1 Probability Review

I assume you know basic probability. Chapters 1-3 are a review. I will assume you have read and understood Chapters 1-3. If not, you should be in 36-700.

1.1 Random Variables

A random variable is a map X from a set Ω (equipped with a probability P) to \mathbb{R}. We write

$$P(X \in A) = P(\{\omega \in \Omega : X(\omega) \in A\})$$

and we write $X \sim P$ to mean that X has distribution P. The cumulative distribution function (cdf) of X is

$$F_X(x) = F(x) = P(X \leq x).$$

If X is discrete, its probability mass function (pmf) is

$$p_X(x) = p(x) = P(X = x).$$

If X is continuous, then its probability density function function (pdf) satisfies

$$P(X \in A) = \int_A p_X(x)dx = \int_A p(x)dx$$

and $p_X(x) = p(x) = F'(x)$. The following are all equivalent:

$$X \sim P, \quad X \sim F, \quad X \sim p.$$
1.2 Expected Values

The *mean* or expected value of $g(X)$ is

$$
E(g(X)) = \int g(x)dF(x) = \int g(x)dP(x) = \begin{cases} \int_{-\infty}^{\infty} g(x)p(x)dx & \text{if } X \text{ is continuous} \\ \sum_{j} g(x_j)p(x_j) & \text{if } X \text{ is discrete} \end{cases}
$$

Recall that:

1. $E(\sum_{j=1}^{k} c_jg_j(X)) = \sum_{j=1}^{k} c_jE(g_j(X))$.
2. If X_1, \ldots, X_n are independent then

$$
E\left(\prod_{i=1}^{n} X_i\right) = \prod_{i} E(X_i).
$$

3. We often write $\mu = E(X)$.
4. $\sigma^2 = \text{Var}(X) = E((X - \mu)^2)$ is the **Variance**.
5. $\text{Var}(X) = E(X^2) - \mu^2$.
6. If X_1, \ldots, X_n are independent then

$$
\text{Var}\left(\sum_{i=1}^{n} a_iX_i\right) = \sum_{i} a_i^2 \text{Var}(X_i).
$$

7. The covariance is

$$
\text{Cov}(X,Y) = E((X - \mu_X)(Y - \mu_Y)) = E(XY) - \mu_X\mu_Y
$$

and the correlation is $\rho(X,Y) = \text{Cov}(X,Y)/\sigma_x\sigma_y$. Recall that $-1 \leq \rho(X,Y) \leq 1$.

The **conditional expectation** of Y given X is the random variable $E(Y|X)$ whose value, when $X = x$ is

$$
E(Y|X = x) = \int y \ p(y|x)dy
$$

where $p(y|x) = p(x,y)/p(x)$.
The Law of Total Expectation or Law of Iterated Expectation:

\[E(Y) = E[E(Y|X)] = \int E(Y|X = x)p_X(x)dx. \]

The Law of Total Variance is

\[\text{Var}(Y) = \text{Var}[E(Y|X)] + E[\text{Var}(Y|X)]. \]

The moment generating function (mgf) is

\[M_X(t) = E(e^{tX}). \]

If \(M_X(t) = M_Y(t) \) for all \(t \) in an interval around 0 then \(X \overset{d}{=} Y \).

Exercise: show that \(M_X^{(n)}(t)|_{t=0} = E(X^n) \).

1.3 Transformations

Let \(Y = g(X) \). Then

\[F_Y(y) = P(Y \leq y) = P(g(X) \leq y) = \int_{A(y)} p_X(x)dx \]

where \(A_y = \{ x : g(x) \leq y \} \).

Then \(p_Y(y) = F'_Y(y) \).

If \(g \) is monotonic, then

\[p_Y(y) = p_X(h(y)) \left| \frac{dh(y)}{dy} \right| \]

where \(h = g^{-1} \).

Example 2 Let \(p_X(x) = e^{-x} \) for \(x > 0 \). Hence \(F_X(x) = 1 - e^{-x} \). Let \(Y = g(X) = \log X \).

Then

\[F_Y(y) = P(Y \leq y) = P(\log(X) \leq y) = P(X \leq e^y) = F_X(e^y) = 1 - e^{-e^y} \]

and \(p_Y(y) = e^y e^{-e^y} \) for \(y \in \mathbb{R} \).

Example 3 Practice problem. Let \(X \) be uniform on \((-1, 2)\) and let \(Y = X^2 \). Find the density of \(Y \).
Let \(Z = g(X,Y) \). For example, \(Z = X + Y \) or \(Z = X/Y \). Then we find the pdf of \(Z \) as follows:

1. For each \(z \), find the set \(A_z = \{(x,y) : g(x,y) \leq z \} \).

2. Find the CDF

\[
F_Z(z) = P(Z \leq z) = P(g(X,Y) \leq z) = P(\{(x,y) : g(x,y) \leq z \}) = \int \int_{A_z} p_{X,Y}(x,y) \, dx \, dy.
\]

3. The pdf is \(p_Z(z) = F'_Z(z) \).

Example 4 Practice problem. Let \((X,Y)\) be uniform on the unit square. Let \(Z = X/Y \). Find the density of \(Z \).

1.4 Independence

Theorem 5 Let \((X,Y)\) be a bivariate random vector with \(p_{X,Y}(x,y) \). \(X \) and \(Y \) are independent iff \(p_{X,Y}(x,y) = p_X(x)p_Y(y) \).

\(X_1, \ldots, X_n \) are independent if and only if

\[
P(X_1 \in A_1, \ldots, X_n \in A_n) = \prod_{i=1}^{n} P(X_i \in A_i).
\]

Thus, \(p_{X_1,\ldots,X_n}(x_1,\ldots,x_n) = \prod_{i=1}^{n} p_{X_i}(x_i) \).

If \(X_1, \ldots, X_n \) are independent and identically distributed we say they are iid (or that they are a random sample) and we write

\[
X_1, \ldots, X_n \sim P \quad \text{or} \quad X_1, \ldots, X_n \sim F \quad \text{or} \quad X_1, \ldots, X_n \sim p.
\]

1.5 Important Distributions

Normal (Gaussian). \(X \sim N(\mu,\sigma^2) \) if

\[
p(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-(x-\mu)^2/(2\sigma^2)}.
\]
If $X \in \mathbb{R}^d$ then $X \sim N(\mu, \Sigma)$ if

$$p(x) = \frac{1}{(2\pi)^{d/2}|\Sigma|} \exp \left(-\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right).$$

Chi-squared. $X \sim \chi^2_p$ if $X = \sum_{j=1}^p Z_j^2$ where $Z_1, \ldots, Z_p \sim N(0,1)$.

Bernoulli. $X \sim \text{Bernoulli}(\theta)$ if $\Pr(X = 1) = \theta$ and $\Pr(X = 0) = 1 - \theta$ and hence

$$p(x) = \theta^x (1 - \theta)^{1-x} \quad x = 0, 1.$$

Binomial. $X \sim \text{Binomial}(\theta)$ if

$$p(x) = \Pr(X = x) = \binom{n}{x} \theta^x (1 - \theta)^{n-x} \quad x \in \{0, \ldots, n\}.$$

Uniform. $X \sim \text{Uniform}(0, \theta)$ if $p(x) = I(0 \leq x \leq \theta) / \theta$.

Poisson. $X \sim \text{Poisson}(\lambda)$ if $\Pr(X = x) = e^{-\lambda} \lambda^x / x!$, $x = 0, 1, 2, \ldots$. The $\mathbb{E}(X) = \text{Var}(X) = \lambda$ and $M_X(t) = e^{\lambda(e^t-1)}$. We can use the mgf to show: if $X_1 \sim \text{Poisson}(\lambda_1)$, $X_2 \sim \text{Poisson}(\lambda_2)$, independent then $Y = X_1 + X_2 \sim \text{Poisson}(\lambda_1 + \lambda_2)$.

Multinomial. The multivariate version of a Binomial is called a Multinomial. Consider drawing a ball from an urn with k different colors labeled “color 1, color 2, \ldots, color k.” Let $\mathbf{p} = (p_1, p_2, \ldots, p_k)$ where $\sum_j p_j = 1$ and p_j is the probability of drawing color j. Draw n balls from the urn (independently and with replacement) and let $X = (X_1, X_2, \ldots, X_k)$ be the count of the number of balls of each color drawn. We say that X has a Multinomial (n, \mathbf{p}) distribution. The pdf is

$$p(x) = \binom{n}{x_1, \ldots, x_k} p_1^{x_1} \cdots p_k^{x_k}.$$

Exponential. $X \sim \text{exp}(\beta)$ if $p_X(x) = \frac{1}{\beta} e^{-x/\beta}$, $x > 0$. Note that $\text{exp}(\beta) = \Gamma(1, \beta)$.

Gamma. $X \sim \Gamma(\alpha, \beta)$ if

$$p_X(x) = \frac{1}{\Gamma(\alpha) \beta^\alpha} x^{\alpha-1} e^{-x/\beta}$$

for $x > 0$ where $\Gamma(\alpha) = \int_0^\infty \frac{1}{\beta^\alpha} x^{\alpha-1} e^{-x/\beta} dx$.

More on the Multivariate Normal. Let $Y \in \mathbb{R}^d$. Then $Y \sim N(\mu, \Sigma)$ if

$$p(y) = \frac{1}{(2\pi)^{d/2}|\Sigma|^{1/2}} \exp \left(-\frac{1}{2} (y - \mu)^T \Sigma^{-1} (y - \mu) \right).$$

Then $\mathbb{E}(Y) = \mu$ and $\text{cov}(Y) = \Sigma$. The moment generating function is

$$M(t) = \exp \left(\mu^T t + \frac{t^T \Sigma t}{2} \right).$$
Theorem 6 (a). If \(Y \sim N(\mu, \Sigma) \), then \(E(Y) = \mu \), \(\text{cov}(Y) = \Sigma \).
(b). If \(Y \sim N(\mu, \Sigma) \) and \(c \) is a scalar, then \(cY \sim N(c\mu, c^2\Sigma) \).
(c). Let \(Y \sim N(\mu, \Sigma) \). If \(A \) is \(p \times n \) and \(b \) is \(p \times 1 \), then \(AY + b \sim N(A\mu + b, A\Sigma A^T) \).

Theorem 7 Suppose that \(Y \sim N(\mu, \Sigma) \). Let
\[
Y = \begin{pmatrix} Y_1 \\ Y_2 \end{pmatrix}, \quad \mu = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}, \quad \Sigma = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix},
\]
where \(Y_1 \) and \(\mu_1 \) are \(p \times 1 \), and \(\Sigma_{11} \) is \(p \times p \).
(a). \(Y_1 \sim N_p(\mu_1, \Sigma_{11}) \), \(Y_2 \sim N_{n-p}(\mu_2, \Sigma_{22}) \).
(b). \(Y_1 \) and \(Y_2 \) are independent if and only if \(\Sigma_{12} = 0 \).
(c). If \(\Sigma_{22} > 0 \), then the condition distribution of \(Y_1 \) given \(Y_2 \) is
\[
Y_1|Y_2 \sim N_p(\mu_1 + \Sigma_{12} \Sigma_{22}^{-1} (Y_2 - \mu_2), \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}).
\]

Lemma 8 Let \(Y \sim N(\mu, \sigma^2 I) \), where \(Y^T = (Y_1, \ldots, Y_n) \), \(\mu^T = (\mu_1, \ldots, \mu_n) \) and \(\sigma^2 > 0 \) is a scalar. Then the \(Y_i \) are independent, \(Y_i \sim N_1(\mu_i, \sigma^2) \) and
\[
\frac{||Y||^2}{\sigma^2} = \frac{Y^T Y}{\sigma^2} \sim \chi^2_n \left(\frac{\mu^T \mu}{\sigma^2} \right).
\]

Theorem 9 Let \(Y \sim N(\mu, \Sigma) \). Then:
(a). \(Y^T \Sigma^{-1} Y \sim \chi^2_n(\mu^T \Sigma^{-1} \mu) \).
(b). \((Y - \mu)^T \Sigma^{-1} (Y - \mu) \sim \chi^2_n(0) \).

1.6 Sample Mean and Variance

The sample mean is
\[
\overline{X}_n = \frac{1}{n} \sum_i X_i
\]
and the sample variance is
\[
S_n^2 = \frac{1}{n-1} \sum_i (X_i - \overline{X})^2.
\]
Let \(X_1, \ldots, X_n \) be iid with \(\mu = \mathbb{E}(X_i) = \mu \) and \(\sigma^2 = \text{Var}(X_i) = \sigma^2 \). Then
\[
\mathbb{E}(\overline{X}_n) = \mu, \quad \text{Var}(\overline{X}_n) = \frac{\sigma^2}{n}, \quad \mathbb{E}(S^2) = \sigma^2.
\]

Theorem 10 If \(X_1, \ldots, X_n \sim N(\mu, \sigma^2) \) then
(a) \(\overline{X}_n \sim N(\mu, \frac{\sigma^2}{n}) \).
(b) \(\frac{(n-1)S_n^2}{\sigma^2} \sim \chi^2_{n-1} \).
(c) \(\overline{X}_n \) and \(S^2_n \) are independent.
1.7 Delta Method

If $X \sim N(\mu, \sigma^2)$, $Y = g(X)$ and σ^2 is small then

$$Y \approx N(g(\mu), \sigma^2(g'(\mu))^2).$$

To see this, note that

$$Y = g(X) = g(\mu) + (X - \mu)g'(\mu) + \frac{(X - \mu)^2}{2}g''(\xi)$$

for some ξ. Now $\mathbb{E}((X - \mu)^2) = \sigma^2$ which we are assuming is small and so

$$Y = g(X) \approx g(\mu) + (X - \mu)g'(\mu).$$

Thus

$$\mathbb{E}(Y) \approx g(\mu), \quad \text{Var}(Y) \approx (g'(\mu))^2\sigma^2.$$

Hence,

$$g(X) \approx N\left(g(\mu), (g'(\mu))^2\sigma^2\right).$$