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Now we will take a look at some specific hypothesis testing problems. And we shall depart

1 Goodness-of-fit testing

Let X1, . . . , Xn ∼ P . We want to test:

H0 : P = P0

H1 : P 6= P0,

for some fixed, known distribution P0. As an example, suppose that P is multinomials on
k categories. The null distribution just a vector of probabilities (p01, . . . , p0k), with p0i ≥ 0,∑

i p0i = 1. We could use the LRT but here we introduce another popular test.

Given a sample X1, . . . , Xn you can reduce it to a vector of counts (Z1, . . . , Zk) where Zi is
the number of times we observed the i-th category. Let

T (X1, . . . , Xn) =
k∑
i=1

(Zi − np0i)2 − np0i
np0i

.

On your HW you will show that asymptotically this test statistic, under the null, has a χ2
k−1

distribution. This is called Pearson’s χ2 test. More generally, we can perform any goodness-
of-fit test by reducing to a multinomial test by binning, i.e. you define a sufficiently find
partition of the domain, this induces a multinomial p0 under the null which you then test
using Pearson’s test.

2 Two-sample Testing

Another popular hypothesis testing problem is the following: you observe X1, . . . , Xn1 ∼ P
and Y1, . . . , Yn2 ∼ Q, and want to test if:

H0 : P = Q

H1 : P 6= Q.

Assume first that P and Q are in the same parametric family (Pθ : θ ∈ Θ) So p = p(x; θ1)
and q = p(x; θ2) for some θ1, θ2. We want to test H0 : θ1 = θ2. If the parameter is scalar,
the Wald test statistic is

T =
θ̂1 − θ̂2
se
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where

se2 =
se21
n1

+
se22
n2

and se1 and se2 are estimates of the standard errors of θ̂1 and θ̂2. If θ is a vector, we can
use the LRT = −2 log λ where

λ =

∏
i p(Xi; θ̂)

∏
i p(Yi; θ̂)∏

i p(Xi; θ̂1)
∏

i p(Yi; θ̂2)

where θ̂ is the mle under H0 obtained by combining both samples. If θ is a vector of length k,
then under the null there are k parameters and under the alternative there are 2k parameters.
The difference is k. So the LRT converges to χ2

k under H0.

Consider again the multinomial setting where P and Q are multinomials on k categories.
Then there is a version of the χ2 test that is commonly used. Let us define (Z1, . . . , Zk)
and (Z ′1, . . . , Z

′
k) to be the counts in the X and Y sample respectively. We can define for

i ∈ {1, . . . , k},

ĉi =
Zi + Z ′i
n1 + n2

.

The two-sample χ2 test is then:

Tn =
k∑
i=1

[
(Zi − n1ĉi)

2

n1ĉi
+

(Z ′i − n2ĉi)
2

n2ĉi

]
.

This is a bit harder to see but under the null this statistic also has a χ2
k−1 distribution.

3 The Permutation Test

For two-sample testing we can determine the cutoff in a different way without resorting to
asymptotics and without assuming a parametric model.

A typical example is in a drug trial where one set of people are given a drug and the other set
are given a placebo. We then would like to know if there is some difference in the outcomes
of the two populations or if they are identically distributed.

Let T (X1, . . . , Xm, Y1, . . . , Yn) be any test statistic. For example,

T (X1, . . . , Xm, Y1, . . . , Yn) =

∣∣∣∣∣ 1

m

m∑
i=1

Xi −
1

n

n∑
i=1

Yi

∣∣∣∣∣ .
Let us denote the value of the test statistic computed on the observed data by Tobs.
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The idea of the permutation test is simple. Define N = m + n and consider all N ! per-
mutations of the data {X1, . . . , Xm, Y1, . . . , Yn}. For each permutation we could compute
our test statistic T . Denote these as T1, . . . , TN !. The key observation is: under the null
hypothesis each value T1, . . . , TN ! has the same distribution (even if we do not
know what it is).

Suppose we reject for large values of T . Then we could simply define the p-value as:

p-value =
1

N !

N !∑
i=1

I(Ti > Tobs).

It is important to note that this is an exact p-value, i.e. no asymptotic approximations are
needed to show that rejecting the null when this p-value is less than α controls the Type I
error at α. Here is a toy-example:

Example 2: Suppose we observe (X1, X2, Y1) = (1, 9, 3). Let T (X1, X2, Y1) be the difference
in means, i.e. T (X1, X2, Y1) = 2. The permutations are:

We could use this to calculate the p-value by counting how often we got a larger value than
2:

p-value =
4

6
= 0.66,

so most likely we would not reject the null hypothesis in this case. Typically, we do not
calculate the exact p-value (although in principle we could) since evaluating N ! test statistics
would take too long for large N . Instead we approximate the p-value by drawing a few
random permutations and using them. This leads to the following algorithm for computing
the p-value using a permutation test:
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We first show that the permutation test that we covered last time actually controls the Type
I error, and then move on to the problem of multiple testing which will occupy us for a
couple of lectures.

4 Analyzing the permutation test for two-sample test-

ing

We observe X1, . . . , Xn1 ∼ P and Y1, . . . , Yn2 ∼ Q, and want to test if:

H0 : P = Q

H1 : P 6= Q.

Let us introduce some notation: we suppose we are given a test statistic T which is a function
of the observed data, for instance:

T (X1, . . . , Xn1 , Y1, . . . , Yn2) =

∣∣∣∣∣ 1

n1

n1∑
i=1

Xi −
1

n2

n2∑
i=1

Yi

∣∣∣∣∣ := tobs.

We let N = n1 + n2, and denote the permutations of the data by {Z1, . . . , ZN !}. We let:

φperm(Zobs) = I

[(
1

N !

N !∑
i=1

I(T (Zi) > tobs)

)
< α

]
.
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We claim that:

PH0(φperm(Zobs) = 1) ≤ α.

Proof: Note that the permutation test would reject the null only for test statistics that
are in the upper α-quantile of the distribution of test statistics, i.e.:

α ≥ 1

N !

N !∑
i=1

φperm(Zi).

Taking the expectation over Zi under the null we obtain that,

α ≥ 1

N !

N !∑
i=1

EH0 [φperm(Zi)].

Under the null hypothesis each dataset Zi has the same distribution as Zobs so we obtain
that:

α ≥ 1

N !

N !∑
i=1

EH0 [φperm(Zobs)],

i.e. that,

PH0(φperm(Zobs) = 1) ≤ α,

as desired. Also note that up to some small quantization error (since the p-values that the
permutation test produces are discrete), all of the above inequalities are actually equalities,
i.e. the permutation test has Type I error that is very close to α.

5 Multiple Testing

Testing many hypotheses at once, is called multiple testing. The problem of multiple testing
is one that is fundamental to a lot of science. Typical modern scientific discovery does not
proceed in a simple fashion where we have a single hypothesis that we would like to test.

A good example is in the analysis of gene expression data. We measure the expression of
tens of thousands of genes and we would like to know if any of them are associated with
some phenotype (for example whether a person has a disease or not). Typically, the way this
is done is that the scientist does tens of thousands of hypothesis tests, and then reports the
associations that are significant, i.e. reports the tests where the null hypothesis was rejected.

This is very problematic:

5



Suppose we did 1000 hypothesis tests, and for each of them rejected the null when the
p-value was less than α = 0.05. How many times would you expect to falsely reject the
null hypothesis? The answer is we would expect to reject the null hypothesis 50 times. So
we really cannot report all the discovered associations (rejections) as significant because we
expect many false rejections.

Another example is in vaccine trials. If we keep testing whether a vaccine is effective as time
goes on, we will end up doing many tests.

The multiple testing problem is behind a lot of the “reproducibility crisis” of modern science.
Many results that have been reported significant cannot be reproduced simply because they
are false rejections. Too many false rejections come from doing multiple testing but not
properly adjusting your tests to reflect the fact that many hypothesis tests are being done.
The basic question is how to we adjust our p-value cutoffs to account for the fact that
multiple tests are being done.

5.1 The Family-Wise Error Rate

We first need to define what the error control we desire is. Recall, the Type I error controls
the probability of falsely rejecting the null hypothesis. We have seen that in order to control
the Type I error we can simply threshold the p-value, i.e rejecting the null if the p-value ≤ α
controls the Type I error at α.

One possibility is to control the probability that we falsely reject any null hypothesis. This
is called the Family-Wise Error Rate (FWER). The FWER is the probability of falsely
rejecting the null hypothesis even once amongst the multiple tests. The basic question is
then: how do we control the FWER?

5.2 Sidak correction

Suppose we do d hypothesis tests, and want to control the FWER at α. The Sidak correction
says to reject any test if the p-value is smaller than:

p-value ≤ 1− (1− α)1/d = αt,

so we reject any test if its p-value is less than αt.

The main result is that: if the p-values are all independent then the FWER ≤ α.

Proof: Suppose that all the null hypotheses are true (this is called the global null). You
can easily see that if this is not the case you can simply ignore all the tests for which the null
is false. The probability of falsely rejecting a fixed test is αt, so we correctly fail to reject it
with probability 1− αt.
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Since the p-values are all independent the probability of falsely rejecting any null hypothesis
is:

FWER = 1− (1− αt)d = α.

5.3 Bonferroni correction

The main problem with the Sidak correction is that it requires the independence of p-values.
This is unrealistic especially if you compute the test statistics for the different tests on the
same set of data. The Bonferroni correction instead uses the union bound to avoid this
assumption.

The Bonferroni correction says we reject any test if the p-value is smaller than:

p-value ≤ α

d
.

The main result is that: The FWER ≤ α.

Proof: Suppose again that the global null is true. In this case,

FWER = P

(
d⋃
i=1

reject H0i

)
≤

d∑
i=1

P (reject H0i) ≤
d∑
i=1

α

d
= α,

where the first inequality follows from the union bound.

5.4 Holm’s procedure

There are many possible improvements to the Bonferroni procedure. For instance, suppose
that I told you that exactly (or at most) d0 of the null hypotheses are truly nulls. Then
you can see that we could have used the cut-off of α

d0
and still maintained control over the

FWER.

As a thought experiment consider the following setting. You conduct d = 5 experiments and
you observe p-values of (0.7, 0.02, 0, 0, 0).

Intuitively, it seems like since we are absolutely sure that the last three experiments are
non-nulls we should be able to use the cut-off of α/2 for the remaining two tests, and still
control the FWER.

At a high-level it seems intuitively clear to us that other p-values for {pj}j 6=i contain in-
formation at least about the number of null hypotheses and we can use this to relax the
correction for pi. Holm’s procedure translates this intuition into a rigorous procedure.
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1. Order the p-values p(1) ≤ p(2) ≤ . . . ≤ p(d).

2. If p(1) <
α
d

then reject H(1) and move on, else stop and accept all Hi.

3. If p(2) <
α
d−1 then reject H(2) and move on, else stop and accept H(2), . . . , H(d).

...

4. If p(d) < α, then reject H(d), else accept H(d).

More succinctly, let

i∗ = min

{
i : p(i) >

α

d− i+ 1

}
,

and reject all H(i) for i < i∗.

Holm’s procedure controls the FWER at level α. Importantly, Holm’s procedure does not
require independence of the p-values, and it strictly dominates the Bonferroni procedure.

Proof: Let I0 denote the indices of the true nulls. First let us make an observation: if

min
i∈I0

pi >
α

d0
,

then we reject none of the true nulls. This is because the first time we encounter a true null
we would compare it to a threshold that is at most α/d0, and if we fail to reject it we would
not reject any of the other true nulls.

So the FWER is:

FWER ≤ P
(

min
i∈I0

pi ≤
α

d0

)
≤ α,

by the union bound.

5.5 Something to think about

In the above discussion we assumed that there was a single scientist doing a bunch of tests
so he could appropriately correct his procedure for the multiple testing problem. One thing
to ponder is really what error rate should we be controlling, i.e. maybe I am the editor of a
journal, and I want to ensure that across all articles in my journal the FWER is ≤ α. Maybe
I want this to be true across the entire field? Should I be adjusting my p-values for people
in other disciplines? Sounds absurd but it actually makes sense if you think about each of
these procedures and their implications for reproducibility.
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6 False Discovery Rate

Suppose that we tested d = 1000 genes for association with some disease, we got a 1000 p-
values, and 100 of them were less than 0.01. We’d expect that roughly 0.01d0 ≤ 0.01d = 10
of these to be falsely rejected nulls, and perhaps this is not a bad tradeoff, i.e. if we rejected
100 nulls, we would spend only 10% of our time on falsely rejected nulls, i.e. we would make
90 real discoveries.

This suggests using a different error criterion. The FDR (false discovery rate) is the expected
number of false rejections divided by the number of rejections.

Denote the number of false rejections as V , and the total number of rejections as R. Then
the false discovery proportion is:

FDP =

{
V
R

if R > 0

0 if R = 0.

The FDR is then defined as:

FDR = E[FDP].

In this notation we can see that the FWER is:

FWER = P(V ≥ 1).

We will next consider how one can control the FDR. We will describe a procedure known as
the Benjamini-Hochberg (BH) procedure.
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