
Lecture Notes 14
36-705

We continue with our discussion of decision theory.

1 Decision Theory

Suppose we want to estimate a parameter θ using data Xn = (X1, . . . , Xn). What is the

best possible estimator θ̂ = θ̂(X1, . . . , Xn) of θ? Decision theory provides a framework for
answering this question.

1.1 The Risk Function

Let θ̂ = θ̂(Xn) be an estimator for the parameter θ ∈ Θ. We start with a loss function

L(θ, θ̂) that measures how good the estimator is. For example:

L(θ, θ̂) = (θ − θ̂)2 squared error loss,

L(θ, θ̂) = |θ − θ̂| absolute error loss,

L(θ, θ̂) = |θ − θ̂|p Lp loss,

L(θ, θ̂) = 0 if θ = θ̂ or 1 if θ 6= θ̂ zero–one loss,

L(θ, θ̂) = I(|θ̂ − θ| > c) large deviation loss,

L(θ, θ̂) =
∫

log
(
p(x; θ)

p(x; θ̂)

)
p(x; θ)dx Kullback–Leibler loss.

If θ = (θ1, . . . , θk) is a vector then some common loss functions are

L(θ, θ̂) = ‖θ − θ̂‖2 =
k∑

j=1

(θ̂j − θj)2,

L(θ, θ̂) = ‖θ − θ̂‖p =

(
k∑

j=1

|θ̂j − θj|p
)1/p

.

When the problem is to predict a Y ∈ {0, 1} based on some classifier h(x) a commonly used
loss is

L(Y, h(X)) = I(Y 6= h(X)).

For real valued prediction a common loss function is

L(Y, Ŷ ) = (Y − Ŷ )2.
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Figure 1: Comparing two risk functions. Neither risk function dominates the other at all
values of θ.

The risk of an estimator θ̂ is

R(θ, θ̂) = Eθ
(
L(θ, θ̂)

)
=

∫
L(θ, θ̂(x1, . . . , xn))p(x1, . . . , xn; θ)dx. (1)

When the loss function is squared error, the risk is just the MSE (mean squared error):

R(θ, θ̂) = Eθ(θ̂ − θ)2 = Varθ(θ̂) + bias2. (2)

If we do not state what loss function we are using, assume the loss function is squared error.

1.2 Comparing Risk Functions

To compare two estimators, we compare their risk functions. However, this does not provide
a clear answer as to which estimator is better. Consider the following examples.

Example 1 Let X ∼ N(θ, 1) and assume we are using squared error loss. Consider two

estimators: θ̂1 = X and θ̂2 = 3. The risk functions are R(θ, θ̂1) = Eθ(X − θ)2 = 1 and

R(θ, θ̂2) = Eθ(3− θ)2 = (3− θ)2. If 2 < θ < 4 then R(θ, θ̂2) < R(θ, θ̂1), otherwise, R(θ, θ̂1) <

R(θ, θ̂2). Neither estimator uniformly dominates the other; see Figure 1.
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Example 2 Let X1, . . . , Xn ∼ Bernoulli(p). Consider squared error loss and let p̂1 = X.
Since this has zero bias, we have that

R(p, p̂1) = Var(X) =
p(1− p)

n
.

Another estimator is

p̂2 =
Y + α

α + β + n

where Y =
∑n

i=1 Xi and α and β are positive constants.1 Now,

R(p, p̂2) = Varp(p̂2) + (biasp(p̂2))2

= Varp

(
Y + α

α + β + n

)
+

(
Ep
(

Y + α

α + β + n

)
− p
)2

=
np(1− p)

(α + β + n)2
+

(
np+ α

α + β + n
− p
)2

.

Let α = β =
√
n/4. The resulting estimator is

p̂2 =
Y +

√
n/4

n+
√
n

and the risk function is

R(p, p̂2) =
n

4(n+
√
n)2

.

The risk functions are plotted in Figure 2. As we can see, neither estimator uniformly
dominates the other.

These examples highlight the need to be able to compare risk functions. To do so, we need a
one-number summary of the risk function. Two such summaries are the maximum risk and
the Bayes risk.

The maximum risk is
R(θ̂) = sup

θ∈Θ
R(θ, θ̂) (3)

and the Bayes risk under prior π is

Bπ(θ̂) =

∫
R(θ, θ̂)π(θ)dθ. (4)

Example 3 Consider again the two estimators in Example 2. We have

R(p̂1) = max
0≤p≤1

p(1− p)
n

=
1

4n

1This is the posterior mean using a Beta (α, β) prior.
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Figure 2: Risk functions for p̂1 and p̂2 in Example 2. The solid curve is R(p̂1). The dotted
line is R(p̂2).

and
R(p̂2) = max

p

n

4(n+
√
n)2

=
n

4(n+
√
n)2

.

Based on maximum risk, p̂2 is a better estimator since R(p̂2) < R(p̂1). However, when n is
large, R(p̂1) has smaller risk except for a small region in the parameter space near p = 1/2.
Thus, many people prefer p̂1 to p̂2. This illustrates that one-number summaries like the
maximum risk are imperfect.

These two summaries of the risk function suggest two different methods for devising estima-
tors: choosing θ̂ to minimize the maximum risk leads to minimax estimators; choosing θ̂ to
minimize the Bayes risk leads to Bayes estimators.

An estimator θ̂ that minimizes the Bayes risk is called a Bayes estimator. That is,

Bπ(θ̂) = inf
θ̃
Bπ(θ̃) (5)

where the infimum is over all estimators θ̃. An estimator that minimizes the maximum risk
is called a minimax estimator. That is,

sup
θ
R(θ, θ̂) = inf

θ̃
sup
θ
R(θ, θ̃) (6)

where the infimum is over all estimators θ̃. We call the right hand side of (6), namely,

Rn ≡ Rn(Θ) = inf
θ̂

sup
θ∈Θ

R(θ, θ̂), (7)
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the minimax risk. Statistical decision theory has two main goals: determine the minimax
risk Rn and find an estimator that achieves this risk.

Once we have found the minimax risk Rn we want to find the minimax estimator that
achieves this risk:

sup
θ∈Θ

R(θ, θ̂) = inf
θ̂

sup
θ∈Θ

R(θ, θ̂). (8)

1.3 Bayes Estimators

Let π be a prior distribution. After observing Xn = (X1, . . . , Xn), the posterior distribution
is, according to Bayes’ theorem,

P(θ ∈ A|Xn) =

∫
A
p(X1, . . . , Xn|θ)π(θ)dθ∫

Θ
p(X1, . . . , Xn|θ)π(θ)dθ

=

∫
A
L(θ)π(θ)dθ∫

Θ
L(θ)π(θ)dθ

(9)

where L(θ) = p(xn; θ) is the likelihood function. The posterior has density

π(θ|xn) =
p(xn|θ)π(θ)

m(xn)
(10)

where m(xn) =
∫
p(xn|θ)π(θ)dθ is the marginal distribution of Xn. Define the posterior

risk of an estimator θ̂(xn) by

r(θ̂|xn) =

∫
L(θ, θ̂(xn))π(θ|xn)dθ. (11)

Theorem 4 The Bayes risk Bπ(θ̂) satisfies

Bπ(θ̂) =

∫
r(θ̂|xn)m(xn) dxn. (12)

Let θ̂(xn) be the value of θ that minimizes r(θ̂|xn). Then θ̂ is the Bayes estimator.

Proof:

Let p(x, θ) = p(x|θ)π(θ) denote the joint density of X and θ. We can rewrite the Bayes risk
as follows:

Bπ(θ̂) =

∫
R(θ, θ̂)π(θ)dθ =

∫ (∫
L(θ, θ̂(xn))p(x|θ)dxn

)
π(θ)dθ

=

∫ ∫
L(θ, θ̂(xn))p(x, θ)dxndθ =

∫ ∫
L(θ, θ̂(xn))π(θ|xn)m(xn)dxndθ

=

∫ (∫
L(θ, θ̂(xn))π(θ|xn)dθ

)
m(xn) dxn =

∫
r(θ̂|xn)m(xn) dxn.
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If we choose θ̂(xn) to be the value of θ that minimizes r(θ̂|xn) then we will minimize the

integrand at every x and thus minimize the integral
∫
r(θ̂|xn)m(xn)dxn.

Now we can find an explicit formula for the Bayes estimator for some specific loss functions.

Theorem 5 If L(θ, θ̂) = (θ − θ̂)2 then the Bayes estimator is

θ̂(xn) =

∫
θπ(θ|xn)dθ = E(θ|X = xn). (13)

If L(θ, θ̂) = |θ− θ̂| then the Bayes estimator is the median of the posterior π(θ|xn). If L(θ, θ̂)
is zero–one loss, then the Bayes estimator is the mode of the posterior π(θ|xn).

Proof:

We will prove the theorem for squared error loss. The Bayes estimator θ̂(xn) minimizes

r(θ̂|xn) =
∫

(θ− θ̂(xn))2π(θ|xn)dθ. Taking the derivative of r(θ̂|xn) with respect to θ̂(xn) and

setting it equal to zero yields the equation 2
∫

(θ − θ̂(xn))π(θ|xn)dθ = 0. Solving for θ̂(xn)
we get 13.

Example 6 Let X1, . . . , Xn ∼ N(µ, σ2) where σ2 is known. Suppose we use a N(a, b2) prior
for µ. The Bayes estimator with respect to squared error loss is the posterior mean, which is

θ̂(X1, . . . , Xn) =
b2

b2 + σ2

n

X +
σ2

n

b2 + σ2

n

a. (14)

It is worth keeping in mind the trade-off: Bayes estimators although easy to compute are
very subjective; they depend strongly on the prior π. Minimax estimators, although more
challenging to compute are not subjective, but do have the drawback that they are protecting
against the worst-case which might lead to pessimistic conclusions.

2 Minimax Estimators through Bayes Estimators

Our goal is to compute a minimax estimator θ̂ that satisfies:

sup
θ∈Θ

R(θ, θ̂) ≤ inf
θ̃

sup
θ∈Θ

R(θ, θ̃).

We will let θminimax denote a minimax estimator.
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2.1 Bounding the Minimax Risk

One strategy to find the minimax estimator is by finding (upper and lower) bounds on the
minimax risk that match. Then the estimator that achieves the upper bound is a minimax
estimator.

Upper bounding the minimax risk is straightforward. Given an estimator θ̂up we can compute
its maximum risk and use it to upper bound the minimax risk, i.e.

inf
θ̃

sup
θ∈Θ

R(θ, θ̃) ≤ R(θ, θ̂up).

The Bayes risk of the Bayes estimator for any prior π lower bounds the minimax risk. Fix a
prior π and suppose that θ̂low is the Bayes estimator with respect to π, then we have that:

Bπ(θ̂low) ≤ Bπ(θminimax) ≤ sup
θ
R(θ, θminimax) = inf

θ̃
sup
θ∈Θ

R(θ, θ̃).

Let us see an example of this in action.

Example: We will prove a classical result that if we observe independent draws from a
d-dimensional Gaussian, X1, . . . , Xn ∼ N(θ, Id), then the average:

θ̂ =
1

n

n∑

i=1

Xi,

is a minimax estimator of θ with respect to the squared loss.

Let Rn denote the minimax risk. First, let us compute the upper bound on Rn. We note
that,

θ̂ ∼ N(θ, Id/n),

so that its risk:

R(θ, θ̂) = E[
d∑

i=1

(θ̂i − θi)2] = E[
d∑

i=1

Z2
i ],

where Zi ∼ N(0, 1/n). This yields that,

inf
θ̃

sup
θ∈Θ

R(θ, θ̃) ≤ R(θ, θ̂) =
d

n
.

Now we lower bound the minimax risk using the Bayes risk. Let us take the prior to be
zero-mean Gaussian, i.e. we take π = N(0, c2Id). By sufficiency, we can replace the data

with θ̂. We can write:

θ ∼ N(0, c2Id)

θ̂|θ ∼ N(θ, Id/n).
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We can write this as

θ = cε

θ̂ =
1√
n
Z

where ε, Z ∼ N(0, Id). Hence,

(
θ

θ̂

)
∼ N

[(
0
0

)
,

[
c2Id c2Id
c2Id (c2 + 1/n)Id

]]

We can now compute the posterior (using standard conditional Gaussian formulae), and
obtain its mean:

E[θ|θ̂] =
c2

c2 + 1/n
θ̂.

Now,

R(θ, θ̂) = E
∣∣∣∣
∣∣∣∣

c2

c2 + 1/n
θ̂ − θ

∣∣∣∣
∣∣∣∣
2

.

Write θ̂ = θ +W , where W ∼ N(0, Id/n). Then

R(θ, θ̂) = EW
∣∣∣∣
∣∣∣∣

c2

c2 + 1/n
Z − θ

n(c2 + 1/n)

∣∣∣∣
∣∣∣∣
2

.

Let us denote β := c2 + 1/n. Then we obtain that,

R(θ, θ̂) =
‖θ‖2

2

n2β2
+
c4

β2
E‖W‖2

2 =
‖θ‖2

2

n2β2
+
c4

β2

d

n
.

The Bayes risk further averages this over θ ∼ N(0, c2Id) to obtain that,

Bπ

(
c2

c2 + 1/n
θ̂

)
=

c2d

n2β2
+
c4

β2

d

n
=
c2d

nβ
=

d

n(1 + 1/(nc2))
.

We conclude that
d

n(1 + 1/(nc2))
≤ Rn ≤

d

n
.

This is true for every c > 0. Since c was arbitrary we can take the limit as c→∞ to obtain
that the minimax risk is upper and lower bounded by d/n and hence, Rn = d/n and the

sample average θ̂ is minimax.
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2.2 Least Favorable Prior

The other way to obtain Bayes estimators is by constructing what are called least favorable
priors.

Theorem 7 Let θ̂ be the Bayes estimator for some prior π. If

R(θ, θ̂) ≤ Bπ(θ̂) for all θ (15)

then θ̂ is minimax and π is called a least favorable prior.

Proof:

Suppose that θ̂ is not minimax. Then there is another estimator θ̂0 such that supθ R(θ, θ̂0) <

supθ R(θ, θ̂). Since the average of a function is always less than or equal to its maximum, we

have that Bπ(θ̂0) ≤ supθ R(θ, θ̂0). Hence,

Bπ(θ̂0) ≤ sup
θ
R(θ, θ̂0) < sup

θ
R(θ, θ̂) ≤ Bπ(θ̂) (16)

which is a contradiction.

Theorem 8 Suppose that θ̂ is the Bayes estimator with respect to some prior π. If the risk
is constant then θ̂ is minimax.

Proof:

The Bayes risk is Bπ(θ̂) =
∫
R(θ, θ̂)π(θ)dθ = c and hence R(θ, θ̂) ≤ Bπ(θ̂) for all θ. Now

apply the previous theorem.

Example 9 Consider the Bernoulli model with squared error loss. We showed previously
that the estimator

p̂ =

∑n
i=1Xi +

√
n/4

n+
√
n

has a constant risk function. This estimator is the posterior mean, and hence the Bayes
estimator, for the prior Beta(α, β) with α = β =

√
n/4. Hence, by the previous theorem,

this estimator is minimax.
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