The posterior draws for p1, . . . , p10 with N = 500 are shown in Figure 14.2. We find
that � = 5.45 with a 95 percent interval of (5,7). 2

14.3 Importance Sampling

Consider again the integral I =
R
h(x)f(x)dx where f is a probability density. The basic

Monte Carlo method involves sampling from f . However, there are cases where we may not
know how to sample from f . For example, in Bayesian inference, the posterior density is
is obtained by multiplying the likelihood Ln(✓) times the prior ⇡(✓), and there is generally
no guarantee that ⇡(✓ |x) will be a known distribution like a normal or gamma.



14.3. Importance Sampling 307

0.0 0.5 1.00.0 0.5 1.00.0 0.5 1.00.0 0.5 1.00.0 0.5 1.0

0.0 0.5 1.00.0 0.5 1.00.0 0.5 1.00.0 0.5 1.00.0 0.5 1.0

Figure 14.2. Posterior distributions of the probabilities Pi, i = 1, . . . , 10, for the dose response
data of Example 14.29.

Importance sampling is a generalization of basic Monte Carlo that addresses this prob-
lem. Let g be a probability density that we know how to sample from. Then

I =

Z
h(x)f(x)dx =

Z
h(x)f(x)

g(x)
g(x)dx = Eg(Y ) (14.39)

where Y = h(X)f(X)/g(X) and the expectation Eg(Y ) is with respect to g. We can
simulate X1, . . . , XN ⇠ g and estimate I by the sample average

bI =
1

N

X

i

Yi =
1

N

X

i

h(Xi)f(Xi)

g(Xi)
. (14.40)

This is called importance sampling. By the law of large numbers, bI P
�! I .

There’s a catch, however. It’s possible that bI might have an infinite standard error. To
see why, recall that I is the mean of w(x) = h(x)f(x)/g(x). The second moment of this
quantity is

Eg(w
2(X)) =

Z ✓
h(x)f(x)

g(x)

◆2

g(x)dx =

Z
h2(x)f2(x)

g(x)
dx. (14.41)

If g has thinner tails than f , then this integral might be infinite. To avoid this, a basic rule in
importance sampling is to sample from a density g with thicker tails than f . Also, suppose
that g(x) is small over some set A where f(x) is large. Again, the ratio of f/g could be
large leading to a large variance. This implies that we should choose g to be similar in shape
to f . In summary, a good choice for an importance sampling density g should be similar to
f but with thicker tails. In fact, we can say what the optimal choice of g is.

14.42 Theorem. The choice of g that minimizes the variance of bI is

g⇤(x) =
|h(x)|f(x)R
|h(s)|f(s)ds

. (14.43)
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Proof. The variance of w = fh/g is

Eg(w
2)� (E(w2))2 =

Z
w2(x)g(x)dx�

✓Z
w(x)g(x)dx

◆2

(14.44)

=

Z
h2(x)f2(x)

g2(x)
g(x)dx�

✓Z
h(x)f(x)

g(x)
g(x)dx

◆2

(14.45)

=

Z
h2(x)f2(x)

g2(x)
g(x)dx�

✓Z
h(x)f(x)dx

◆2

. (14.46)

The second integral does not depend on g, so we only need to minimize the first integral.
From Jensen’s inequality (Theorem ??) we have

Eg(W
2) � (Eg(|W |))2 =

✓Z
|h(x)|f(x)dx

◆2

. (14.47)

This establishes a lower bound on Eg(W 2). However, Eg⇤(W 2) equals this lower bound
which proves the claim.

This theorem is interesting but it is only of theoretical interest. If we did not know how
to sample from f then it is unlikely that we could sample from |h(x)|f(x)/

R
|h(s)|f(s)ds.

In practice, we simply try to find a thick-tailed distribution g which is similar to f |h|.

14.48 Example (Tail probability). Let’s estimate I = P(Z > 3) = .0013 where Z ⇠
N(0, 1). Write I =

R
h(x)f(x)dx where f(x) is the standard normal density and h(x) =

1 if x > 3, and 0 otherwise. The basic Monte Carlo estimator is bI = N�1P
i h(Xi)

where X1, . . . , XN ⇠ N(0, 1). Using N = 100 we find (from simulating many times)
that E(bI) = .0015 and Var(bI) = .0039. Notice that most observations are wasted in the
sense that most are not near the right tail. Now we will estimate this with importance
sampling taking g to be a Normal(4,1) density. We draw values from g and the estimate
is now bI = N�1P

i f(Xi)h(Xi)/g(Xi). In this case we find that E(bI) = .0011 and
Var(bI) = .0002. We have reduced the standard deviation by a factor of 20. 2

Many variants of the basic importance sampling scheme have been proposed and stud-
ied; see, for example Neal (1998) and Southey et al. (1999).

14.4 The Metropolis–Hastings Algorithm

Consider once more the problem of estimating the integral I =
R
h(x)f(x)dx. Now we

introduce Markov chain Monte Carlo (MCMC) methods. The idea is to construct a Markov
chain X1, X2, . . . , whose stationary distribution is f . Under certain conditions it will then
follow that

1

N

NX

i=1

h(Xi)
P
�!Ef (h(X)) = I. (14.49)
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This works because there is a law of large numbers for Markov chains; see Theorem 14.152.
The Metropolis–Hastings algorithm is a specific MCMC method that works as follows.

Let q(y |x) be an arbitrary, “friendly” distribution—that is, we know how to sample effi-
ciently from q(y |x). The conditional density q(y |x) is called the proposal distribution.
The Metropolis–Hastings algorithm creates a sequence of observations X0, X1, . . . , as fol-
lows.

Metropolis–Hastings Algorithm

Choose X0 arbitrarily.

Given X0, X1, . . . , Xi, generate Xi+1 as follows:

1. Generate a proposal or candidate value Y ⇠ q(y |Xi).

2. Evaluate r ⌘ r(Xi, Y ) where

r(x, y) = min

⇢
f(y)

f(x)

q(x | y)

q(y |x)
, 1

�
. (14.50)

3. Set

Xi+1 =

⇢
Y with probability r
Xi with probability 1� r.

(14.51)

A simple way to execute step (3) is to generate U ⇠ Uniform(0, 1). If U < r set
Xi+1 = Y ; otherwise set Xi+1 = Xi. A common choice for q(y |x) is N(x, b2) for some
b > 0, so that the proposal is draw from a normal, centered at the current value. In this case,
the proposal density q is symmetric, q(y |x) = q(x | y), and r simplifies to

r = min

⇢
f(Y )

f(Xi)
, 1

�
. (14.52)

By construction, X0, X1, . . . is a Markov chain. But why does this Markov chain have
f as its stationary distribution? Before we explain why, let us first do an example.

14.53 Example. The Cauchy distribution has density

f(x) =
1

⇡

1

1 + x2
. (14.54)

Our goal is to simulate a Markov chain whose stationary distribution is f . As suggested in
the remark above, we take q(y |x) to be a N(x, b2). So in this case,

r(x, y) = min

⇢
f(y)

f(x)
, 1

�
= min

⇢
1 + x2

1 + y2
, 1

�
. (14.55)
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So the algorithm is to draw Y ⇠ N(Xi, b2) and set

Xi+1 =

⇢
Y with probability r(Xi, Y )
Xi with probability 1� r(Xi, Y ).

(14.56)

The simulator requires a choice of b. Figure 14.3 shows three chains of length N = 1, 000
using b = .1, b = 1 and b = 10. Setting b = .1 forces the chain to take small steps.
As a result, the chain doesn’t “explore” much of the sample space. The histogram from the
sample does not approximate the true density very well. Setting b = 10 causes the proposals
to often be far in the tails, making r small and hence we reject the proposal and keep the
chain at its current position. The result is that the chain “gets stuck” at the same place quite
often. Again, this means that the histogram from the sample does not approximate the true
density very well. The middle choice avoids these extremes and results in a Markov chain
sample that better represents the density sooner. In summary, there are tuning parameters
and the efficiency of the chain depends on these parameters. We’ll discuss this in more
detail later. 2

If the sample from the Markov chain starts to look like the target distribution f quickly,
then we say that the chain is “mixing well.” Constructing a chain that mixes well is some-
what of an art.

14.5 Why It Works

An understanding of why MCMC works requires elementary Markov chain theory, which
is reviewed in an Appendix at the end of this chapter.

Recall that a distribution ⇡ satisfies detailed balance for a Markov chain if

pij⇡i = pji⇡j . (14.57)

If ⇡ satisfies detailed balance, then it is a stationary distribution for the chain.
Because we are now dealing with continuous state Markov chains, we will change no-

tation a little and write p(x, y) for the probability of making a transition from x to y. Also,
let’s use f(x) instead of ⇡ for a distribution. In this new notation, f is a stationary distribu-
tion if f(x) =

R
f(y)p(y, x) dy and detailed balance holds for f if

f(x)p(x, y) = f(y)p(y, x). (14.58)

Detailed balance implies that f is a stationary distribution since, if detailed balance holds,
then Z

f(y)p(y, x) dy =

Z
f(x)p(x, y) dy = f(x)

Z
p(x, y) dy = f(x) (14.59)

which shows that f(x) =
R
f(y)p(y, x) dy as required. Our goal is to show that when

p(x, y) is the Markov chain defined by the Metropolis-Hastings algorithm, then f satisfies
detailed balance, and therefore is a stationary distribution for the chain.
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Figure 14.3. Three Metropolis chains corresponding to b = .1, b = 1, b = 10, with acceptance
rates 97%, 76%, and 27%, respectively.

Consider two points x and y. Either

f(x)q(y |x) < f(y)q(x | y) or f(x)q(y |x) > f(y)q(x | y). (14.60)

We will ignore ties (which occur with probability zero for continuous distributions). With-
out loss of generality, assume that f(x)q(y |x) > f(y)q(x | y). This implies that

r(x, y) =
f(y)

f(x)

q(x | y)

q(y |x)
< 1 (14.61)

and that r(y, x) = 1. Now let p(x, y) be the probability of jumping from x to y. This means
that (i) the proposal distribution must generate y, and (ii) you must accept y. Thus,

p(x, y) = q(y |x)r(x, y) = q(y |x)
f(y)

f(x)

q(x | y)

q(y |x)
=

f(y)

f(x)
q(x | y). (14.62)



312 Chapter 14. Simulation

Therefore,
f(x)p(x, y) = f(y)q(x | y). (14.63)

On the other hand, p(y, x) is the probability of jumping from y to x. This requires two that
(i) the proposal distribution must generate x, and (ii) you must accept x. This occurs with
probability p(y, x) = q(x | y)r(y, x) = q(x | y). Hence,

f(y)p(y, x) = f(y)q(x | y). (14.64)

Comparing (14.63) and (14.64), we see that we have shown that detailed balance holds.

14.6 Different Flavors of MCMC

There are different types of MCMC algorithm. Here we will consider a few of the most
popular versions.

RANDOM-WALK-METROPOLIS–HASTINGS. In the previous section we considered
drawing a proposal Y of the form

Y = Xi + ✏i (14.65)

where ✏i comes from some distribution with density g. In other words, q(y |x) = g(y�x).
We saw that in this case,

r(x, y) = min

⇢
1,

f(y)

f(x)

�
. (14.66)

This is called a random-walk-Metropolis–Hastings method. The reason for the name is that,
if we did not do the accept–reject step, we would be simulating a random walk. The most
common choice for g is a N(0, b2). The hard part is choosing b so that the chain mixes
well. As mentioned earlier, a good rule of thumb is to choose b so that about 50 percent of
the proposals are accepted.

Note that this method doesn’t make sense unless X takes values on the whole real line.
If X is restricted to some interval then it is best to transform X . For example, if X 2 (0,1)
then you might take Y = logX and then simulate the distribution for Y instead of X .

INDEPENDENCE-METROPOLIS–HASTINGS. This is an importance-sampling version
of MCMC. We draw the proposal from a fixed distribution g. Generally, g is chosen to be
an approximation to f . The acceptance probability becomes

r(x, y) = min

⇢
1,

f(y)

f(x)

g(x)

f(y)

�
= min

⇢
1,

f(y)

g(y)

g(x)

f(x)

�
. (14.67)

GIBBS SAMPLING. The two previous methods can be easily adapted, in principle, to
work in higher dimensions. In practice, tuning the chains to make them mix well is hard.
Gibbs sampling is a way to turn a high-dimensional problem into several one-dimensional
problems.

Here’s how it works for a bivariate problem. Suppose that (X,Y ) has density fX,Y (x, y).
First, suppose that it is possible to simulate from the conditional distributions fX |Y (x | y)
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and fY |X(y |x). Let (X0, Y0) be starting values, and assume we have drawn (X0, Y0), . . . , (Xn, Yn).
Then the Gibbs sampling algorithm for getting (Xn+1, Yn+1) is:

Gibbs Sampling

Iterate until convergence:

Xn+1 ⇠ fX |Y (x |Yn) (14.68)

Yn+1 ⇠ fY |X(y |Xn+1) (14.69)

To see that this is a special case of the Metropolis-Hastings algorithm, suppose that the
current state is (Xn, Yn) and the proposal is (Xn, Y ), with probability fY |X(Y |Xn). Then
the acceptance probability in the Metropolis-Hastings algorithm is

r((Xn, Yn), (Xn, Y )) = min

⇢
1,

f(Xn, Y )

f(Xn, Yn)

fY |X(Yn |Xn)

fY |X(Y |Xn)

�
(14.70)

= min

⇢
1,

f(Xn, Y )

f(Xn, Yn)

f(Xn, Yn)

f(Xn, Y )

�
= 1. (14.71)

This generalizes in the obvious way to higher dimensions, where we cycle through the
variables, sampling one of them at a time, conditioned on the others.

14.72 Example (Normal hierarchical model). Gibbs sampling is very useful for a class
of models called hierarchical models. Here is a simple case. Suppose we have a sample
of data from k cities. From each city we draw ni people and observe how many people
Yi have a disease. Thus, Yi ⇠ Binomial(ni, pi), allowing for different disease rates in
different cities. We can also think of the pi’s as random draws from some distribution F .
We can write this model in the following way:

Pi ⇠ F (14.73)

Yi |Pi = pi ⇠ Binomial(ni, pi). (14.74)

We are interested in estimating the pi’s and the overall disease rate
R
p d⇡(p).

To proceed, it will simplify matters if we make some transformations that allow us
to use some normal approximations. Let bpi = Yi/ni. Recall that bpi ⇡ N(pi, si) where
si =

p
bpi(1� bpi)/ni. Let  i = log(pi/(1� pi)) and define Zi ⌘

b i = log(bpi/(1� bpi)).
By the delta method,

b i ⇡ N( i,�
2
i ) (14.75)

where �2i = 1/(nbpi(1 � bpi)). Experience shows that the normal approximation for  
is more accurate than the normal approximation for p so we shall work with  , treating
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�i as known. Furthermore, we shall take the distribution of the  i’s to be normal. The
hierarchical model is now

 i ⇠ N(µ, ⌧2) (14.76)

Zi | i ⇠ N( i,�
2
i ). (14.77)

As yet another simplification we take ⌧ = 1. The unknown parameters are ✓ = (µ, 1, . . . , k).
The likelihood function is

Ln(✓) /
Y

i

f( i |µ)
Y

i

f(Zi | i) (14.78)

/

Y

i

exp

⇢
�
1

2
( i � µ)2

�
exp

⇢
�

1

2�2i
(Zi �  i)

2

�
. (14.79)

If we use the prior f(µ) / 1 then the posterior is proportional to the likelihood. To use
Gibbs sampling, we need to find the conditional distribution of each parameter conditional
on all the others. Let us begin by finding f(µ | rest) where “rest” refers to all the other
variables. We can throw away any terms that don’t involve µ. Thus,

f(µ | rest) /
Y

i

exp

⇢
�
1

2
( i � µ)2

�
(14.80)

/ exp

⇢
�
k

2
(µ� b)2

�
(14.81)

where
b =

1

k

X

i

 i. (14.82)

Hence we see that µ | rest ⇠ N(b, 1/k). Next we will find f( | rest). Again, we can throw
away any terms not involving  i, leaving us with

f( i | rest) / exp

⇢
�
1

2
( i � µ)2

�
exp

⇢
�

1

2�2i
(Zi �  i)

2

�
(14.83)

/ exp

⇢
�

1

2d2i
( i � ei)

2

�
(14.84)

where

ei =

Zi

�2i
+ µ

1 +
1

�2i

and d2i =
1

1 +
1

�2i

(14.85)

and so  i | rest ⇠ N(ei, d2i ). The Gibbs sampling algorithm then involves iterating the
following steps N times:

draw µ ⇠ N(b, v2) (14.86)

draw  1 ⇠ N(e1, d
2
1) (14.87)

...
... (14.88)

draw  k ⇠ N(ek, d
2
k). (14.89)
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It is understood that at each step, the most recently drawn version of each variable is used.
We generated a numerical example with k = 20 cities and n = 20 people from each

city. After running the chain, we can convert each  i back into pi by way of pi = e i/(1 +
e i). The raw proportions are shown in Figure 14.5. Figure 14.4 shows “trace plots” of the
Markov chain for p1 and µ. Figure 14.5 shows the posterior for µ based on the simulated
values. The second panel of Figure 14.5 shows the raw proportions and the Bayes estimates.
Note that the Bayes estimates are “shrunk” together. The parameter ⌧ controls the amount
of shrinkage. We set ⌧ = 1 but, in practice, we should treat ⌧ as another unknown parameter
and let the data determine how much shrinkage is needed. 2

So far we assumed that we know how to draw samples from the conditionals fX |Y (x | y)
and fY |X(y |x). If we don’t know how, we can still use the Gibbs sampling algorithm by
drawing each observation using a Metropolis–Hastings step. Let q be a proposal distribu-
tion for x and let eq be a proposal distribution for y. When we do a Metropolis step for X ,
we treat Y as fixed. Similarly, when we do a Metropolis step for Y , we treat X as fixed.
Here are the steps:

Metropolis within Gibbs

(1a) Draw a proposal Z ⇠ q(z |Xn).

(1b) Evaluate

r = min

⇢
f(Z, Yn)

f(Xn, Yn)

q(Xn |Z)

q(Z |Xn)
, 1

�
. (14.90)

(1c) Set

Xn+1 =

⇢
Z with probability r
Xn with probability 1� r.

(14.91)

(2a) Draw a proposal Z ⇠ eq(z |Yn).

(2b) Evaluate

r = min

⇢
f(Xn+1, Z)

f(Xn+1, Yn)

eq(Yn |Z)

eq(Z |Yn)
, 1

�
. (14.92)

(2c) Set

Yn+1 =

⇢
Z with probability r
Yn with probability 1� r.

(14.93)

Note that in step (1) (and similarly for step (2)), with Yn fixed, sampling from f(Z |Yn)
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is equivalent to sampling from f(Z, Yn), as the ratios are identical:

f(Z, Yn)

f(Xn, Yn)
=

f(Z |Yn)

f(Xn |Yn)
. (14.94)
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Figure 14.4. Posterior simulation for Example 14.72. The top panel shows simulated values of p1.
The top panel shows simulated values of µ.

14.7 Normalizing Constants

The beauty of MCMC is that we avoid having to compute the normalizing constant c =R
Ln(✓)⇡(✓)d✓. But suppose we do want to estimate c. For example, if M1 and M2 are

two models then
P(M1 |X1, . . . , Xn) =

c1p

c1p+ c2(1� p)
(14.95)

where p is the prior probability of model 1 and c1, c2 are the normalizing constants for the
two models. Thus, to do Bayesian model selection requires the normalizing constants.

In general, suppose that f is a probability density function and that

f(✓) = cg(✓) (14.96)
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Figure 14.5. Example 14.72. Top panel: posterior histogram of µ. Lower panel: raw proportions
and the Bayes posterior estimates. The Bayes estimates have been shrunk closer together than the
raw proportions.

where g(✓) > 0 is a known function and c is unknown; typically, g(✓) = Ln(✓)⇡(✓). Let
✓1, . . . , ✓n be a sample from f . Let h be a known probability density function. Define

bc = 1

n

nX

i=1

h(✓i)

g(✓i)
. (14.97)

Then
E(bc) =

Z
h(✓)

g(✓)
f(✓)d✓ =

Z
h(✓)

g(✓)
cg(✓)d✓ = c. (14.98)

And if
R
h2(✓)/g(✓)d✓ <1, then bc� c = OP (n�1/2).

14.8 Appendix: Basic Markov Chain Theory

A Markov chain is a stochastic process for which the distribution of Xn depends only on
Xn�1. In this section we assume that the state space is discrete, either X = {1, . . . , N} or
X = {1, 2, . . . , } and that the index set is T = {0, 1, 2, . . .}.

14.99 Definition. The process {Xn : n 2 T} is a Markov chain if

P(Xn = x | X0, . . . , Xn�1) = P(Xn = x | Xn�1) (14.100)

for all n and for all x 2 X .

For a Markov chain, the joint distribution of X1, . . . , Xn can be written as

f(x1, . . . , xn) = f(x1)f(x2 |x1)f(x3 |x2) · · · f(xn |xn�1). (14.101)

A Markov chain can be represented by the following DAG:
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X0 X1 X2 · · · Xn · · ·

Each variable has a single parent, namely, the previous observation.
The theory of Markov chains is very rich and complex; we have to get through several

definitions before we can do anything interesting. Our goal is to answer the following
questions: When does a Markov chain “settle down” into some sort of equilibrium? How
can we construct Markov chains that converge to a given equilibrium distribution.

To understand the first question, look at the two chains in Figure 14.6. The first chain
oscillates all over the place; the second chain eventually settles into an equilibrium. If we
constructed a histogram of the first process, it would keep changing as we got more and
more observations. But a histogram from the second chain would eventually converge to
some fixed distribution.

Figure 14.6. Two Markov chains. The first chain does not settle down into an equilibrium. The
second does.

The key quantities of a Markov chain are the probabilities of jumping from one state
into another state. A Markov chain is homogeneous if P(Xn+1 = j |Xn = i) does not
change with time. Thus, for a homogeneous Markov chain, P(Xn+1 = j |Xn = i) =
P(X1 = j |X0 = i). We shall only deal with homogeneous Markov chains.

14.102 Definition. We call

pij ⌘ P(Xn+1 = j |Xn = i) (14.103)

the transition probabilities. The matrix P whose (i, j) element is pij is called the transition
matrix.



14.8. Appendix: Basic Markov Chain Theory 319

Notice that P satisfies (i) pij � 0 and (ii)
P

i pij = 1; thus each row can be regarded as
a probability mass function.

14.104 Example (Random walk with absorbing barriers). Let X = {1, . . . , N}. Sup-
pose you are standing at one of these points. Flip a coin with P(heads) = p and P(tails) =
q = 1 � p. If it is heads, take one step to the right. If it is tails, take one step to the left. If
you hit one of the endpoints, stay there. The transition matrix is

P =

2

6666664

1 0 0 0 · · · 0 0
q 0 p 0 · · · 0 0
0 q 0 p · · · 0 0
· · · · · · · · · · · · · · · · · · · · ·

0 0 0 0 q 0 p
0 0 0 0 0 0 1

3

7777775
. (14.105)

2

14.106 Example. Suppose the state space is X = {sunny, cloudy}. Then X1, X2, . . .
represents the weather for a sequence of days. The weather today clearly depends on yes-
terday’s weather. It might also depend on the weather two days ago but as a first approxi-
mation we might assume that the dependence is only one day back. In that case the weather
is a Markov chain and a typical transition matrix might be

Sunny Cloudy
Sunny 0.4 0.6
Cloudy 0.8 0.2

For example, if it is sunny today, there is a 60 per cent chance it will be cloudy tomorrow.
2

Let
pij(n) = P(Xm+n = j |Xm = i) (14.107)

be the probability of of going from state i to state j in n steps. Let Pn be the matrix whose
(i, j) element is pij(n). These are called the n-step transition probabilities.

14.108 Theorem (The Chapman-Kolmogorov equations). The n-step probabilities sat-
isfy

pij(m+ n) =
X

k

pik(m)pkj(n). (14.109)

Proof. Recall that, in general,

P(X = x, Y = y) = P(X = x)P(Y = y |X = x). (14.110)
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This fact is true in the more general form

P(X = x, Y = y |Z = z) = P(X = x |Z = z)P(Y = y |X = x, Z = z). (14.111)

Also, recall the law of total probability:

P(X = x) =
X

y

P(X = x, Y = y). (14.112)

Using these facts and the Markov property we have

pij(m+ n) = P(Xm+n = j |X0 = i) (14.113)

=
X

k

P(Xm+n = j,Xm = k |X0 = i) (14.114)

=
X

k

P(Xm+n = j |Xm = k,X0 = i)P(Xm = k |X0 = i) (14.115)

=
X

k

P(Xm+n = j |Xm = k)P(Xm = k |X0 = i) (14.116)

=
X

k

pik(m)pkj(n). (14.117)

which gives (14.109).

Equation (14.109) is nothing more than the equation for matrix multiplication. Hence
we have shown that

Pm+n = PmPn. (14.118)

By definition, P1 = P. Using the above theorem, P2 = P1+1 = P1P1 = PP = P
2.

Continuing this way, we see that

Pn = P
n
⌘ P⇥P⇥ · · ·⇥P| {z }

multiply the matrix n times

. (14.119)

Let µn = (µn(1), . . . , µn(N)) be a row vector where

µn(i) = P(Xn = i) (14.120)

is the marginal probability that the chain is in state i at time n. and µ0 is called the initial
distribution. The following procedure is used to simulate a Markov chain:

Markov Chain Simulation

1. Draw X0 ⇠ µ0. Thus, P(X0 = i) = µ0(i).

2. Iterate:

(a) Draw Xn+1 ⇠ PXn ; thus P(Xn+1 = j |Xn = i) = pij .

(b) n n+ 1
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To understand the meaning of µn, imagine simulating the chain many times, and collect-
ing all the outcomes at time n from all the chains. This histogram would look approximately
like µn. A consequence of theorem 14.108 is the following:

14.121 Lemma. The marginal probabilities are given by

µn = µ0P
n. (14.122)

Proof. We have µn(j) = P(Xn = j) =
P

i P(Xn = j |X0 = i)P (X0 = i) =P
i µ0(i)pij(n) = µ0P

n.

Summary of Terminology

1. Transition matrix: P(i, j) = P(Xn+1 = j |Xn = i) = pij .

2. n-step matrix: Pn(i, j) = P(Xn+m = j |Xm = i).

3. Pn = P
n.

4. Marginal: µn(i) = P(Xn = i).

5. µn = µ0P
n.

The states of a Markov chain can be classified according to various properties.

14.123 Definition. We say that i reaches j (or j is accessible from i) if pij(n) > 0 for some
n, and we write i ! j. If i ! j and j ! i then we write i $ j and we say that i and j
communicate.

14.124 Theorem. The communication relation satisfies the following properties:

1. i$ i.

2. If i$ j then j $ i.

3. If i$ j and j $ k then i$ k.

4. The set of states X can be written as a disjoint union of classes X = X1 [ X2 [ · · ·

where two states i and j communicate with each other if and only if they are in the
same class.

If all states communicate with each other, then the chain is called irreducible. A set of
states is closed if, once you enter that set of states you never leave. A closed set consisting
of a single state is called an absorbing state.
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14.125 Example. Let X = {1, 2, 3, 4} and

P =

0

BBBB@

1
3

2
3 0 0

2
3

1
3 0 0

1
4

1
4

1
4

1
4

0 0 0 1

1

CCCCA
(14.126)

The classes are {1, 2}, {3} and {4}. State 4 is an absorbing state. 2

Suppose we start a chain in state i. Will the chain ever return to state i? If so, that state
is called persistent or recurrent.

14.127 Definition. State i is recurrent or persistent if

P(Xn = i for some n � 1 | X0 = i) = 1. (14.128)

Otherwise, state i is transient

14.129 Theorem. A state i is recurrent if and only if
X

n

pii(n) =1. (14.130)

A state i is transient if and only if
X

n

pii(n) <1. (14.131)

Proof. Define

In =

⇢
1 if Xn = i
0 if Xn 6= i.

(14.132)

The number of times that the chain is in state i is Y =
P

1

n=0 In. The mean of Y , given that
the chain starts in state i, is

E(Y |X0 = i) =
1X

n=0

E(In |X0 = i) =
1X

n=0

P(Xn = i |X0 = i) =
1X

n=0

pii(n). (14.133)

Define ai = P(Xn = i for some n � 1 | X0 = i). If i is recurrent, ai = 1. Thus,
the chain will eventually return to i. Once it does return to i, we argue again that since
ai = 1, the chain will return to state i again. By repeating this argument, we conclude that
E(Y |X0 = i) = 1. If i is transient, then ai < 1. When the chain is in state i, there is
a probability 1 � ai > 0 that it will never return to state i. Thus, the probability that the
chain is in state i exactly n times is an�1

i (1 � ai). This is a geometric distribution which
has finite mean.

14.134 Theorem. Recurrence satisfies the following properties.
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1. If state i is recurrent and i$ j, then j is recurrent.

2. If state i is transient and i$ j, then j is transient.

3. A finite Markov chain must have at least one recurrent state.

4. The states of a finite, irreducible Markov chain are all recurrent.

14.135 Theorem (Decomposition Theorem). The state space X can be written as the
disjoint union

X = XT [ X1 [ X2 · · · (14.136)

where XT are the transient states and each Xi is a closed, irreducible set of recurrent states.

14.137 Example (Random walk). Let X = {. . . ,�2,�1, 0, 1, 2, . . . , } and suppose that
pi,i+1 = p, pi,i�1 = q = 1 � p. All states communicate, hence either all the states are
recurrent or all are transient. To see which, suppose we start at X0 = 0. Note that

p00(2n) =

✓
2n

n

◆
pnqn (14.138)

since the only way to get back to 0 is to have n heads (steps to the right) and n tails (steps
to the left). We can approximate this expression using Stirling’s formula which says that

n! ⇠ nnpne�n
p

2⇡. (14.139)

Inserting this approximation into (14.138) shows that

p00(2n) ⇠
(4pq)n
p
n⇡

. (14.140)

It is easy to check that
P

n p00(n) < 1 if and only if
P

n p00(2n) < 1. Moreover,P
n p00(2n) =1 if and only if p = q = 1/2. By Theorem (14.129), the chain is recurrent

if p = 1/2 otherwise it is transient. 2

Convergence of Markov Chains.

To discuss the convergence of chains, we need a few more definitions. Suppose that X0 = i.
Define the recurrence time

Tij = min{n > 0 : Xn = j} (14.141)

assuming Xn ever returns to state i, otherwise define Tij = 1. The mean recurrence time
of a recurrent state i is

mi = E(Tii) =
X

n

nfii(n) (14.142)
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where
fij(n) = P(X1 6= j,X2 6= j, . . . , Xn�1 6= j,Xn = j |X0 = i). (14.143)

A recurrent state is null recurrent or null if mi = 1 otherwise it is called non-null or
positive.

14.144 Lemma. If a state is null and recurrent, then pnii ! 0.

14.145 Lemma. In a finite state Markov chain, all recurrent states are positive.

Consider a three-state chain with transition matrix
2

4
0 1 0
0 0 1
1 0 0

3

5 . (14.146)

Suppose we start the chain in state 1. Then we will be in state 3 at times 3, 6, 9, . . . .
This is an example of a periodic chain. Formally, the period of state i is d if pii(n) = 0
whenever n is not divisible by d and d is the largest integer with this property. Thus,
d = gcd{n : pii(n) > 0} where gcd means “greater common divisor.” State i is periodic
if d(i) > 1 and aperiodic if d(i) = 1. A state with period 1 is called aperiodic.

14.147 Lemma. If state i has period d and i$ j then j has period d.

14.148 Definition. A state is ergodic if it is recurrent, non-null and aperiodic. A chain is
ergodic if all its states are ergodic.

Let ⇡ = (⇡i : i 2 X ) be a vector of non-negative numbers that sum to one. Thus ⇡ can
be thought of as a probability mass function.

14.149 Definition. We say that ⇡ is a stationary (or invariant) distribution if ⇡ = ⇡P.

Here is some intuition. Draw X0 from ⇡. Now draw X1 according to the transition
probability of the chain. The distribution of X1 is then µ1 = µ0P = ⇡P = ⇡. Similarly, the
distribution of X2 is ⇡P2 = (⇡P)P = ⇡P = ⇡. Continuing, we see that the distribution
of Xn is ⇡Pn = ⇡. In other words, If at any time the chain has distribution ⇡, then it will
continue to have distribution ⇡ forever.

14.150 Definition. We say that a chain has limiting distribution ⇡ if

P
n
!

2

6664

⇡
⇡
...
⇡

3

7775
(14.151)
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for some ⇡, that is, ⇡j = limn!1P
n
ij exists and is independent of i.

Here is the main theorem about convergence. The theorem says that an ergodic chain
converges to its stationary distribution. Also, sample averages converge to their theoretical
expectations under the stationary distribution.

14.152 Theorem. An irreducible, ergodic Markov chain has a unique stationary
distribution ⇡. The limiting distribution exists and is equal to ⇡. If g is any bounded
function, then, with probability one,

lim
N!1

1

N

NX

n=1

g(Xn)! E⇡(g) ⌘
X

j

⇡j g(j). (14.153)

We say that ⇡ satisfies detailed balance if

⇡ipij = pji⇡j . (14.154)

Detailed balance guarantees that ⇡ is a stationary distribution.

14.155 Theorem. If ⇡ satisfies detailed balance, then ⇡ is a stationary distribution.

Proof. We need to show that ⇡P = ⇡. The jth element of ⇡P is
P

i ⇡ipij =
P

i ⇡jpji =
⇡j
P

i pji = ⇡j .

Beware—just because a chain has a stationary distribution does not mean it converges.

14.156 Example. Let

P =

2

4
0 1 0
0 0 1
1 0 0

3

5 . (14.157)

Let ⇡ = (1/3, 1/3, 1/3). Then ⇡P = ⇡ so ⇡ is a stationary distribution. If the chain is
started with the distribution ⇡ it will stay in that distribution. Imagine simulating many
chains and checking the marginal distribution at each time n. It will always be the uniform
distribution ⇡. But this chain does not have a limit. It continues to cycle around forever.
2
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14.158 Example. Let X = {1, 2, 3, 4, 5, 6}. Let

P =

2

6666666664

1
2

1
2 0 0 0 0

1
4

3
4 0 0 0 0

1
4

1
4

1
4

1
4 0 0

1
4 0 1

4
1
4 0 1

4

0 0 0 0 1
2

1
2

0 0 0 0 1
2

1
2

3

7777777775

(14.159)

Then C1 = {1, 2} and C2 = {5, 6} are irreducible closed sets. States 3 and 4 are transient
because of the path 3 ! 4! 6 and once you hit state 6 you cannot return to 3 or 4. Since
pii(1) > 0, all the states are aperiodic. In summary, 3 and 4 are transient while 1, 2, 5, and
6 are ergodic. 2

14.160 Example (Hardy-Weinberg). Here is a famous example from genetics. Suppose
a gene can be type A or type a. There are three types of people (called genotypes): AA,
Aa, and aa. Let (p, q, r) denote the fraction of people of each genotype. We assume that
everyone contributes one of their two copies of the gene at random to their children. We
also assume that mates are selected at random. The latter is not realistic however, it is often
reasonable to assume that you do not choose your mate based on whether they are AA, Aa,
or aa. (This would be false if the gene was for eye color and if people chose mates based
on eye color.) Imagine if we pooled everyone’s genes together. The proportion of A genes
is P = p + (q/2) and the proportion of a genes is Q = r + (q/2). A child is AA with
probability P 2, aA with probability 2PQ, and aa with probability Q2. Thus, the fraction of
A genes in this generation is

P 2 + PQ =
⇣
p+

q

2

⌘2
+
⇣
p+

q

2

⌘⇣
r +

q

2

⌘
. (14.161)

However, r = 1� p� q. Substitute this in the above equation and you get P 2 + PQ = P .
A similar calculation shows that the fraction of “a” genes is Q. We have shown that the
proportion of type A and type a is P and Q and this remains stable after the first genera-
tion. The proportion of people of type AA, Aa, aa is thus (P 2, 2PQ,Q2) from the second
generation and on. This is called the Hardy-Weinberg law.

Assume everyone has exactly one child. Now consider a fixed person and let Xn

be the genotype of their nth descendant. This is a Markov chain with state space X =
{AA,Aa, aa}. Some basic calculations will show you that the transition matrix is

2

4
P Q 0
P
2

P+Q
2

Q
2

0 P Q

3

5 . (14.162)

The stationary distribution is ⇡ = (P 2, 2PQ,Q2). 2
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INFERENCE FOR MARKOV CHAINS. Consider a chain with finite state space X = {1, 2, . . . ,M}.
Suppose we observe n observations X1, . . . , Xn from this chain. The unknown parameters
of a Markov chain are the initial probabilities µ0 = (µ0(1), µ0(2), . . . , ) and the elements of
the transition matrix P. Each row of P is a multinomial distribution. So we are essentially
estimating M distributions (plus the initial probabilities). Let nij be the observed number
of transitions from state i to state j. The likelihood function is

L(µ0,P) = µ0(x0)
nY

r=1

pXr�1,Xr = µ0(x0)
MY

i=1

MY

j=1

p
nij

ij . (14.163)

There is only one observation on µ0 so we can’t estimate that. Rather, we focus on esti-
mating P. The mle is obtained by maximizing L(µ0,P) subject to the constraint that the
elements are non-negative and the rows sum to 1. The solution is

bpij =
nij

ni
(14.164)

where ni =
PM

j=1 nij . Here we are assuming that ni > 0. If not, then we set bpij = 0 by
convention.

14.165 Theorem (Consistency and asymptotic normality of the mle). Assume that the
chain is ergodic. Let bpij(n) denote the mle after n observations. Then bpij(n)

P
�! pij . Also,

hp
Ni(n)(bpij � pij)

i
 N(0,⌃) (14.166)

where the left-hand side is a matrix, Ni(n) =
Pn

r=1 I(Xr = i) and

⌃ij,k` =

8
<

:

pij(1� pij) (i, j) = (k, `)
�pijpi` i = k, j 6= `
0 otherwise.

(14.167)

14.9 Bibliographic Remarks

MCMC methods go back to the effort to build the atomic bomb in World War II. They were
used in various places after that, especially in spatial statistics. There was a new surge of
interest in the 1990s that still continues. The main reference for this chapter is Robert and
Casella (1999). See also Gelman et al. (2003) and Gilks et al. (1998).

Exercises

14.1 Let

I =

Z 2

1

e�x2/2

p
2⇡

dx. (14.168)
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(a) Estimate I using the basic Monte Carlo method. Use N = 100, 000. Also, find
the estimated standard error.
(b) Find an (analytical) expression for the standard error of your estimate in (a).
Compare to the estimated standard error.
(c) Estimate I using importance sampling. Take g to be N(1.5, v2) with v = .1,
v = 1 and v = 10. Compute the (true) standard errors in each case. Also, plot a
histogram of the values you are averaging to see if there are any extreme values.
(d) Find the optimal importance sampling function g⇤. What is the standard error
using g⇤?

14.2 Here is a way to use importance sampling to estimate a marginal density. Let fX,Y (x, y)
be a bivariate density and let (X1, X2), . . . , (XN , YN ) ⇠ fX,Y .
(a) Let w(x) be an arbitrary probability density function. Let

bfX(x) =
1

N

NX

i=1

fX,Y (x, Yi)w(Xi)

fX,Y (Xi, Yi)
. (14.169)

Show that, for each x,
bfX(x)

p
! fX(x). (14.170)

Find an expression for the variance of this estimator.
(b) Let Y ⇠ N(0, 1) and X |Y = y ⇠ N(y, 1 + y2). Use the method in (a) to
estimate fX(x).

14.3 Here is a method called accept–reject sampling for drawing observations from a dis-
tribution.
(a) Suppose that f is some probability density function. Let g be any other density
and suppose that f(x)  Mg(x) for all x, where M is a known constant. Consider
the following algorithm:
(step 1): Draw X ⇠ g and U ⇠ Uniform(0, 1);
(step 2): If U  f(X)/(Mg(X)) set Y = X , otherwise go back to step 1. (Keep
repeating until you finally get an observation.)
Show that the distribution of Y is f .
(b) Let f be a standard normal density and let g(x) = 1/(1 + x2) be the Cauchy
density. Apply the method in (a) to draw 1,000 observations from the normal dis-
tribution. Draw a histogram of the sample to verify that the sample appears to be
normal.

14.4 A random variable Z has a inverse Gaussian distribution if it has density

f(z) / z�3/2 exp

⇢
�✓1z �

✓2
z

+ 2
p
✓1✓2 + log

⇣p
2✓2

⌘�
, z > 0 (14.171)

where ✓1 > 0 and ✓2 > 0 are parameters. It can be shown that

E(Z) =

r
✓2
✓1

and E

✓
1

Z

◆
=

r
✓1
✓2

+
1

2✓2
. (14.172)
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(a) Let ✓1 = 1.5 and ✓2 = 2. Draw a sample of size 1,000 using the independence-
Metropolis–Hastings method. Use a Gamma distribution as the proposal density.
To assess the accuracy, compare the mean of Z and 1/Z from the sample to the
theoretical means Try different Gamma distributions to see if you can get an accurate
sample.
(b) Draw a sample of size 1,000 using the random-walk-Metropolis–Hastings method.
Since z > 0 we cannot just use a normal density. One strategy is this. Let W =
logZ. Find the density of W . Use the random-walk-Metropolis–Hastings method to
get a sample W1, . . . ,WN and let Zi = eWi . Assess the accuracy of the simulation
as in part (a).

14.5 Get the heart disease data from the book web site. Consider a Bayesian analysis of
the logistic regression model

P(Y = 1 |X = x) =
e�0+

Pk
j=1 �jxj

1 + e�0+
Pk

j=1 �jxj
. (14.173)

Use the flat prior f(�0, . . . ,�k) / 1. Use the Gibbs–Metropolis algorithm to draw
a sample of size 10,000 from the posterior f(�0,�1 | data). Plot histograms of the
posteriors for the �j’s. Get the posterior mean and a 95 percent posterior interval for
each �j .
(b) Compare your analysis to a frequentist approach using maximum likelihood.


