We have discussed plug-in estimators and influence functions. Today we consider a different nonparametric approach for getting confidence intervals for plug-in estimators: the bootstrap.

1 Monte Carlo

Before we get to the bootstrap, we should briefly discuss the Monte Carlo method.

Let \(g \) be a function and let \(P \) be a distribution. Suppose we want to know the mean of \(g \), that is \(\mathbb{E}[g(X)] = \int g(x)p(x)dx \). One way to do this is to do the integral \(\int g(x)p(x)dx \). Another approach is simulation, also known as Monte Carlo. We draw a large sample \(X_1, \ldots, X_B \sim P \). Then, by the law of large numbers

\[
\frac{1}{B} \sum_{j=1}^{B} g(X_j) \xrightarrow{P} \mathbb{E}[g(X)].
\]

Since we can simulate as many observations as we want, we can make the estimate very close to \(\mathbb{E}[g(X)] \).

The same is true for the variance. We can get the variance of \(g(X) \) by integration:

\[
\text{Var}[g(X)] = \int \left(g(x)p(x) - \left(\int g(x)p(x) \right) \right)^2.
\]

But we can also compute the sample variance from the simulated values and, again, by the law of large numbers

\[
\frac{1}{n} \sum_{j} (g(X_j) - \bar{g})^2 \xrightarrow{P} \text{Var}[g(X)]
\]

where \(\bar{g} = \frac{1}{B} \sum_{j} g(X_j) \).

Now suppose that \(T = g(X_1, \ldots, X_n) \) is a function of \(n \) iid variables. The mean is

\[
\int \cdots \int g(x_1, \ldots, x_n)p(x_1) \cdots p(x_n)dx_1 \cdots dx_n
\]

which is an \(n \)-dimensional integral. We can still use Monte-Carlo if we draw samples of size \(n \) each time. When we draw \(X_1, \ldots, X_n \sim p \), we can think of this as one draw from the joint
density \(p(x_1, \ldots, x_n) = p(x_1) \cdots p(x_n) \). In other words we do the following:

\[
\begin{align*}
\text{draw } X_1, \ldots, X_n &\sim P \quad \text{compute } T_1 = g(X_1, \ldots, X_n) \\
\text{draw } X_1, \ldots, X_n &\sim P \quad \text{compute } T_2 = g(X_1, \ldots, X_n) \\
& \quad \vdots \\
\text{draw } X_1, \ldots, X_n &\sim P \quad \text{compute } T_B = g(X_1, \ldots, X_n).
\end{align*}
\]

Then \(T_1, T_2, \ldots \) are draws from the distribution of \(T = g(X_1, \ldots, X_n) \). Again, by the law of large numbers, as \(B \to \infty \),

\[
\frac{1}{B} \sum_{j=1}^{B} T_j \overset{P}{\to} \mathbb{E}[T] = \mathbb{E}[g(X_1, \ldots, X_n)]
\]

and

\[
\frac{1}{n} \sum_{j} (T_j - \overline{T})^2 \overset{P}{\to} \text{Var}[T] = \text{Var}[g(X_1, \ldots, X_n)]
\]

where \(\overline{T} = \frac{1}{B} \sum_j T_j \).

2 Bootstrap Variance Estimation

Let \(X_1, \ldots, X_n \sim P \) and let \(T = g(X_1, \ldots, X_n) \) be some statistic. Of course, the case we have in mind is that \(T = g(X_1, \ldots, X_n) \) is an estimator of some parameter. Our goal is to estimate the standard error, that is the standard deviation of \(T \). As a concrete example, think of \(T = g(X_1, \ldots, X_n) \) as the median of the data.

If we knew \(P \), we could use Monte Carlo to estimate \(\tau^2 = \text{Var}[T] \). The idea of the bootstrap is to estimate \(P \) with the empirical distribution \(P_n \). In other words, \(\tau^2 \) is a statistical functional so we can write it as \(\tau^2(P) \). We will estimate \(\tau^2(P) \) with \(\tau^2(P_n) \). Computing \(\tau^2(P_n) \) is not easy to do analytically but now we can use Monte Carlo. We just need to simulate many times from \(P_n \). When we draw a sample from \(P_n \) we usually denote the draws by \(X_1^*, \ldots, X_n^* \). So

\[
X_1^*, \ldots, X_n^* \sim P_n
\]

denotes a sample from \(P_n \). We call \(X_1^*, \ldots, X_n^* \) a bootstrap sample.

Specifically:

\[
\begin{align*}
\text{draw } X_1^*, \ldots, X_n^* &\sim P_n \quad \text{compute } T_1 = g(X_1^*, \ldots, X_n^*) \\
\text{draw } X_1^*, \ldots, X_n^* &\sim P_n \quad \text{compute } T_2 = g(X_1^*, \ldots, X_n^*) \\
& \quad \vdots \\
\text{draw } X_1^*, \ldots, X_n^* &\sim P_n \quad \text{compute } T_B = g(X_1^*, \ldots, X_n^*).
\end{align*}
\]
Again, by the law of large numbers, as $B \to \infty$,
\[
\hat{\tau}^2 = \frac{1}{n} \sum_j (T_j - \bar{T})^2 \overset{P}{\to} \tau^2(P_n)
\]
where $\bar{T} = \frac{1}{B} \sum_j T_j$. Note that there are two things going on:

1. We estimate $\tau^2(P)$ with $\tau^2(P_n)$
2. We approximate $\tau^2(P_n)$ with the Monte Carlo approximation $\hat{\tau}^2$.

These are two distinct ideas. The first is plug-in estimation and the second is Monte Carlo.

How do we draw a sample from P_n? Remember that P_n puts mass $1/n$ at each data point. The distribution looks like this:

<table>
<thead>
<tr>
<th>value</th>
<th>X_1</th>
<th>X_2</th>
<th>\cdots</th>
<th>X_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>mass</td>
<td>$1/n$</td>
<td>$1/n$</td>
<td>\cdots</td>
<td>X_n</td>
</tr>
</tbody>
</table>

To draw X_1^* we just draw one datapoint at random. To draw X_2^* we again draw one datapoint at random. We repeat this n times to get one bootstrap sample. Note that this is equivalent to drawing n times from the data with replacement. Draw a point; put it back; draw a point; put it back; etc. For this reason, people often describe drawing a bootstrap sample as resampling the data. But is is best regarded as drawing n times from P_n.

Now we can use the bootstrap for statistical inference. Suppose that $\hat{\psi}_n = g(X_1, \ldots, X_n)$ is an estimator. For example, it could be a plug-in estimator. Now we apply the bootstrap method. We sample n observations from P_n and re-compute the estimator. We repeat B times to get $\hat{\tau}$ which is the estimated standard error of $\hat{\psi}_n$.

3 Bootstrap Confidence Intervals

We can also use the bootstrap to get a confidence interval for ψ. In fact, I will describe three methods.

Method 1. If $\hat{\psi}_n$ is asymptotically Normal then a $1 - \alpha$ confidence interval is
\[
\hat{\psi}_n \pm z_{\alpha/2} \hat{\tau}
\]
where $\hat{\tau}$ is the bootstrap estimate of the standard error.

Method 2: The Percentile Interval. Let $\hat{\psi}_1^*, \ldots, \hat{\psi}_B^*$ denote the bootstrap values of the estimator. The percentile confidence interval is
\[
C_n = [\hat{\psi}_{(a/2)}^*, \hat{\psi}_{(1-a/2)}^*]
\]
where $\hat{\psi}^*_{(\alpha/2)}$ is the $\alpha/2$ quantile of $\hat{\psi}_1^*, \ldots, \hat{\psi}_B^*$ and $\hat{\psi}^*_{(1-\alpha/2)}$ is the $1-\alpha/2$ quantile of $\hat{\psi}_1^*, \ldots, \hat{\psi}_B^*$.

Method 3: The Basic Bootstrap (Reverse Perentile). Suppose for a moment that we knew the distribution

$$G_n(t) = P(\sqrt{n}(\hat{\psi}_n - \psi) \leq t).$$

Let $g_{\alpha/2} = G_n^{-1}(\alpha/2)$ and $g_{1-\alpha/2} = G_n^{-1}(1-\alpha/2)$. Let

$$C_n = \left[\hat{\psi}_n - \frac{g_{1-\alpha/2}}{\sqrt{n}}, \hat{\psi}_n - \frac{g_{\alpha/2}}{\sqrt{n}} \right].$$

Now

$$\mathbb{P}(\psi \in C_n) = \mathbb{P} \left(g_{\alpha/2} \leq \sqrt{n}(\hat{\psi}_n - \psi) \leq g_{1-\alpha/2} \right) = 1 - \alpha/2 - \alpha/2 = 1 - \alpha.$$

This interval looks strange because you are used to Normal-based intervals. In fact, if G_n is Normal, this interval can be re-written to look like the usual interval due to the symmetry of the Normal.

We do not know G_n so we can’t use this interval. But we can estimate G_n with the bootstrap. We define

$$\hat{G}_n(t) = \frac{1}{n} \sum_{j=1}^{B} I(\sqrt{n}(\hat{\psi}_j^* - \psi) \leq t).$$

We then estimate $g_{\alpha/2} = \hat{G}_n^{-1}(\alpha/2)$ and $g_{1-\alpha/2} = \hat{G}_n^{-1}(1-\alpha/2)$ with $\hat{g}_{\alpha/2} = \hat{G}_n^{-1}(\alpha/2)$ and $\hat{g}_{1-\alpha/2} = \hat{G}_n^{-1}(1-\alpha/2)$. The confidence interval is

$$C_n = \left[\hat{\psi}_n - \frac{\hat{g}_{1-\alpha/2}}{\sqrt{n}}, \hat{\psi}_n - \frac{\hat{g}_{\alpha/2}}{\sqrt{n}} \right].$$

Note that

$$\hat{g}_{\alpha/2} = \sqrt{n}(\hat{\psi}^*_{\alpha/2} - \hat{\psi})$$

and

$$\hat{g}_{1-\alpha/2} = \sqrt{n}(\hat{\psi}^*_{1-\alpha/2} - \hat{\psi})$$

so that

$$\hat{\psi} - \frac{\hat{g}_{1-\alpha/2}}{\sqrt{n}} = 2\hat{\psi} - \hat{\psi}^*_{1-\alpha/2}$$

and

$$\hat{\psi} - \frac{\hat{g}_{\alpha/2}}{\sqrt{n}} = 2\hat{\psi} - \hat{\psi}^*_{\alpha/2}.$$

Therefore, we can write

$$C_n = \left[2\hat{\psi} - \hat{\psi}^*_{1-\alpha/2}, 2\hat{\psi} - \hat{\psi}^*_{\alpha/2} \right].$$

Again, it looks weird but it follows from the calculations.
4 The Parametric Bootstrap

The bootstrap can also be used for parametric models. Instead of drawing \(X_1^*, \ldots, X_n^* \sim P_n\) we instead draw \(X_1^*, \ldots, X_n^* \sim p(x; \hat{\theta})\). The res is the same.

5 Variants

There are many many many papers that have been written about the bootstrap. There are many different versions: the block bootstrap for time-series, the residual bootstrap or the wild bootstrap for regression, the smooth bootstrap, the bias-corrected bootstrap, and many others.

6 Why Does the Bootstrap Work?

We want that the quantiles of the bootstrap distribution of our statistic should be close to the quantiles its actual distribution. Let

\[
\hat{F}_n(t) = \mathbb{P}_n(\sqrt{n}(\hat{\theta}_n^* - \hat{\theta}_n) \leq t | X_1, \ldots, X_n),
\]

be the CDF of the bootstrap distribution, and

\[
F_n(t) = \mathbb{P}(\sqrt{n}(\hat{\theta}_n - \theta) \leq t),
\]

be the CDF of the true sampling distribution of our statistic. We want to show that

\[
\sup_t |\hat{F}_n(t) - F_n(t)| \to 0.
\]

This turns out to be true in quite a bit of generality, only requiring mild conditions (Hadamard differentiability) but we will prove it in the simplest case: when \(\hat{\theta}_n\) is a sample mean. In this case there are much simpler ways to construct confidence intervals (using Normal approximations) but that is not really the point.

Suppose that \(X_1, \ldots, X_n \sim P\) where \(X_i\) has mean \(\mu\) and variance \(\sigma^2\). Suppose we want to construct a confidence interval for \(\mu\).

Let \(\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^{n} X_i\) and define

\[
F_n(t) = \mathbb{P}(\sqrt{n}(\hat{\mu}_n - \mu) \leq t).
\]

We want to show that

\[
\hat{F}_n(t) = \mathbb{P}\left(\sqrt{n}(\hat{\mu}_n^* - \hat{\mu}_n) \leq t \mid X_1, \ldots, X_n\right)
\]

is close to \(F_n\).
Theorem 1 (Bootstrap Theorem) Suppose that $\mu_3 = \mathbb{E}|X|^3 < \infty$. Then,

$$\sup_t |\hat{F}_n(t) - F_n(t)| = O_P\left(\frac{1}{\sqrt{n}}\right).$$

To prove this result, let us recall that Berry-Esseen Theorem.

Theorem 2 (Berry-Esseen Theorem) Let X_1, \ldots, X_n be i.i.d. with mean μ and variance σ^2. Let $\mu_3 = \mathbb{E}[|X_1 - \mu|^3] < \infty$. Let $\overline{X}_n = \frac{1}{n} \sum_{i=1}^{n} X_i$ be the sample mean and let Φ be the cdf of a $N(0, 1)$ random variable. Let $Z_n = \frac{\sqrt{n}(\overline{X}_n - \mu)}{\sigma}$. Then

$$\sup_z \left| \mathbb{P}(Z_n \leq z) - \Phi(z) \right| \leq \frac{33}{4} \frac{\mu_3}{\sigma^3 \sqrt{n}}. \quad (2)$$

Proof of the Bootstrap Theorem. Let $\Phi_{\sigma}(t)$ denote the cdf of a Normal with mean 0 and variance σ^2. Let $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \hat{\mu}_n)^2$. Thus, $\hat{\sigma}^2 = \text{Var}(\sqrt{n}(\hat{\mu}_n - \mu)|X_1, \ldots, X_n)$. Now, by the triangle inequality,

$$\sup_t |\hat{F}_n(t) - F_n(t)| \leq \sup_t |F_n(t) - \Phi_{\sigma}(t)| + \sup_t |\Phi_{\sigma}(t) - \Phi_{\hat{\sigma}}(t)| + \sup_t |\hat{F}_n(t) - \Phi_{\hat{\sigma}}(t)|$$

$$= I + II + III.$$

Let $Z \sim N(0, 1)$. Then, $\sigma Z \sim N(0, \sigma^2)$ and from the Berry-Esseen theorem,

$$I = \sup_t |F_n(t) - \Phi_{\sigma}(t)| = \sup_t \left| \mathbb{P}\left(\frac{\sqrt{n}(\hat{\mu}_n - \mu)}{\sigma} \leq t\right) - \mathbb{P}(\sigma Z \leq t) \right|$$

$$= \sup_t \left| \mathbb{P}\left(\frac{\sqrt{n}(\hat{\mu}_n - \mu)}{\sigma} \leq \frac{t}{\sigma}\right) - \mathbb{P}(Z \leq \frac{t}{\sigma}) \right| \leq \frac{33}{4} \frac{\mu_3}{\sigma^3 \sqrt{n}}.$$

Using the same argument on the third term, we have that

$$III = \sup_t |\hat{F}_n(t) - \Phi_{\hat{\sigma}}(t)| \leq \frac{33}{4} \frac{\hat{\mu}_3}{\hat{\sigma}^3 \sqrt{n}}$$

where $\hat{\mu}_3 = \frac{1}{n} \sum_{i=1}^{n} |X_i - \hat{\mu}_n|^3$ is the empirical third moment. By the strong law of large numbers, $\hat{\mu}_3$ converges almost surely to μ_3 and $\hat{\sigma}$ converges almost surely to σ. So, almost surely, for all large n, $\hat{\mu}_3 \leq 2\mu_3$ and $\hat{\sigma} \geq (1/2)\sigma$ and $III \leq \frac{33}{4} \frac{\mu_3}{\sqrt{n}}. \text{ From the fact that } \hat{\sigma} - \sigma = O_P(\sqrt{1/n}) \text{ it may be shown that } II = \sup_t |\Phi_{\sigma}(t) - \Phi_{\hat{\sigma}}(t)| = O_P(\sqrt{1/n}). \text{ (This may be seen by Taylor expanding } \Phi_{\hat{\sigma}}(t) \text{ around } \sigma.) \text{ This completes the proof.} \quad \square$

So far we have focused on the mean. Similar theorems may be proved for more general parameters. The details are complex so we will not discuss them here.
Figure 1: The distribution $F_n(t) = \mathbb{P}(\sqrt{n}(\hat{\theta}_n - \theta) \leq t)$ is close to some limit distribution L. Similarly, the bootstrap distribution $\hat{F}_n(t) = \mathbb{P}(\sqrt{n}(\hat{\theta}_n^* - \hat{\theta}_n) \leq t|X_1, \ldots, X_n)$ is close to some limit distribution \hat{L}. Since \hat{L} and L are close, it follows that F_n and \hat{F}_n are close. In practice, we approximate \hat{F}_n with its Monte Carlo version \overline{F} which we can make as close to \hat{F}_n as we like by taking B large.
7 Failure of the Bootstrap

As usual when we need a counterexample we try the uniform distribution. Suppose that $X_1, \ldots, X_n \sim U[0, \theta]$ and we try to bootstrap the MLE to construct a confidence interval for θ. The mle is $X_{(n)}$. This point is contained in the bootstrap sample with probability

$$1 - (1 - 1/n)^n \approx 0.63.$$

So the bootstrap distribution puts mass 0.63 at the single point $X_{(n)}$. But we know that $n(X_{(n)} - \theta)$ has an exponential distribution. So the bootstrap distribution does not resemble the true distribution.