Homework 4
36-705
Due: Thursday September 24 by 3pm

1. Recall that the Rademacher complexity for a class of functions is

\[R_n(\mathcal{F}) = \mathbb{E}_{\epsilon,X} \sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^{n} f(X_i)\epsilon_i \right|. \]

Let

\[\mathcal{F} = \left\{ f : f(x) = \langle \beta, x \rangle, \|\beta\|_2 \leq B \right\}. \]

Suppose that each \(X_i \sim N(0, I_d) \) (multivariate Normal). Now show that:

\[R_n(\mathcal{F}) \leq B \sqrt{\frac{d}{n}}. \]

Hint: From Jensen’s inequality: \(\mathbb{E}[X] \leq \sqrt{\mathbb{E}[X^2]} \).

2. Suppose that we take a collection of sets \(\mathcal{A} \), and a collection of sets \(\mathcal{B} \), and define \(\mathcal{C} \) as:

\[\mathcal{C} = \{ A \cup B : A \in \mathcal{A}, B \in \mathcal{B} \}. \]

Show that the shattering number:

\[s(\mathcal{C}, n) \leq s(\mathcal{A}, n) \times s(\mathcal{B}, n). \]

3. Suppose instead of taking the union of individual sets, we simply collected all sets to define:

\[\mathcal{C} = \{ A : A \in \mathcal{A} \text{ or } A \in \mathcal{B} \}. \]

Show that the shattering number:

\[s(\mathcal{C}, n) \leq s(\mathcal{A}, n) + s(\mathcal{B}, n). \]

4. Let \(p_\theta \) be the density on \(\mathbb{R}^2 \) that is uniform on a disc of radius \(\theta \). Let \(X_1, \ldots, X_n \sim p_\theta \).

 (a) Write down the likelihood function.

 (b) Find a minimal sufficient statistic.

 (c) Show that \(X_1 \) is not a sufficient statistic.

5. Define a partition of \(\mathbb{R}^n \) as follows. Two vectors \((x_1, \ldots, x_n) \) and \((y_1, \ldots, y_n) \) are in the same element of the partition if and only if \(L(\theta; x_1, \ldots, x_n) \propto L(\theta; y_1, \ldots, y_n) \). Show that this defines a minimal sufficient partition.