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OUTLINE

“All models are wrong ...” George Box

“Use models but don’t believe them” Tukey?

“Investigators who use [regression] are not paying
adequate attention to the connection - if any - between
the models and the phenomena they are studying. ... By
the time the models are deployed, the scientific position
is nearly hopeless. Reliance on models in such cases is
Panglossian ...”
—David Freedman

By focusing on predictive quantities, we can do many things with
(almost) no assumptions.
Not assuming: linearity, constant variance, incoherence, sparsity,
etc.
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High Dimensional Regression

Let (X1,Y1), . . . , (Xn,Yn) ∼ P. Xi ∈ Rd , Yi ∈ R.

No assumptions (except iid).

Linear regression:
The projection interpretation: β is the best linear predictor:

β∗ = argminE[(Y − βTX )2] = Λ−1α

where Λ = E[XXT ] and α = E[YX ]. So β∗ = g(vec(Λ), α).

Inference? Use CLT or bootstrap to approximate the distribution
of
√
n(β̂ − β)?

Unfortunately, they are quite poor.
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Example: n = 100, d = 50
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d Large

Rinaldo, Wasserman, G’Sell (2018). Berry-Esseen bound:

Ψn = sup
P∈Pn

sup
t
|P(
√
n(β̂ − β) ≤ t)−Normal| ≤ ∆1 + ∆2 + ∆3

∆1,n ≈
(
d2

n

)1/6

linear terms

∆2,n ≈
(
d4

n

)1/2

non− linear terms

∆3,n ≈
(
d5

n

)1/6

covariance estimation (sandwich)
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Bad News

∆3,n ≈
(
d5

n

)1/6
is the worse term. (Due to estimating the

covariance of β̂ i.e. sandwich estimator.)

Need: d = o(n1/5) ≈ constant!

Similar bound for bootstrap.

It’s bad. Easily confirmed by simulation.

We think it is tight (but have not proved it). Lower bounds for
Berry-Esseen theorems are rare.

Similar conclusion in El Karoui and Purdom (2016).
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2. Focus on prediction (conformalization).
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LOCO (Leave Out COvariates) Inference

Split data D1, D2.

Fit m̂ (any regression estimator) on D1.

Drop variable j , re-run and get m̂(−j).

Use D2 to get exact confidence interval for the conditional quantity

θj = φ

(
|Y − m̂(−j)(X )| − |Y − m̂(X )|

∣∣∣∣∣ D1

)

where φ is median or mean.

m̂ can be: lasso, random forest, neural net, ...

Exact for median: For mean: Berry-Esseen bound: 1/
√
n

Similar to: Brieman permutation importance, Mentch and Hooker
(2016), Abbasi-Asl and Yu (2017), Davies (2018)
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Bias

This is a conditional quantity. (Randomness is in X ,Y not in the
estimator which is fixed.)

The corresponding marginal (population) quantity, namely,

ψ = E[|Y −m(−j)(X )| − |Y −m(X )|]

or
ψ = E[(Y −m(−j)(X ))2 − (Y −m(X ))2]

is not estimable in the model free framework. (Similarly, for
conditional independence.)
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Bias

As an estimate of ψ, the plug-in is biased.

LOCO based on the 1-nn estimate (DeVroye, Gyorfi, Lugosi, Walk
2018) has low bias but very low power.

Subtracting the first order influence function (Williamson, Gilbert,
Simon, Carone 2017) is reasonable but still requires many
assumptions.

Also, it is degenerate under the null.
(But we (JR and LW) are looking into higher-order statistics.)

Ultimately, we have to regard it as exact inference for a conditional
quantity .
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Examples of LOCO: n=200, d=500 (RT)

Example: n = 200, d = 500, with data model Y = βTX + ε, such
that X ∼ N(0, Id), ε ∼ N(0, 1), and

βj

{
∼ N(0, 2) j = 1, . . . , 5

= 0 otherwise

I Algorithm is the lasso, with 5-fold CV and 1se rule to select λ

I Compute an interval for

θj(D1) = med
(
|Y − m̂−jn1 (X )| − |Y − m̂n1(X )|

∣∣∣D1

)
for each j in lasso active set

I Use Bonferroni correction: if s variables are selected, then we
compute each LOCO interval at level 1− α/s

Note: slides marked RT are courtesy of Ryan Tibshirani.
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Examples of LOCO
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Examples of LOCO
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The good (RT)

I Algorithmically flexible: any algorithm can be used to measure
variable importance

I Computationally cheap(-ish): one refitting of the algorithm at
hand per variable considered

I No distributional assumptions: intervals for θj(D1) have exact
coverage in finite-sample, for any distribution P of (X ,Y )

I Selective validity: intervals cover the selected variables

I Accuracy: Intervals (with Bonferroni correction, for s
variables) have length O(

√
log(sn)/n)

I Simplicity: very simple/portable. Easy implementation
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Combining many estimators (RT)
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The Bias (RT)
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The Purely Predictive Approach: Conformal Prediction

This is an approach which makes NO model assumptions.

It can be used from many tasks (not just regression).
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Recent History
Conformal prediction (Vovk, Gammerman, Shafer 2005). Only
assumes exchangeability.

Connected to minimax density estimation, regression and
classification: (Lei, Robins, Wasserman 2013), (Lei, Wasserman
2013) and classification (Lei 2014).

High-dimensional regression, lasso (Lei, G’Sell, Rinaldo, Tibshirani,
Wasserman 2018).

Multiclass problems. (Sadinle, Lei and Wasserman 2018).

Random effects: Dunn and Wasserman (2018).

Deep learning: Hechtlinger, Poczos, Wasserman (2018),
Hechtlinger, Dalmasso, Rinaldo and Wasserman (2018).

Clustering: Lei, Rinaldo and Wasserman (2016), Shin, Rinaldo and
Wasserman (in progress).

Robustness: Balakrishnan, Patil, Shrotriya and Wasserman (in
progress).
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Conformal Prediction

Augment −→ Fit −→ Test −→ Invert

Augment data: A = {(X1,Y1), . . . , (Xn,Yn), (x , y)}

Fit and get ‘residual’ or ’conformal score’ (this is the art)

Ri = φ((Xi ,Yi ),A)

Test: H0 : (Xn+1,Yn+1) = (x , y). Get p-value

π(x) =
1

n + 1

n+1∑
i=1

I (Ri ≥ Rn+1)

Invert
Cn(x) = {y : π(x) ≥ α}
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Conformal Prediction

We have

1− α ≤ inf
P

P(Yn+1 ∈ Cn(Xn+1)) ≤ 1− α +
1

n + 1
.

No assumptions!

Does not require the model m̂ to be correct.
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Split Conformal

Split the data into two groups D1 and D2.

Compute residuals of the form

Ri = φ(Yi ,Q)

where Q is computed from D1 and Yi ∈ D2.

Let q be the 1− α quantile of the Ri ’s and let
C = {y : φ(y ,Q) ≤ q}.

Then

1− α ≤ inf
P

P(Yn+1 ∈ Cn(Xn+1)) ≤ 1− α +
2

n + 2
.

This is much faster (no augmentation step) but leads to wider
intervals.
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Split Conformal

We could split N times at level 1− α/N and set

CN =
⋃
j

Cj

but:

under weak conditions, with probability tending to 1,

µ(CN) > µ(Csplit).
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The Choice of Conformal Score

Examples:

|Yi − m̂aug(Xi )|

1

p̂aug(Xi ,Yi )

1

p̂aug(Yi |Xi )

1

p̂aug(Xi |Yi )

1

p̂aug(Xi ,Yi ; θ̂)
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Efficiency

The choice affects efficiency (size of set) not validity

Can be tuned to get minimax prediction sets (see Lei, Robins and
Wasserman 2013; Lei and Wasserman 2014).

Example: Unsupervised prediction.

Set

Ri (y) =
1

p̂h(Yi ; {Y1, . . . ,Yn, y})
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Unsupervised Prediction: Preservation of Minimaxity

The resulting set Cn satisfies infP P(Yn+1 ∈ Cn) ≥ 1− α and

(A1) Suppose p is β-Holder smooth.
(A2) Suppose

c1|ε|γ ≤ |P({y : p(y) ≤ tα + ε})− α| ≤ c2|ε|γ .

Then, for all λ > 0,

P

(
µ(Cn∆Cα) �

(
log n

n

)βγ/(2β+d)

+

(
log n

n

)1/2
)
≤
(

1

n

)λ
where Cα is the oracle (smallest possible) prediction set.
But if (A1), (A2) fail, we still have coverage (even if P does not
have a density).
Can also use size of Cn to choose the bandwidth.
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Properties (Regression Case)

Oracle:
C (x) = [µ̂(x)− qn, µ̂(x) + qn]
where qn is the upper quantile from Law(|Y − µ̂|).

Super-Oracle:
C (x) = [µ(x)− q, µ(x) + q]
where q is the upper quantile from Law(|Y − µ|).
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Properties (Regression Case)
Then

Length(Conformal Interval)−Length(Oracle) = OP(ηn+ρn+n−1/2)

where
P(sup

y
||µ̂− µ̂X ,y ||∞ > ηn) ≤ ρn.

With some additional assumptions:

µ(Oracle∆Conformal) = oP(1)

and
P(Y ∈ C (X )|X = x)→ 1− α.

Under the ‘usual’ assumptions (linearity, incoherhence etc)

ηn =
κ2s
√

log d√
n

κ from restricted isometry condition, s = sparsity, ρn = (1/d)c .
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High Dimensional Examples

Amazing accuracy in very high dimensions



Example: n = 200, d = 2, 000; linear and Normal
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Example: n = 200, d = 2, 000; nonlinear and heavy-tailed
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Example: n = 200, d = 2, 000; linear, correlated,
heteroskedastic, heavy-tailed
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Sliced Regression

Careful choice of conformal score matters.1

Use residuals based on slicing i.e. p̂(x |dy).

Similar to sliced inverse regression but we do NOT assume the
usual index model Y = f (βTX ) + ε.

This choice encourages outputting Cn = ∅ when x is unusual.

1joint work with Yotam Hechtlinger, Nic Dalmasso, Alessandro Rinaldo
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The D31 Data



Choice of Features: Efficiency not Validity

Part of choosing score is the choice of covariates.

The Merck molecular activity dataset.

n = 14,875 observations
d = 5,464 features.

Sliced conformal regression.

Use features as given
or
extract features from deep learning?
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Optimal Multiclass Prediction: (Sadinle, Lei and W. 2018)

Suppose that Y ∈ {1, . . . , k}. k can be large.

Want to minimize E|C (X )| subject to
P(Y ∈ C (X )|Y = y) ≥ 1− αy .
Call E|C (X )| the ambiguity.

Solution (NP lemma) is

C ∗(x) = {x : p(y |x) ≥ ty}
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Estimating the Optimal Classifier

Plug-in estimator Ĉ = {x : p(y |x) ≥ t̂y}:

With prob at least 1− kδn − (1/n),

P(Ĉ∆C ∗) � εγn +

√
log n

n

where δn and εn are model specific.

Example: kNN, p(y |x) Lipschitz: δn = 1/n and
εn � (log n/n)1/(2d).

Example: sparse logistic regression, with incoherence assumption:

ε � (log d/n)1/4, δn �
1

d
+ ||β||0

√
log d/n

but validity does not depend on these assumptions.
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Price of Optimality

Sometimes, C (x) = ∅.
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Null Predictions

Could try to minimize E|C (X )| subject to
P(Y ∈ C (X )|Y = y) ≥ 1− αy and subject to C (x) 6= ∅.
Difficult in general.

Accretive completion: gradually decrease each ty (greedily)while
minimizing ambiguity E|C (x)|.
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Cautious Deep Learning

If k is large, and X is ambiguous, C (X ) will be large. This is a
feature.

If we use p̂(x |y) as a score, and x is unusual (i.e. p̂(x |y) small for
all y) we will encourage C (x) = ∅. This is a feature not a bug!
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Deep Learning

TL: Sea Snake
Prediction: Null Set

TL: Alp
Prediction: Ski

TL: Shetland Sheepdog
Prediction: Shetland 
Sheepdog, Collie, Toilet 
Paper

TL: Soup Bowl
Prediction: Face 
Powder, Soup Bowl, 
Tray

TL: Cradle
Prediction: Sleeping 
Bag

TL: Garter Snake
Prediction: Null Set

TL: Porcupine
Prediction: 
Porcupine, Quill

TL: Bakery
Prediction: Null Set

TL: Mousetrap
Prediction: Mousetrap

TL: Angora
Prediction: Null Set

TL: Brain Coral

Prediction: Brain Coral, 
Water Bottle, Coral 
Reef

TL: Cougar
Prediction: Cougar

TL: Guenon
Prediction: Guenon, 
Patas

TL: Recreational Vehicle
Prediction: Recreational 
Vehicle

TL: Harvester
Prediction: Null Set

TL: Grey Whale
Prediction: Null Set

TL: Sea Anemone
Prediction: Null Set

TL: Vulture
Prediction: Null Set

TL: Carton
Prediction: Null Set

TL: Crane
Prediction: Crane, 
Hook



Deep Learning

Our Method (α=.5):
• Null Set

Inception-v4 Model:
• Coil (0.910)
• Hay (0.008)
• Maze (0.005)



Deep Learning

Our Method (α=.55):
• Null Set

Inception-v4 Model:
• Volleyball (0.388)
• Tennis Ball (0.160)
• Racket (0.157)



Deep Learning

Our Method (α=.5):
• Null Set

Inception-v4 Model:
• Kite (0.137)
• Bee Eater (0.033)
• Missle (0.031)



Back To Inference: Combining LOCO With Conformal
Prediction

Use conformal set C to assess effects of dropping covariates.

LOCO: Drop X (j) to get m̂(−j) and let

∆j(x , y) = |y − m̂(−j)(x)| − |y − m̂(x)|

Wj(x) = {∆j(x , y) : y ∈ C}.

Then
inf
P

P(∆j(X ,Y ) ∈ C (X ) for all j) ≥ 1− α.
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Nonparametric Additive Model: f4 = f5 = f6 = 0

−1.0 −0.5 0.0 0.5 1.0

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
Component 1

Location

In
te

rv
al

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
5

1.
0

Component 2

Location
In

te
rv

al
−1.0 −0.5 0.0 0.5 1.0

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8

Component 3

Location

In
te

rv
al

−1.0 −0.5 0.0 0.5 1.0

−
0.

04
−

0.
02

0.
00

0.
02

0.
04

Component 4

Location

In
te

rv
al

−1.0 −0.5 0.0 0.5 1.0

−
0.

06
−

0.
02

0.
02

0.
04

0.
06

Component 5

Location

In
te

rv
al

−1.0 −0.5 0.0 0.5 1.0
−

0.
03

−
0.

01
0.

01
0.

03

Component 6

Location

In
te

rv
al



Part II: Clustering

By taking a predictive view of clustering we solve several problems:

• choose tuning parameters

• automatically merge some clusters

• replace Voronoi diagram with spheres and ellipsoids (more
natural)

• get a prediction coverage gaurantee



Part II: Clustering

By taking a predictive view of clustering we solve several problems:

• choose tuning parameters

• automatically merge some clusters

• replace Voronoi diagram with spheres and ellipsoids (more
natural)

• get a prediction coverage gaurantee



Part II: Clustering

By taking a predictive view of clustering we solve several problems:

• choose tuning parameters

• automatically merge some clusters

• replace Voronoi diagram with spheres and ellipsoids (more
natural)

• get a prediction coverage gaurantee



Part II: Clustering

By taking a predictive view of clustering we solve several problems:

• choose tuning parameters

• automatically merge some clusters

• replace Voronoi diagram with spheres and ellipsoids (more
natural)

• get a prediction coverage gaurantee



Part II: Clustering

By taking a predictive view of clustering we solve several problems:

• choose tuning parameters

• automatically merge some clusters

• replace Voronoi diagram with spheres and ellipsoids (more
natural)

• get a prediction coverage gaurantee



Predictive Clustering

Basic idea:

1. perform clustering.

2. define cluster-based conformal score (residual)

3. Get conformal set.

4. Choose tuning parameters to minimize size of conformal
prediction set.

This implicitly creates a bias-variance tradeoff that is missing in
clustering.
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From k-means to k-spheres

1. Split the data into two halves Y1 and Y2.

2. Run k-means on Y1 to get centers c1, . . . , ck .

3. For the data in Y2 compute the (non-augmented) residuals

Ri = min
j
||Yi − cj(i)||

where cj(i) is the closest center to Yi .

4. Let tα be the 1− α quantile of the residuals.

5. Let Ck =
⋃

j B(cj , tα).

6. Choose k̂ to minimize Lebesgue measure. (Has a min!)

7. Return: C
k̂

=
⋃

j B(cj , tα)

Then
inf
P

P(Y ∈ C) ≥ 1− α

Clusters C1, . . . ,Cr are the connected components of C.
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Ri = min
j
||Yi − cj(i)||

where cj(i) is the closest center to Yi .

4. Let tα be the 1− α quantile of the residuals.

5. Let Ck =
⋃

j B(cj , tα).

6. Choose k̂ to minimize Lebesgue measure. (Has a min!)

7. Return: C
k̂

=
⋃

j B(cj , tα)

Then
inf
P

P(Y ∈ C) ≥ 1− α

Clusters C1, . . . ,Cr are the connected components of C.
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Top left: Data. Top right: k = 6-means. Bottom left: Repaired by
our method.



Improved Residuals

We can choose any residuals for conformal prediction.

Ri = min
j

||Yi − cj ||2

σ̂2j
+ 2d log σ̂j − 2 log π̂j .

Then
C =

⋃
j

B(cj , rj)

where

rj = σ̂j

√
[tα + 2 log π̂j − 2d log σ̂j ]+.



Improved k-means Prediction

Smaller prediction sets.

Better approximation to density level sets.

Robust to outliers: Huber contamination model

P = (1− ε)P0 + εQ

Valid coverage and smaller prediction set.
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Smaller prediction sets.

Better approximation to density level sets.

Robust to outliers: Huber contamination model

P = (1− ε)P0 + εQ

Valid coverage and smaller prediction set.



Example: Outliers, standard k-means
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Example: Outliers, improved k-means
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Conformal Density Clustering

Let C1, . . . ,Cr be the connected components of

L = {y : p̂h(y) > t}.

Problems:
1. How to choose h?
2. How to choose t?
3. How to find C1, . . . ,Cr?
All solved by conformal clustering.



Density Level Set Conformal Clustering

1. Split the data into two halves Y1 and Y2.

2. Estimate a density p̂ from Y1.

3. For a given t > 0, let Y(t)
1 := {Yi ∈ Y1 : p̂(Yi ) ≥ L}.

4. Compute the residuals Ri := R(Yi ) for Yi ∈ Y2, where
R(y) = min

Yj∈Y
(t)
1

‖y − Yj‖.

5. Let tα be the 1− α quantile of the residuals.

6. Let C =
⋃

Yj∈Y
(t)
1

B(Yj , tα).

Choose h and L to minimize volume.
Conformalization makes this very robust to h and L because tα
adapts.



Example: Small L, 4 bandwidths



Example: Large L, 4 bandwidths



Part III: Random Effects (with Robin Dunn)

Random distributions (subjects)

P1, . . . ,Pk ∼ Π

and observe data Dj drawn from Pj .

Problem 1: Predict Y ∼ Pk+1 (new subject).
Problem 2: Predict Y ∼ Pj for some 1 ≤ j ≤ k ; new observation
on existing subject. (Shrinkage.)

I’ll focus on Problem 1.
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Random Effects: Method 1

Select one observation randomly from each group. (These are iid).

Apply any conformal procedure at level α/N.

Repeat N times.

Set C =
⋂N

j=1 Cj .

This is always valid. Optimal N seems to be N = 1.
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Random Effects: Method 2. Double Conformal Inference
Use a parametric working model. (Does not need to be correct).
Apply conformal prediction to get Cj for group j at level 1− δ.
In fact, these are iid random sets such that

∫
Cj
dPj = 1− δ+oP(1).

We have m iid random sets C1, . . . ,Cm.

Apply conformal inference to the sets at level β to get C such that

P(Cm+1 ∈ C) ≥ 1− β.

If δ + β ≤ α then
P(Y ∈ C) ≥ 1− α.

Seems elegant but subsampling works better.
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Random Effects



Summary

In the last few years, we have pursued the goal of model free
inference.

This philosophy can be applied to many problems:
high-dimensional regression, deep learning, random effects, ...

Conformalizing any optimal procedure preserves its properties
without sacrificing general validity.

Especially important in high-dimensional problems where
assumptions are hard to check.

Can we get rid of the iid assumption?

Code: https://github.com/ryantibs/conformal

THE END
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