Problem 1 [25 points: 5+10+10]

(i) Let $W = -X$ with mean $\nu = -\mu$, and note that if X is sub-Gaussian then, if the inequality is true for $t \in \mathbb{R}$, then it is also true for $-t$. Thus

$$
\log \left(\mathbb{E} \left[e^{t(W-\nu)} \right] \right) = \log \left(\mathbb{E} \left[e^{-t(X-\mu)} \right] \right) \leq \frac{t^2 \sigma^2}{2},
$$

sub-Gaussianity of X

This is true $\forall t \in \mathbb{R}$, implying that W is sub-Gaussian. The vice versa “W sub-Gaussian $\Rightarrow X$ sub-Gaussian” can be proved with identical steps.

(ii) For any $c > 0$

$$
P(X - \mu \geq t) = P(c(X - \mu) \geq ct) = P\left(e^{c(X-\mu)} \geq e^{ct}\right)
$$

[Markov’s inequality] $\leq \mathbb{E}[e^{c(X-\mu)}] e^{-ct}$

[sub-Gaussianity of X] $\leq e^{\frac{c^2 \sigma^2}{2} - ct}$

Since this inequality holds for any $c > 0$, we can find c^* that minimize the upper bound. Let $g(c) = \frac{c^2 \sigma^2}{2} - ct$. We have

- $\frac{\partial g}{\partial c} = c \sigma^2 - t = 0 \Rightarrow c^* = \frac{t}{\sigma^2}$
- $\frac{\partial^2 g}{\partial c^2} = \sigma^2 > 0 \Rightarrow$ strict convexity $\Rightarrow c^*$ is the global minimum

Thus the sharpest upper bound (in this Problem) is obtained by plugging c^* into the formula above:

$$
P(X - \mu \geq t) \leq e^{-\frac{t^2}{2 \sigma^2}}$$
(iii) Let σ^2_X, σ^2_Y be the constants of the sub-Gaussianity bounds for X and Y, respectively. We have
\[
E \left[e^{t(X+Y-\mu-\nu)} \right] = E \left[e^{tX} \right] E \left[e^{tY} \right] \quad [X, Y \text{ are independent}]
\leq e^{-\frac{t^2 \sigma_X^2}{2}} e^{-\frac{t^2 \sigma_Y^2}{2}} \quad \text{[sub-Gaussianity of } X, Y]\]
\[
eq e^{\frac{t^2(\sigma_X^2+\sigma_Y^2)}{2}}
\]
showing that $X+Y$ is sub-Gaussian with constant $\sigma^2 = \sigma_X^2 + \sigma_Y^2$.

Problem 2 [20 points]

Note that $Y_i \sim \text{Bernoulli}(\theta_n)$ with mean θ_n and variance $\theta_n(1-\theta_n)$, where θ_n is a non-increasing sequence with $\lim_{n \to \infty} \theta_n = \lim_{n \to \infty} \frac{1}{n^2} \int_{-1/n^2}^{1/n^2} p(x) dx = 0$ since the density p of X is bounded (so the distribution of X cannot be a point mass on 0). Since $|Y_i| \leq 1$, then

- Hoeffding’s inequality
 \[
P(\bar{Y}_n - \theta_n > t) \leq P(|\bar{Y}_n - \theta_n| > t) \leq 2e^{-2nt^2}
 \]

- Bernstein’s inequality
 \[
P(\bar{Y}_n - \theta_n > t) \leq P(|\bar{Y}_n - \theta_n| > t) \leq 2\exp \left\{ -\frac{nt^2}{2\theta_n(1-\theta_n) + 2t/3} \right\}
 \]

Bernstein’s bound is tighter than Hoeffding’s if
\[
t < 3 \left(\frac{1}{4} - \theta_n(1-\theta_n) \right) = g(n)
\]

There exist n^* such that $\theta_{n^*} - 1 \geq \frac{1}{2} \geq \theta_{n^*}$, so that for $n << n^*$ and $n \gg n^*$ we get $g(n) \approx \frac{3}{4}$ and for $n \approx n^*$ we have $g(n) \approx 0$. Thus the result depends on the sequence θ_n: if we are interested in small deviations of \bar{Y}_n from its mean θ_n, then Bernstein’s bound is tighter than the Hoeffding’s one for sufficiently small or sufficiently large n. However, we can also see that $\theta_n(1-\theta_n) \leq \theta_n \leq \sup_x p(x) \int_{-1/n^2}^{1/n^2} dx = 2 \sup_x p(x)/n^2$, i.e. $\theta_n(1-\theta_n) = O(n^{-2})$, so that for large n we have $\frac{nt^2}{2\theta_n(1-\theta_n) + 2t/3} \sim \frac{3}{2} nt$, which implies that for $t < 3/4$ and n large, Bernstein’s inequality might be preferred to Hoeffding’s.
Problem 3 [40 points: 0+15+0+15+10+0]

(i) Since \(X_n/a_n = O_P(1) \) then \(\forall \delta > 0, \exists C > 0 \) such that, \(\mathbb{P}(|X_n/a_n| > C) < \delta \). Moreover, since \(Y_n/b_n = O(1) \), then \(\exists B > 0 \) such that for \(n \) sufficiently large, \(\left| \frac{Y_n}{b_n} \right| \leq B \). Thus for sufficiently large \(n \):

\[
P(|X_n Y_n|/|a_n b_n| > BC) \leq P(B|X_n/a_n| > BC)
= P(|X_n/a_n| > C)
< \delta
\]

so that for large \(n, \forall \delta > 0, \exists C^* = BC > 0 \) such that \(P(|X_n Y_n|/|a_n b_n| > C^*) < \delta \).

(ii) There exists constants \(C_X, C_Y \) such that \(\forall \delta > 0, \mathbb{P}(|X_n/a_n| > C) < \delta \) and \(\mathbb{P}(|Y_n/b_n| > C) < \delta \). Note that

\[
|X_n + Y_n|/\max\{a_n, b_n\} > C_X + C_Y \Rightarrow |X_n/\max\{a_n, b_n\}| > C_X \text{ or } |Y_n/\max\{a_n, b_n\}| > C_Y
\]

\[
\Rightarrow |X_n/a_n| > C_X \text{ or } |Y_n/b_n| > C_Y
\]

since \(\max\{a_n, b_n\} \geq a_n, b_n \). Thus, for large \(n \), by the union bound we have that:

\[
\mathbb{P}(\frac{|X_n + Y_n|}{\max\{a_n, b_n\}} > C_X + C_Y) \leq
\leq \mathbb{P}(\frac{|X_n/\max\{a_n, b_n\}| > C_X} + \mathbb{P}(\frac{|Y_n/\max\{a_n, b_n\}| > C_Y) \leq
\leq \mathbb{P}(\frac{|X_n/a_n| > C_X} + \mathbb{P}(\frac{|Y_n/b_n| > C_Y) < 2\delta
\]

Since \(\delta \) was arbitrary this proves the claim.

(iii) The claim is false. Let \(X_n = a_n = 1 \) and \(Y_n = n, b_n = n^2 \). Then we have that \(X_n Y_n = n \neq o_P(1) = o_P(a_n) \).
(iv) $X_n = o_P(a_n), Y_n = o_P(b_n)$, that is $\forall \varepsilon, \delta > 0$ there exists n_x^*, n_y^* such that if $n > n_x^*, n_y^*$ then

$$\mathbb{P}(|X_n/a_n| > \varepsilon) < \delta$$

and the claim is proved.

(v) This proposition is false. We provide two counterexamples.

- Take $X_n = 1/n^2, Y_n = 1/n^4, a_n = 1/n$ and $b_n = 1/n^2$. Then

$$Y_n = o_P(b_n) \implies Y_n = O_P(b_n)$$

Now note that

$$\left| \frac{X_n b_n}{Y_n a_n} \right| = n$$

Which goes to infinity with probability 1.

- Take $Y_n = X_n^2$ and $b_n = a_n^2$. Then

$$Y_n = o_P(b_n) \implies Y_n = O_P(b_n)$$

Now note that $X_n/Y_n = 1/X_n \neq o_P(1/a_n)$ since for $\varepsilon > 0$

$$\mathbb{P}(|a_n/X_n| > \varepsilon) = \mathbb{P}(1/\varepsilon > |X_n/a_n|) \to 1$$

(vi) Case $X_n = O_P(a_n), Y_n = O_P(b_n)$ \implies $X_n Y_n = O_P(a_n b_n)$:

We need to show $\forall \varepsilon > 0, \lim_{n \to \infty} \mathbb{P}\left(\left| \frac{X_n Y_n}{a_n b_n} \right| > \varepsilon \right) = 0$, i.e. $\forall \varepsilon, \delta > 0, \exists N \in \mathbb{N} \text{ s.t. } \forall n \geq N,

$$\mathbb{P}\left(\left| \frac{X_n Y_n}{a_n b_n} \right| > \varepsilon \right) < \delta.$$

Let $\varepsilon, \delta > 0$ be fixed. Since $X_n = O_P(a_n)$, then $\exists C > 0$ such that for large n, say $n \geq n_x^*$,

$$\mathbb{P}\left(\left| \frac{X_n}{a_n} \right| > C \right) < \frac{\delta}{2}. $$

Moreover $Y_n = o_P(b_n)$, so that $\exists n_y^*$ s.t. $\forall n \geq n_y^*$, $\mathbb{P}\left(\left| \frac{Y_n}{b_n} \right| > \frac{\varepsilon}{C} \right) < \frac{\delta}{2}$.

4
Since \(\frac{X_n Y_n}{a_n b_n} > \varepsilon \Rightarrow \frac{X_n}{a_n} > C \) or \(\frac{Y_n}{b_n} > \varepsilon \), then \(\forall n \geq N = \max\{n_X^*, n_Y^*\} \),

\[
 P \left(\frac{X_n Y_n}{a_n b_n} > \varepsilon \right) \leq P \left(\left\{ \frac{X_n}{a_n} > C \right\} \cup \left\{ \frac{Y_n}{b_n} > \varepsilon \right\} \right)
\leq P \left(\frac{X_n}{a_n} > C \right) + P \left(\frac{Y_n}{b_n} > \varepsilon \right)
< \frac{\delta}{2} + \frac{\delta}{2} = \delta
\]

Note that we can find such \(N \) for any pair \(\varepsilon, \delta > 0 \), where \(\delta \) can be chosen arbitrarily close to 0. Therefore \(\forall \varepsilon > 0, \lim_{n \to \infty} P \left(\frac{X_n Y_n}{a_n b_n} > \varepsilon \right) = 0 \), i.e. \(X_n Y_n = o_p(a_n b_n) \).

Problem 4 [15 points]

In the case where \(F \) is continuous and also strictly continuous, to show \(F(X) \sim \text{Uniform}(0, 1) \) we can just exploit the invertibility of \(F \) to obtain that for \(p \in (0, 1) \)

\[
P(F(X) \leq p) = P(X \leq F^{-1}(p)) = p
\]

(2)

where \(F^{-1} \) is the inverse of \(F \) and so the quantile function.

In the more general case where the cdf \(F \) is assumed to be only continuous, but not necessarily strictly increasing (e.g. if \(F \) is flat on some interval \([a, b]\)), then \(F \) is not strictly increasing but just non-decreasing), we need more steps. We start showing that if \(F \) is continuous, then \(\forall p \in (0, 1) \) we have \(F(x) \geq p \Leftrightarrow x \geq F^{-1}(p) \), where \(F^{-1}(p) = \inf \{ t : F(t) \geq p \} \) is the generalized inverse of \(F \) and the quantile function.

- “\(F(x) \geq p \Rightarrow x \geq F^{-1}(p) \)”. Note that \(F^{-1}(F(x)) \leq x \) and that \(F^{-1}(p) \) is strictly increasing in \(p \in (0, 1) \). Thus

\[
F(x) \geq p \Leftrightarrow F^{-1}(F(x)) \geq F^{-1}(p) \Rightarrow x \geq F^{-1}(p)
\]

- “\(F(x) \geq p \Leftrightarrow x \geq F^{-1}(p) \)”. Note that \(F(F^{-1}(p)) = P(X \leq \inf \{ t : F(t) \geq p \}) \geq p, \forall p(0, 1) \). Thus

\[
x \geq F^{-1}(p) \Rightarrow F(x) \geq F(F^{-1}(p)) \geq p
\]

Now we can complete the proof

\[
P(F(X) > p) = P(X > F^{-1}(p)) = p
\]

where we used the fact that \(F^{-1} \) is strictly monotone and \(X \) is continuous.
Problem 5 [0 points]

For all \(A, B \)

\[
P(g(X) \in A, h(Y) \in B) = P(X \in g^{-1}(A), Y \in h^{-1}(B))
\]

\[
= P(X \in g^{-1}(A))P(Y \in h^{-1}(B))
\]

\[
= P(g(X) \in A)P(h(X) \in B)
\]

where \(g^{-1}(A) = \{ x \in \mathcal{X} : g(x) \in A \} \) and \(h^{-1}(B) = \{ y \in \mathcal{Y} : h(y) \in B \} \).

Problem 6 [BONUS 20 points]

(a) From hint,

\[
L(X_1, \ldots, X_i, \ldots, X_n) - L(X_1, \ldots, \hat{X}_i, \ldots, X_n)
\]

\[
\leq \left[L(\{X_1, \ldots, X_n\} \setminus \{X_i\}) + 2 \min_{j > i} \|X_i - X_j\| \right] - L(\{X_1, \ldots, X_n\} \setminus \{X_i\})
\]

\[
= 2 \min_{i < j \leq n} \|X_i - X_j\|,
\]

and by symmetry, \(L(X_1, \ldots, X_i, \ldots, X_n) - L(X_1, \ldots, \hat{X}_i, \ldots, X_n) \geq -2 \min_{i < j \leq n} \|\hat{X}_i - X_j\| \).

Therefore

\[
Y_i = \mathbb{E} \left[L(X_1, \ldots, X_i, \ldots, X_n) - L(X_1, \ldots, \hat{X}_i, \ldots, X_n) | X_1, \ldots, X_i \right]
\]

\[
\leq 2 \mathbb{E} \left[\min_{i < j \leq n} \|X_i - X_j\| | X_1, \ldots, X_i \right]
\]

\[
= 2 \mathbb{E} \left[\min_{i < j \leq n} \|X_i - X_j\| | X_i \right] = 2g_{n-i}(X_i)
\]

and

\[
Y_i = \mathbb{E} \left[L(X_1, \ldots, X_i, \ldots, X_n) - L(X_1, \ldots, \hat{X}_i, \ldots, X_n) | X_1, \ldots, X_i \right]
\]

\[
\geq -2 \mathbb{E} \left[\min_{i < j \leq n} \|\hat{X}_i - X_j\| | X_1, \ldots, X_i \right]
\]

\[
= -2 \mathbb{E} \left[\min_{i < j \leq n} \|\hat{X}_i - X_j\| \right]
\]

\[
= -2 \mathbb{E} \left[\min_{i < j \leq n} \|\hat{X}_i - X_j\| | \hat{X}_i \right] = -2 \mathbb{E} \left[g_{n-i}(\hat{X}_i) \right].
\]

Hence

\[
|Y_i| \leq 2 \max \left\{ g_{n-i}(X_i), \mathbb{E} \left[g_{n-i}(\hat{X}_i) \right] \right\}.
\]
(b) From \(g_m(x) \leq \sqrt{\frac{\pi}{m}} \) and (a), \(|Y_i| \leq 2\sqrt{\frac{\pi}{n-i}} \) for \(1 \leq i \leq n-1 \), and we have \(|Y_n| \leq 2\sqrt{2} \).

By applying McDiarmid inequality to \(g(Y_1, \cdots, Y_n) = \sum_{i=1}^{n} Y_i \) then \(|g(Y_1, \cdots, Y_i, \cdots, Y_n) - g(Y_1, \cdots, \hat{Y}_i, \cdots, Y_n)| = |Y_i - \hat{Y}_i| \leq 4\sqrt{\frac{\pi}{n-i}} \) for \(1 \leq i \leq n-1 \) and \(|g(Y_1, \cdots, Y_n) - g(Y_1, \cdots, \hat{Y}_n)| \leq 4\sqrt{2} \), so

\[
\mathbb{P}(|L(X_1, \cdots, X_n) - \mathbb{E}[L(X_1, \cdots, X_n)]| > \varepsilon) \leq 2 \exp\left(-\frac{2\varepsilon^2}{(4\sqrt{2})^2 + \sum_{i=1}^{n-1} \left(4\sqrt{\frac{\pi}{n-i}}\right)^2}\right)
\]

\[
\leq 2 \exp\left(-\frac{2\varepsilon^2}{16 + 8\pi + 8\pi \sum_{i=2}^{n-1} \int_{i-1}^{i} \frac{1}{x} dx}\right)
\]

\[
\leq 2 \exp\left(-\frac{\varepsilon^2}{16 + 8\pi + 8\pi \log n}\right).
\]

Actually, \(Y_i \)'s are not independent, so McDiarmid inequality is not directly applicable. Instead, you can apply Azuma-Hoeffding's inequality in this case, which gives essentially the same result as applying McDiarmid inequality without worrying about \(Y_i \)'s independence.

Proofs of hints

- **Showing** \(L(\{x_1, \cdots, x_n\} \setminus \{x_i\}) \leq L(x_1, \cdots, x_n) \leq L(\{x_1, \cdots, x_n\} \setminus \{x_i\}) + 2 \min_{i < j \leq n} \|x_i - x_j\|\)

Let the shortest tour of \(\{x_1, \cdots, x_n\} \) be \(T = \cdots x_j x_i x_k \cdots \). If we remove \(x_i \) from this tour and make \(T' = \cdots x_j x_k \cdots \), then length of \(T' \) is shorter than length of \(T \). Then \(T' \) is one possible tour of \(\{x_1, \cdots, x_n\} \setminus \{x_i\} \), so

\[
L(\{x_1, \cdots, x_n\} \setminus \{x_i\}) \leq (\text{length of } T') \leq (\text{length of } T) = L(x_1, \cdots, x_n).
\]

Fix any \(j > i \), and let the shortest tour of \(\{x_1, \cdots, x_n\} \) be \(T'' = \cdots x_k x_j x_k \cdots \). If we add \(x_i \) between \(x_j, x_k \) from \(T'' \) and make \(T''' = \cdots x_k x_i x_j x_k \cdots \), then

\[
(\text{length of } T''') = (\text{length of } T'') - \|x_j - x_k\| + \|x_j - x_i\| + \|x_i - x_k\| \leq (\text{length of } T'') - \|x_j - x_k\| + \|x_j - x_i\| + \|x_i - x_j\| + \|x_j - x_k\| = L(\{x_1, \cdots, x_n\} \setminus \{x_i\}) + 2\|x_j - x_i\|.
\]
Then T'' is one possible tour of $\{x_1, \cdots, x_n\}$, so

$$L(x_1, \cdots, x_n) \leq (\text{length of } T'') \leq L(\{x_1, \cdots, x_n\} \setminus \{x_i\}) + 2\|x_i - x_j\|.$$

Since this holds for any $i < j \leq n$,

$$L(x_1, \cdots, x_n) \leq L(\{x_1, \cdots, x_n\} \setminus \{x_i\}) + 2 \min_{i < j \leq n} \|x_i - x_j\|.$$

- Showing $g_m(x) = \mathbb{E}\left(\min_{1 \leq i \leq m} \|x - X_i\| \right) \leq \sqrt{\frac{\pi}{m}}$

For any $0 \leq \lambda \leq \sqrt{2}$, $P\left(\min_{1 \leq i \leq m} \|x - X_i\| \geq \lambda \right)$ is maximized when x is in one of corners, and in that case

$$P(\|x - X_1\| \geq \lambda) = \text{vol}(\{0, 1\}^2 \setminus B(0, \lambda)) \leq \text{vol}\left(\left[0, 1\right]^2 \setminus \left[0, \frac{\lambda}{2}\right]\right) = 1 - \frac{\lambda^2}{4}.$$

Hence

$$P\left(\min_{1 \leq i \leq m} \|x - X_i\| \geq \lambda \right) \leq \left(1 - \frac{\lambda^2}{4}\right)^m \leq \exp\left(-\frac{m}{4} \lambda^2\right),$$

and therefore,

$$\mathbb{E}\left(\min_{1 \leq i \leq m} \|x - X_i\| \right) = \int_0^{\sqrt{2}} P\left(\min_{1 \leq i \leq m} \|x - X_i\| \geq \lambda \right) d\lambda
\leq \int_0^{\infty} \exp\left(-\frac{m}{4} \lambda^2\right) d\lambda
= \sqrt{\frac{\pi}{m}}.$$

- Showing $L(X_1, \cdots, X_n) - \mathbb{E}[L(X_1, \cdots, X_n)] = \sum_{i=1}^n Y_i$

$$Y_i = \mathbb{E}\left[L(X_1, \cdots, X_i, \cdots, X_n) - L(X_1, \cdots, \hat{X}_i, \cdots, X_n) \right| X_1, \cdots, X_i]$$

$$= \mathbb{E}\left[L(X_1, \cdots, X_i, \cdots, X_n) \right| X_1, \cdots, X_i] - \mathbb{E}\left[L(X_1, \cdots, \hat{X}_i, \cdots, X_n) \right| X_1, \cdots, X_i]$$

$$= \mathbb{E}\left[L(X_1, \cdots, X_i, \cdots, X_n) \right| X_1, \cdots, X_i] - \mathbb{E}\left[L(X_1, \cdots, \hat{X}_i, \cdots, X_n) \right| X_1, \cdots, X_i - 1]$$

$$= \mathbb{E}\left[L(X_1, \cdots, X_i, \cdots, X_n) \right| X_1, \cdots, X_i] - \mathbb{E}\left[L(X_1, \cdots, X_i, \cdots, X_n) \right| X_1, \cdots, X_i - 1]$$

hence

$$\sum_{i=1}^n Y_i = \mathbb{E}\left[L(X_1, \cdots, X_n) \right| X_1, \cdots, X_n] - \mathbb{E}\left[L(X_1, \cdots, X_n) \right] = L(X_1, \cdots, X_n) - \mathbb{E}\left[L(X_1, \cdots, X_n) \right].$$