Lecture Notes 18
Multiple Testing and Confidence Intervals

Suppose we need to test many null hypotheses
\[\mathcal{H} = \{ H_{0,1}, \ldots, H_{0,N} \} \]
where \(N \) could be very large. We cannot simply test each hypotheses at level \(\alpha \) because, if \(N \) is large, we are sure to make lots of type I errors just by chance. We need to do some sort of multiplicity adjustment.

Familywise Error Control. Suppose we get a \(p \)-value \(p_j \) for each null hypothesis. Let \(I = \{ i : H_{0,i} \text{ is true} \} \subset \mathcal{H} \). If we reject \(H_{0,i} \) for any \(i \in I \) then we have made an error. Let \(R = \{ j : \text{we reject } H_{0,j} \} \subset \mathcal{H} \) be the set of hypotheses we reject. We say that we have controlled the familywise error rate at level \(\alpha \) if
\[
P(R \cap I \neq \emptyset) \leq \alpha.
\]
The easiest way to control the familywise error rate is the Bonferroni method. The idea is to reject \(H_{0,i} \) if and only if \(p_i < \alpha/N \). Then
\[
P(\text{making a false rejection}) = \mathbb{P}(p_i < \frac{\alpha}{N} \text{ for some } i \in I)
\leq \sum_{i \in I} \mathbb{P}(p_i < \frac{\alpha}{N})
= \sum_{i \in I} \frac{\alpha}{N} \text{ since } p_i \sim \text{Unif}(0, 1) \text{ for } i \in I
= \frac{\alpha |I|}{N} \leq \alpha.
\]
So we have overall control of the type I error. However, it can have low power.

The Normal Case. Suppose that we have \(N \) sample means \(Y_1, \ldots, Y_N \) each based on \(n \) Normal observations with variance 1. So \(Y_j \sim N(\mu_j, \sigma^2/n) \). To test \(H_{0,j} : \mu_j = 0 \) we can use the test statistic \(T_j = \sqrt{n}Y_j/\sigma \). The p-value is
\[
p_j = 2\Phi(-|T_j|).
\]
If we did uncorrected testing we reject when \(p_j < \alpha \), which means, \(|T_j| > z_{\alpha/2} \). A well known inequality for the tail probability of a Gaussian is
\[
\frac{\phi(x)}{x + 1/x} \leq 1 - \Phi(x) \leq \frac{\phi(x)}{x}.
\]
From this it can be shown that

\[z_\alpha \approx \sqrt{2 \log(1/\alpha)}. \]

So we reject when

\[|T_j| > \sigma \sqrt{2 \log(2/\alpha)/n}. \]

Under the Bonferroni correction we reject when \(p_j < \alpha/N \) which corresponds to

\[|T_j| > \sigma \sqrt{2 \log(2N/\alpha)/n}. \]

Hence, the familywise rejection threshold grows like \(\sqrt{\log N} \).

False Discovery Control. The Bonferroni adjustment is very strict. A weaker type of control is based on the *false discovery rate*. Suppose we reject a set of hypotheses \(R \). Define the *false discovery proportion*

\[\text{FDP} = \frac{|R \cap I|}{|R|} \]

where the ratio is defined to be 0 in case both the numerator and denominator are 0. Our goal is to find a method for choosing \(R \) such that

\[\text{FDR} = \mathbb{E}(\text{FDP}) \leq \alpha. \]

The *Benjamini-Hochberg method* works as follows:

1. Find the ordered p-values \(P_{(1)} < \cdots < P_{(N)} \).
2. Let \(j = \max\{i : P_{(i)} < i\alpha/N\} \). Let \(T = P_{(j)} \).
3. Let \(R = \{i : P_i \leq T\} \).

Let us see why this controls the FDR. Consider, in general, rejecting all hypotheses for which \(P_i < t \). Let \(W_i = 1 \) if \(H_{0,i} \) is true and \(W_i = 0 \) otherwise. Let \(\hat{G} \) be the empirical distribution of the p-values and let \(G(t) = \mathbb{E}(\hat{G}(t)) \). In this case,

\[\text{FDP} = \frac{\sum_{i=1}^{N} W_i I(P_i < t)}{\sum_{i=1}^{N} I(P_i < t)} = \frac{1}{N} \sum_{i=1}^{N} W_i I(P_i < t). \]

Hence,

\[\mathbb{E}(\text{FDP}) \approx \frac{\mathbb{E}(\frac{1}{N} \sum_{i=1}^{N} W_i I(P_i < t))}{\frac{1}{N} \mathbb{E}(\sum_{i=1}^{N} I(P_i < t))} = \frac{\frac{1}{N} \sum_{i=1}^{N} W_i \mathbb{E}(I(P_i < t))}{\frac{1}{N} \sum_{i=1}^{N} \mathbb{E}(I(P_i < t))} = \frac{t|I|}{G(t)} \leq t \approx \frac{t}{G(t)}. \]

\[\frac{1}{\alpha} \Rightarrow \sqrt{2 \log(1/\alpha)} - r \]

where \(0 \leq r \leq 1.5 \).
Let \(t = P_{(i)} \) for some \(i \); then \(\hat{G}(t) = i/N \). Thus, FDR \leq P_{(i)}N/i. Setting this equal to \(\alpha \) we get \(P_{(i)} < i\alpha/N \) is the Benjamini-Hochberg rule.

FDR control typically has higher power than familywise control. But they are controlling different things. You have to decide, based on the context, which is appropriate.

Example 1 Figure 1 shows an example where \(Y_j \sim N(\mu_j, 1) \) for \(j = 1, \ldots, 1,000 \). In this example, \(\mu_j = 3 \) for \(1 \leq j \leq 50 \) and \(\mu_j = 0 \) for \(j > 50 \). The figure shows the test statistics, the p-values, the sorted log p-values with the Bonferroni threshold and the sorted log p-values with the FDR threshold (using \(\alpha = 0.05 \)). Bonferroni rejects 7 hypotheses while FDR rejects 22.

Multiple Confidence Intervals. A similar problem occurs with confidence intervals. If we construct a confidence interval \(C \) for one parameter \(\theta \) then \(\mathbb{P}(\theta \in C) \geq 1 - \alpha \). But if we construct confidence intervals \(C_1, \ldots, C_N \) for \(N \) parameters \(\theta_1, \ldots, \theta_N \) then we want to ensure that

\[
\mathbb{P}(\theta_j \in C_j, \text{ for all } j = 1, \ldots, N) \geq 1 - \alpha.
\]

To do this, we construct each confidence interval \(C_j \) at level \(1 - \alpha/N \). Then

\[
\mathbb{P}(\theta_j \notin C_j \text{ for some } j) \leq \sum_j \mathbb{P}(\theta_j \notin C_j) \leq \sum_j \frac{\alpha}{N} = \alpha.
\]
Figure 1: Top left: 1,000 test statistics. Top right: the p-values. Bottom left: sorted log p-values and Bonferroni threshold. Bottom right: sorted log p-values and FDR threshold.