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Abstract

Clustering text documents is a fundamental task in modern data analysis, requiring
approaches which perform well both in terms of solution quality and computational effi-
ciency. Spherical k-means clustering is one approach to address both issues, employing
cosine dissimilarities to perform prototype-based partitioning of term weight representa-
tions of the documents.

This paper presents the theory underlying the standard spherical k-means problem
and suitable extensions, and introduces the R extension package skmeans which provides
a computational environment for spherical k-means clustering featuring several solvers:
a fixed-point and genetic algorithm, and interfaces to two external solvers (CLUTO and
Gmeans). Performance of these solvers is investigated by means of a large scale benchmark
experiment.
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1. Introduction

Processing and analyzing textual data is one of the major challenges in modern data analysis.
One key task is clustering text documents. Popular approaches can be grouped into the
following three categories.

First, one can introduce suitable dissimilarity measures between the texts, and perform clus-
tering based on these dissimilarities. String kernels (Lodhi, Saunders, Shawe-Taylor, Cris-
tianini, and Watkins 2002) have become very popular in this context, as the corresponding
dissimilarities can be computed rather efficiently, and be deployed in the context of modern
kernel-based learning techniques such as kernel k-means clustering (Karatzoglou and Feinerer
2010).

http://www.jstatsoft.org/
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Second, one can perform model-based clustering using probabilistic models for the generation
of the texts, such as topic models (and variants thereof) for uncovering the latent semantic
structure of a document collection based on a hierarchical Bayesian analysis of the texts (e.g.,
Griffiths, Steyvers, and Tenenbaum 2007; Blei and Lafferty 2009).

Finally, one can use a suitable “vector space model” (also known as “bag of words”) represen-
tation of the corpus (the collection of text documents), and use more traditional approaches
for clustering multivariate numeric data. This model was first used in the SMART Informa-
tion Retrieval System and represents documents (and queries) by vectors of term weights,
and hence the corpus as a document-term weight matrix, with the so-called tf-idf (term
frequency-inverse document frequency) scheme the most popular (Salton, Wong, and Yang
1975; Manning, Raghavan, and Schütze 2008). Given such a representation of documents di
by term weight “feature vectors” xi, one obvious approach to partitioning the documents into
a given number k of groups is via minimizing a criterion function of the form∑

i

d(xi, pc(i)),

over all assignments c of objects i to cluster ids c(i) ∈ {1, . . . , k} and over all prototypes
(often called centroids) p1, . . . , pk in the same feature space as the xi, for a suitable dis-
similarity measure d, i.e., by performing k-prototypes partitioning with dissimilarity d. It
may seem straightforward to employ Euclidean dissimilarity (squared Euclidean distance)
d(x, p) = ‖x − p‖2 and thus use standard k-means clustering. However, this typically over-
represents long documents (with large aggregate term weights). To mitigate the effect of
differing document lengths, Dhillon and Modha (2001) suggest to use the Euclidean dissimi-
larities of the projections of the feature vectors onto the unit sphere, or equivalently, employ
the so-called cosine dissimilarity

d(x, p) = 1− cos(x, p) = 1− 〈x, p〉
‖x‖‖p‖

based on the angle between the vectors. In fact, using the angles between the term weight
vectors representing the documents and queries has long been the preferred method in infor-
mation retrieval to compute relevance rankings of documents in a keyword search. Zhao and
Karypis (2004) study seven different criterion functions for partitional document clustering
via a comprehensive experimental evaluation involving 15 different datasets, and find very
good performance for a criterion function (I2) corresponding to k-prototypes partitioning
with cosine dissimilarity. Of course, this partitioning approach can be employed in arbitrary
application domains where cosine dissimilarity is judged an appropriate measure of dissim-
ilarity in the feature space for the measurements on the objects to be partitioned, e.g., for
gene expression clustering (D’haeseleer 2005) or market basket analysis (Tan, Kumar, and
Srivastava 2004).

The“spherical k-means algorithm”of Dhillon and Modha (2001) is a simple fixed-point heuris-
tic for minimizing

∑
i(1 − cos(xi, pc(i))) which iterates between computing optimal cluster

ids for fixed prototypes and computing optimal prototypes for fixed cluster ids. Banerjee,
Dhillon, Ghosh, and Sra (2005) show that this algorithm is also obtained as an EM variant
for Maximum Likelihood Estimation of the mean direction parameters of a uniform mixture of
von Mises-Fisher (or Langevin) distributions with common concentration parameter κ, using
hard-max classification E-steps (either directly or by letting κ → ∞). This fixed-point algo-
rithm typically converges very rapidly, and can easily be implemented from scratch or taking
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advantage of available flexible prototype-based partitioning infrastructure as provided, e.g.,
in the extension packages clue (Hornik 2005) or flexclust (Leisch 2006) for R (R Development
Core Team 2012). However, the algorithm may not converge to the optimum of the under-
lying criterion function, and different heuristics (e.g., based on local improvement strategies
or different frameworks for solving hard optimization problems, such as genetic algorithms)
may be able to find “better” partitions (with a smaller criterion value). In addition, heuristics
for solving the spherical k-means optimization problem should be able to handle large cor-
pora, resulting in large but typically very sparse corresponding document-term matrices, with
reasonable efficiency by employing suitable sparse matrix representations and computations.

In this paper we discuss the R extension package skmeans, available from the Comprehensive
R Archive Network at http://CRAN.R-project.org/package=skmeans, which provides a
computational environment for spherical k-means clustering. It features solvers implementing
the fixed-point (possibly enhanced by a local improvement strategy) and a genetic algorithm
as well as interfaces to two standalone solvers (CLUTO and Gmeans). Available solvers can
handle the most common sparse matrix formats for representing document-term matrices of
large corpora, and are easily extended to handle additional formats.

This paper is organized as follows. Section 2 presents the theory of the (standard) spherical
k-means clustering problem and extensions thereof. Section 3 discusses solution heuristics
and their availability and implementation in package skmeans, and provides an example il-
lustrating how to perform document clustering applications using the package. A large scale
benchmark experiment analyzing the performance and efficiency of the available solvers is
given in Section 4. Section 5 concludes the paper.

2. Theory

2.1. The standard spherical k-means problem

To fix terminology, the standard spherical k-means problem is to minimize∑
i

(1− cos(xi, pc(i)))

over all assignments c of objects i to cluster ids c(i) ∈ {1, . . . , k} and over all prototypes
p1, . . . , pk in the same feature space as the feature vectors xi representing the objects. (In
text clustering, the objects are the documents to be partitioned.) Let n be the number of
objects and X = [x′1, . . . , x

′
n]′ and P = [p′1, . . . , p

′
k]
′ the data and prototype matrices with

the feature vectors xi and prototype vectors pj as their rows, respectively, where ′ denotes
transpose. With the memberships µij of objects i to classes j defined by

µij =

{
1, if c(i) = j
0, otherwise,

and the membership matrix M = [µij ], the standard spherical k-means problem can equiva-
lently be formulated as minimizing

Φ(M,P ) =
∑
i,j

µij(1− cos(xi, pj))

http://CRAN.R-project.org/package=skmeans
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over all binary membership matrices M with unit row sums (i.e., µij ∈ {0, 1} for all i and j
and

∑
j µij = 1 for all i) and prototype matrices P .

For fixed prototypes P , Φ is obviously minimized over M by classifying objects to their nearest
prototypes, i.e., choosing c(i) as one j attaining minj(1− cos(xi, pj)).

For fixed memberships M , Φ is minimized over P if for each prototype pj ,
∑
i µij(1 −

cos(xi, pj)) is minimized. Now

∑
i

µij(1− cos(xi, pj)) =
∑
i

µij

(
1− 〈xi, pj〉
‖xi‖‖pj‖

)
=
∑
i

µij −
〈∑

i

µij
xi
‖xi‖

,
pj
‖pj‖

〉
,

which by the well-known Cauchy-Schwartz inequality is minimized iff

pj ∝ sj(M) =
∑
i

µij
xi
‖xi‖

. (1)

In particular, if the feature vectors xi are normalized to unit length ‖xi‖ = 1, then optimal
prototypes can be obtained as

pj ∝
∑
i

µijxi =
∑

i:µij=1

xi =
∑

i:c(i)=j

xi,

i.e., as proportional to the sum over the feature vectors xi of objects i in class j.

A fixed-point algorithm iterating between computing optimal M for fixed P and optimal P
for fixed M will obviously not increase the Φ(M,P ) values, which will thus (as non-increasing
and trivially bounded below) converge to a limiting value. As pointed out by Dhillon and
Modha (2001), this does not imply that the sequences of memberships or prototypes converge
(by compactness, one can always choose convergent sub-sequences). In any case, there is no
guarantee that the limiting Φ value is optimal.

Given a partition and a criterion function measuring its quality, one can always ask whether
the value of the criterion function can be improved by moving a single object from one class
to another (or performing a chain of such moves). In general, the corresponding computations
may be prohibitively expensive. For the standard spherical k-means problem, Dhillon, Guan,
and Kogan (2002) note that the effect of moving the i-th object from its cluster j = c(i) to
a different cluster l can be obtained as follows. Let Ψ(M) = minP Φ(M,P ) be the minimal
criterion value for fixed M . Then, using Equation 1,

Ψ(M) =
∑
j

(∑
i

µij −
〈
sj(M),

sj(M)

‖sj(M)‖

〉)
= n−

∑
j

‖sj(M)‖.

The move changes sj = sj(M) to sj − x̃i and sl = sl(M) to sl + x̃i, where x̃i = xi/‖xi‖, with
criterion change (‖sj‖ − ‖sj − x̃i‖) + (‖sl‖ − ‖sl + x̃i‖) and the new squared norms given by
‖sj− x̃i‖2 = ‖sj‖2−2s′j x̃i+1 and similarly ‖sl+ x̃i‖2 = ‖sl‖2+2s′lx̃i+1. Thus, optimal single
object moves (so-called first variation moves) can be computed in O(n+k) steps provided that
all object-prototype dissimilarities are available (these need to be computed for a fixed-point
iteration anyway). In particular, one can attempt to improve the fixed-point algorithm via
performing Kernighan-Lin style fixed-length chains of optimal single object moves to possibly
improve the criterion “sufficiently enough” once the fixed-point iterations failed to do so, and
in case of success resume the latter (Dhillon et al. 2002).
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2.2. The extended spherical k-means problem

The criterion function for spherical k-means clustering can easily be generalized by replacing
the µij by µmij for exponents m ≥ 1, as was done for the standard k-means problem to give
the fuzzy k-means problem (Bezdek 1981). With m > 1, in general soft (fuzzy) partitions
are obtained, with softness increasing with m. We are not aware of references suggesting
this obvious generalization, which seems somewhat striking given the popularity of fuzzy
clustering algorithms. Another seemingly obvious generalization is introducing object (“case”)
weights wi. This is particularly useful when trying to assess the stability of partitions with
respect to changes in the data (distribution), which can conveniently be accomplished by
varying the object weights.

Taking both generalizations into account, we obtain the extended spherical k-means problem,
defined as the minimization of the criterion function

Φ(M,P ) =
∑
i,j

wiµ
m
ij (1− cos(xi, pj))

over all (possibly soft) memberships matrices M with non-negative entries and unit row sums
(i.e., µij ≥ 0 for all i and j and

∑
j µij = 1 for all i, or equivalently, M is a stochastic matrix)

and prototype matrices P .

For fixed prototypes P , Φ is minimized over M by choosing, for each object i, the memberships
µij such that

∑
j wiµ

m
ij δij is minimal, where δij = 1 − cos(xi, pj) for notational convenience.

Assume positive object weights. If m = 1, classification to the closest prototype is still
optimal. Let m > 1. If some, say l, δij are zero, optimality can be achieved by taking
µij = 1/l if δij = 0, and zero otherwise (if l > 1, other non-symmetric schemes are possible).
Otherwise, we can obtain the optimal memberships using the Lagrange multiplier technique.

The Lagrange function is L(M,λ) = −
∑
i,j wiµ

m
ij (1 − cos(xi, pj)) +

∑
i λi

(∑
j µij − 1

)
, and

setting the partial derivatives with respect to the µij and λi to zero yields

µij =
1/(wiδij)

1/(m−1)∑
l 1/(wiδil)

1/(m−1) , δij = 1− cos(xi, pj). (2)

For fixed memberships M , Φ is minimized over P if for each prototype pj ,
∑
iwiµ

m
ij (1 −

cos(xi, pj)) is minimized. Now

∑
i

wiµ
m
ij (1− cos(xi, pj)) =

∑
i

wiµ
m
ij

(
1− 〈xi, pj〉
‖xi‖‖pj‖

)

=
∑
i

wiµ
m
ij −

〈∑
i

wiµ
m
ij

xi
‖xi‖

,
pj
‖pj‖

〉
,

which again by Cauchy-Schwartz is minimized iff

pj ∝ sj(M) =
∑
i

wiµ
m
ij

xi
‖xi‖

.

If m = 1, this reduces to the weighted sum
∑
i:c(i)=j wixi/‖xi‖ of the normalized feature

vectors in class j.
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From the above, one can readily obtain a fixed-point algorithm for the extended spherical
k-means problem which again iterates between computing optimal M for fixed P and optimal
P for fixed M . Again, the corresponding Φ(M,P ) will converge to a limiting value, but not
necessarily the optimal one. Note that Ψ(M), the minimal criterion value for fixed M , is

Ψ(M) =
∑
j

(∑
i

wiµ
m
ij −

〈
sj(M),

sj(M)

‖sj(M)‖

〉)

=
∑
i,j

wiµ
m
ij −

∑
j

‖sj(M)‖.

If m = 1 (but the weights are not necessarily all one), the first term is
∑
i,j wiµij =

∑
iwi

and hence constant, and the results of Dhillon et al. (2002) for optimal single object moves
can straightforwardly be generalized, with x̃i = wixi/‖xi‖ and new squared norms given by
‖sj − x̃i‖2 = ‖sj‖2 − 2s′j x̃i + w2

i and similarly ‖sl + x̃i‖2 = ‖sl‖2 + 2s′lx̃i + w2
i . The situation

is fundamentally different if m > 1 (where memberships may vary continuously). Suppose
M is a fixed point. Consider an arbitrary smooth curve of memberships t 7→ M(t) = [µij(t)]
passing through M at t = 0 (i.e., satisfying M(0) = M). The derivative of the criterion value
of M(t) optimized over P is

dΨ(M(t))

dt
=

∑
i,j

mwiµij(t)
m−1µ̇ij(t)−

∑
j

〈
dsj(M(t))

dt
,
sj(M(t))

‖sj(M(t))‖

〉

=
∑
i,j

mwiµij(t)
m−1µ̇ij(t)

(
1−

〈
xi
‖xi‖

,
sj(M(t))

‖sj(M(t))‖

〉)

where µ̇ij(t) = dµij(t)/dt. As all M(t) are memberships,
∑
j µij(t) = 1 and hence

∑
j µ̇ij(t) =

0. As M is a fixed point, we know from Equation 2 that µm−1ij (1 − cos(xi, sj(M))) does not
depend on j. Hence, writing γi for the common value, dΨ(M(t))/dt|t=0 =

∑
i,jmwiγiµ̇ij(0) =∑

imwiγi
∑
j µ̇ij(0) = 0. Thus, first order local improvements are not possible. In fact, we

are not aware of references discussing direct local improvement heuristics for soft partitioning
problems. The strategy of Belacel, Hansen, and Mladenovic (2002) (for the fuzzy k-means
problem) employs restarts based on replacing a single prototype by a feature vector (resulting
in non-local changes to the memberships).

3. Software

3.1. Interface

Using package skmeans, spherical k-means clustering is performed by function skmeans with
synopsis

skmeans(x, k, method = NULL, m = 1, weights = 1, control = list())

with arguments x, k, m and weights giving the data matrix X, the desired number of groups k,
the softness parameterm, and the object weights w, respectively, and control a list of suitable
control parameters.
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Argument method specifies the method employed for “solving” the corresponding (standard
or extended) spherical k-means problem. Note that these are not exact solvers: following
common optimization terminology, a solver is an algorithm/code attempting to minimize the
criterion function, and a “solution” is what a solver delivers, which is not even guaranteed
to deliver a value close to the true minimum (see Section 4 for a performance comparison
of the available solvers on a collection of benchmark data sets). Argument method can be a
character string specifying one of the built-in solvers (a fixed-point and a genetic algorithm,
and interfaces to two standalone solvers (CLUTO and Gmeans) and the C code implementing
the k-mean-directions algorithm of Maitra and Ramler (2010)) which are discussed in detail
below, a function to be taken as a user-defined method, or NULL (default). By default, the
genetic algorithm is used for obtained hard partitions, and the fixed-point algorithm otherwise.

The fixed-point and genetic solvers allow to specify starting partitions via control parameter
start in the form of character vectors naming built-in initialization methods, or lists of
prototype matrices or skmeans results objects. This makes it possible to experiment with
different initialization strategies, or attempt to combine methods for possible performance
improvements (e.g., applying the local improvement heuristics to the results of CLUTO). By
default, random sets of objects are taken as initial prototypes.

All methods return an object inheriting from classes "skmeans" and "pclust", the latter pro-
vided by package clue for representing the results of hard or soft prototype-based partitioning
algorithms. These objects are lists with components including the following:

prototypes: The prototype matrix P .

membership: The membership matrix M (only provided if m > 1).

cluster: The class ids c(1), . . . , c(n) of the closest hard partition (the partition itself if
m = 1).

value: The value Φ(M,P ) of the criterion function.

This allows to use the high-level functionality of clue for further computations on the results,
in particular using cl_predict to predict the class ids or memberships of “new” objects using
the partition of the whole feature space induced by the obtained partition of the given objects.

In addition, package skmeans provides special methods for the S3 generics print, silhouette
from package cluster, and cl_validity (providing the “dissimilarity accounted for”) from
package clue (the latter two take advantage of the special structure of the cosine distance to
avoid computing full object-by-object distance matrices, and hence also perform well for large
data sets).

3.2. Algorithms

Method "pclust"

This implements the fixed-point algorithm for both the standard and extended spherical
k-means problems. For the hard case (m = 1), one can optionally attempt further local
improvements via Kernighan-Lin chains of first variation single object moves as suggested by
Dhillon et al. (2002). The chain length employed is specified by control argument maxchains.
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It is possible to perform several fixed-point runs, either by using control parameter nruns to
specify the number of runs (which then use the default initialization), or by explicitly giving
the starting values via parameter start. The default is to perform a single run. The partition
returned is the first with the smallest criterion value in the runs performed.

Earlier implementations of this algorithm directly used the general-purpose prototype-based
partitioning framework of pclust in package clue, by providing a pclust “family” featuring
a dissimilarity function D to compute the cosine cross-dissimilarity matrix of objects and
prototypes (i.e., the data and prototype matrices) and a consensus function C computing a
single prototype minimizing

∑
i ωi(1−cos(xi, p)). However, pclust currently always computes

optimal prototypes one at a time, and run-time performance can significantly be enhanced
by vectorizing these computations (see Section 3.3 for details). Hence, we now use a “stand-
alone” implementation, still employing the skmeans family for all skmeans result objects, in
particular as cl_predict utilizes its D element.

Method "genetic"

This implements a genetic algorithm patterned after the genetic k-means algorithm of Krishna
and Murty (1999). Genetic algorithms operate by maintaining a population of solutions of a
fixed size and evolving these solutions over a number of generations. In our case, a solution
is a membership matrix M (and the corresponding P ). In each generation solutions are
transformed by mutation and selected for fitness. Typical genetic algorithms also include
a cross-over operation that combines two solutions. However, this approach suffers from
efficiency problems for clustering, as convergence may take a very long time and crossed-over
solutions are unlikely to be better than the starting solutions. As described by Krishna and
Murty (1999), instead of the cross-over solution our genetic algorithm applies fixed-point
iteration to all mutated solutions before selecting the fittest solution. Fixed-point iteration
is computationally cheap and enables the solver to converge much faster than by mutation
alone.

In each generation, a mutated copy is created for each solution in the population, doubling the
population size. The mutation operation randomly changes cluster membership on a fraction
of the objects, which is much simpler and computationally cheaper than the distance-weighted
solution presented by Krishna and Murty (1999), but still performs well in our tests. The
mutated solutions are then used for fixed-point iteration (the reference uses only a single
iteration, we repeat iterations as long as significant improvement can be made). For the
selection step, the algorithm computes Fi = (Φ(Mi, Pi)−mini(Φ(Mi, Pi)))/(maxi(Φ(Mi, Pi))−
mini(Φ(Mi, Pi)))+ui, with Mi the memberships of solution i, Pi the corresponding prototypes,
and ui uniformly distributed between 0 and 1, and chooses the top half of solutions ranked by
Fi for the next generation. The algorithm terminates if there is no significant improvement
over the last generation or the maximum number of generations is reached.

The behavior of the algorithm can be controlled through a number of parameters: popsize

sets the population size (unless implied by start), reltol and maxiter set termination
conditions, and mutations gives the probability of mutation in each iteration.

Method "cluto"

This provides an interface to the vcluster partitional clustering program from CLUTO, the
CLUstering TOolkit by George Karypis (Karypis 2003). CLUTO is a comprehensive package
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for partitional and hierarchical clustering which provides algorithms “optimized for operating
on very large datasets both in terms of the number of objects as well as the number of dimen-
sions”, and has been reported to perform very well in many application contexts. It is not
open source and can freely be used for educational and research purposes by non-profit institu-
tions and US government agencies only. Standalone programs (vcluster and scluster) and
libraries for Linux (i686/x86 64), Mac OS X (ppc/i386), SunOS, and MS Windows (x86 32,
x86 64) can be downloaded via http://www-users.cs.umn.edu/~karypis/cluto/. The par-
titional algorithms of CLUTO use a “randomized incremental optimization algorithm that is
greedy in nature, has low computational requirements, and has been shown to produce high-
quality clustering solutions” (Karypis 2003). Unfortunately, further algorithmic details are
not available due to CLUTO’s closed source nature; from the documentation of the command
line arguments ntrials, niter and seed one can infer that several (default: 10) different
clustering solutions are computed using a maximum number (default: 10) of refinement iter-
ations, apparently based on suitable random initialization with settable seed (by default, the
same seed is used for each invocation). Standard spherical k-means clustering can be per-
formed using vcluster (or its library equivalent) with the ‘cos’ similarity and ‘i2’ criterion
functions. For convenience reasons, we interface the program rather than the library: using
the latter would avoid the cost of file I/O for exchanging data between R and CLUTO, but
complicate installation (as the CLUTO libraries and headers need to be available in a place
where R can find them when the skmeans package is installed).

Method "gmeans"

This provides an interface to the gmeans program for partitional clustering developed by
Yuqiang Guan as part of his PhD thesis (Guan 2006), which performs k-prototypes parti-
tioning for four different dissimilarity measures d, including cosine dissimilarity. The origi-
nal source code (released under the GPL with additional citation requirements) is available
via http://userweb.cs.utexas.edu/users/dml/Software/gmeans.html and known to be
compiled using GCC 3.0.3 in Solaris and Linux. However, the code is not ANSI C++ com-
pliant, and hence cannot be compiled using e.g., GCC 4.x. Fortunately, Gmeans was recently
compared to CLUTO in the benchmarking study of Tunali, Çamurcu, and Bilgin (2010) who
provide modified source code via http://www.dataminingresearch.com/index.php/2010/

06/gmeans-clustering-software-compatible-with-gcc-4/ which can be compiled using
current versions of GCC. Gmeans uses the fixed-point algorithm combined with the first
variation local improvement strategy of Dhillon et al. (2002) (as also available for method
"pclust") and provides a choice among six different initialization methods. By default, no
first variations are performed, and the initial prototypes are chosen by first determining the
spherical 1-means prototype

∑
i xi/‖xi‖, and then repeatedly picking the xi most dissimilar

to the already chosen prototypes as the next prototype (i.e., by default prototypes are initial-
ized in a deterministic way). There is no library interface, so communication between R and
Gmeans requires file I/O.

Method "kmndirs"

This requires package kmndirs (available from R-Forge, Maitra, Ramler, and Hornik 2012),
which provides an R interface to a suitable modification of the C code for the k-mean-
directions algorithm made available as supplementary material to Maitra and Ramler (2010)
at http://pubs.amstat.org/doi/suppl/10.1198/jcgs.2009.08155. This algorithm fol-

http://www-users.cs.umn.edu/~karypis/cluto/
http://userweb.cs.utexas.edu/users/dml/Software/gmeans.html
http://www.dataminingresearch.com/index.php/2010/06/gmeans-clustering-software-compatible-with-gcc-4/
http://www.dataminingresearch.com/index.php/2010/06/gmeans-clustering-software-compatible-with-gcc-4/
http://pubs.amstat.org/doi/suppl/10.1198/jcgs.2009.08155
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lows the Hartigan-Wong approach to efficiently obtaining k-means partitions by repeatedly
considering suitable single object moves (to clusters in the “live set”) in an optimal transfer
stage, and potentially updating prototypes and memberships of recently reallocated clusters
in a quick transfer stage. The algorithm uses a sophisticated initialization strategy. First, the
most widely separated local modes along each data dimension (column of X) are obtained by
hierarchical clustering of pruned collections of data quantiles, giving a prototype matrix P0.
Then, additional prototype matrices P1, . . . , PR are obtained by randomly sampling from the
rows of X. The Pi for which the criterion value minM Φ(M,Pi) is minimal is selected as
starting value for the iteration. In the C code implementing this algorithm, all computations
are based on C-level dense matrices.

3.3. Remarks

We already pointed out that in many applications, the data matrix X will be rather large and
sparse, so that solvers should be able to employ suitable sparse matrix representations for X
(we always use a dense representation for the prototype matrix P ). The “native” solvers in
package skmeans (methods "pclust" and "genetic") are capable of dealing with arbitrary
sparse matrix formats/classes if these provide

� standard methods for subscripting rows, scaling rows via multiplication (from the left)
or division (from the right) by a numeric vector, taking (element-wise) squares, and
coercion to a dense matrix;

� methods for computing transposed cross-products with a dense matrix (i.e., for com-
puting the matrix product of X and P ′), row and column sums.

The former can be made available as methods to the standard generics [, Ops (for *, /

and ^) and as.matrix. As tcrossprod, rowSums and colSums are not generic, skmeans
provides simple (S3) generic wrappers g_tcrossprod (with dispatch on the first argument
corresponding to the data matrix), g_row_sums and g_col_sums, with predefined methods
for dense matrices, simple triplet matrices from package slam (Hornik, Meyer, and Buchta
2011) which are used by the tm text mining infrastructure (Feinerer, Hornik, and Meyer
2008) when creating document-term matrices, and the dgCMatrix and dgTMatrix classes
from package Matrix (Bates and Maechler 2011). (Packages slam and tm also provide simple
triplet matrix readers for the sparse matrix formats employed by CLUTO and the MC toolkit,
Dhillon, Fan, and Guan 2001, respectively.) Support for other formats/classes can be added
by providing methods for the above generics.

To use the CLUTO and Gmeans interfaces, an as.simple_triplet_matrix coercion method
must be available (as we always use the sparse input formats supported by these solvers). For
the k-mean-directions interface, as.matrix coercion to a dense matrix must be available (as
the C implementation internally uses C-level dense matrices).

As we have seen in Section 2, spherical k-means prototypes can be computed via

pj ∝
∑

i:c(i)=j

x̃i, pj ∝
∑
i

µmij x̃i

for the hard and soft cases, respectively, i.e., as the column sums of subsets of rows or
column sums of scaled rows, respectively. Using the above framework, these can always
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be computed via g_col_sums, but it may be more efficient to perform these computations
on a “lower” level exploiting the internals of sparse matrix representations, and to vector-
ize computations by simultaneously computing all prototypes. We thus provide a generic
g_col_sums_by_group for efficiently computing hard prototypes. This has a method for sim-
ple triplet matrices based on C code, and a default method individually computing prototypes
via g_col_sums_with_logical_index (currently non-generic), which in turn provides opti-
mizations for the dgCMatrix class. Similarly, soft prototypes can efficiently be computed as
the cross-product of the matrices [µmij ] (dense) and the row-normalized data matrix X̃ (possi-
bly sparse). We thus provide a generic g_crossprod with dispatch on the second argument,
again with methods for dense and simple triplet matrices and the dgCMatrix and dgTMatrix
classes.

3.4. Example

Beginning with “The Wonderful Wizard of Oz”, the Oz books written by L. Frank Baum
relating the fictional history of the Land of Oz are among the most popular children’s books
ever written. Frank Baum himself authored 14 Oz books. After his death, many additional
Oz books were written. Those 26 founded on Baum’s original canon, including 19 books by
Ruth Plumly Thompson, and the 14 books by Frank Baum himself give the 40 “official Oz
books”.

“The Royal Book of Oz” (Oz book 15) was the first book by Thompson published in 1921,
following Baum’s death in 1919. The authorship of this book has long been disputed amongst
literature experts. Today, it is commonly attributed to Thompson, as supported by a variety
of stylometric analyses.

Package tm.corpus.Oz.Books, available from WU Wien’s data package repository at http:

//datacube.wu.ac.at/ (and also included in the supplementary materials), provides 21 Oz
books in the public domain (all 14 by Baum and 7 by Thompson) as a tm Corpus object. The
books by Thompson available in this corpus are her first 2 and her last 5. In what follows, we
use package skmeans for a simple stylometric analysis based on computing spherical k-means
partitions of the books in the corpus, illustrating how to obtain a document-term matrix
(DTM) suitable for input to skmeans, and how to use the result of skmeans for subsequent
computations.

We start by loading the Oz books data corpus, and using DocumentTermMatrix from package
tm to create a DTM from the corpus.

R> data("Oz_Books", package = "tm.corpus.Oz.Books")

R> library("tm")

R> x <- DocumentTermMatrix(Oz_Books,

+ control = list(removePunctuation = TRUE, stopwords = TRUE))

R> x

A document-term matrix (21 documents, 39353 terms)

Non-/sparse entries: 92643/733770

Sparsity : 89%

Maximal term length: 2698

Weighting : term frequency (tf)

http://datacube.wu.ac.at/
http://datacube.wu.ac.at/
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DTMs in tm are based on the simple triplet matrix class from package slam, so that using these
as inputs to skmeans will “automatically” result in efficient representations and computations.

Our analysis will be based on binary term weights, i.e., on indicators of the occurrence of
terms in documents. Note that the many terms which occur only in a single document (Oz
book) are not removed, so that cosine distances between documents will be rather high. As
we are also interested in how “sure” Oz book 15 is classified into its cluster, we compute soft
spherical k-means partitions with a moderately low softness degree m = 1.2 (results obtained
are qualitatively similar when varying m around this value). To be able to possibly distinguish
the style in the early and late books of Baum and Thompson, respectively, we partition into
k = 4 classes. We use 20 runs of the fixed-point algorithm to avoid suboptimal solutions due
to local optima.

R> set.seed(1234)

R> party <- skmeans(weightBin(x), k = 4, m = 1.2, control = list(nruns = 20))

R> party

A soft spherical k-means partition (degree m = 1.200000) of 21 objects

into 4 classes.

Class sizes of closest hard partition: 7, 2, 7, 5.

Call: skmeans(x = weightBin(x), k = 4, m = 1.2, control = list(nruns = 20))

We can then compare the class ids of this partition (precisely, the ids of the closest hard
partition, obtained by classifying books into the class with largest membership value) to the
“true” authors:

R> ids <- abbreviate(unlist(meta(Oz_Books, "Author", type = "local")))

R> table(party$cluster, ids)

ids

L.FB RtPT

1 7 0

2 0 2

3 7 0

4 0 5

Equivalently, using the high level accessors from package clue:

R> library("clue")

R> table(cl_class_ids(party), ids)

ids

L.FB RtPT

1 7 0

2 0 2

3 7 0

4 0 5
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Thus, the obtained partition achieves perfect classification. In fact,

R> split(cl_class_ids(party), ids)

$L.FB

Oz_Book_01.txt Oz_Book_02.txt Oz_Book_03.txt Oz_Book_04.txt Oz_Book_05.txt

3 3 3 3 3

Oz_Book_06.txt Oz_Book_07.txt Oz_Book_08.txt Oz_Book_09.txt Oz_Book_10.txt

3 3 1 1 1

Oz_Book_11.txt Oz_Book_12.txt Oz_Book_13.txt Oz_Book_14.txt

1 1 1 1

$RtPT

Oz_Book_15.txt Oz_Book_16.txt Oz_Book_29.txt Oz_Book_30.txt Oz_Book_31.txt

2 2 4 4 4

Oz_Book_32.txt Oz_Book_33.txt

4 4

shows an interesting pattern, with the 2 Thompson clusters cleanly separating her early
(first 2) and late (last 5) books, and the 2 Baum clusters similarly separating his books along
the time axis.

To assess the “sureness” of the classifications, we inspect the margins (differences between the
largest and second largest membership values of the respective books). This gives

R> split(round(cl_margin(party), 2), cl_class_ids(party))

$`1`

[1] 0.41 0.56 0.61 0.49 0.39 0.42 0.55

$`2`

[1] 0.97 0.97

$`3`

[1] 0.53 0.02 0.58 0.63 0.70 0.45 0.01

$`4`

[1] 0.76 0.80 0.77 0.79 0.76

Clearly, Oz book number 15 is very strongly classified into its group with Oz book number
16, yet again strengthening the evidence that “The Royal Book of Oz” was indeed written by
Thompson, and not by Baum.

Finally, we can use dissimilarity plots (Hahsler and Hornik 2011) to visualize the quality of
the obtained partition (see Figure 1):

R> library("seriation")

R> dissplot(skmeans_xdist(weightBin(x)), cl_class_ids(party),

+ options = list(silhouette = TRUE, gp = gpar(cex = 0.7)))
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Dissimilarity plot: 21 x 21

0.58 0.6 0.62 0.64 0.66 0.68 0.7

1 2 4 3

1

2

4

3

−0.02 0 0.01 0.03 0.05

Silhouette width

Figure 1: Dissimilarity plot for a soft spherical k-means partition of 21 public domain Oz
books into k = 4 classes (m = 1.2).

This again illustrates that the two Thompson clusters are rather markedly separated from
themselves and the Baum clusters, with the last two less well separated from each other.

4. Experiments

4.1. Data

For our experiments we use all 24 datasets which are available from the CLUTO website
(http://glaros.dtc.umn.edu/gkhome/fetch/sw/cluto/datasets.tar.gz). All datasets
are document-term matrices storing a bag-of-word representation of the corresponding under-
lying corpus. Table 1 summarizes their characteristics, listing the number of documents (NR),
terms (NC), and number of non-zero entries (NNz), sparsity (in percent) and the memory in
kibibyte (KiB, 1024 bytes) that is being used to store the corresponding R object as reported
by object.size().

In addition we use the two datasets “20 Newsgroups” and “Waveform” as employed by Tunali
et al. (2010), and the abstracts from the 2008 Joint Statistical Meetings as used by Maitra
and Ramler (2010).

http://glaros.dtc.umn.edu/gkhome/fetch/sw/cluto/datasets.tar.gz
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Data NR NC NNz Sparsity Size

cacmcisi (SMART) 4663 41681 83181 99.96 1300.72
classic (SMART) 7094 41681 223839 99.92 3498.50
cranmed (SMART) 2431 41681 140658 99.86 2198.79
fbis (TREC, TREC-5) 2463 2000 393386 92.01 6147.66
hitech (TREC, TIPSTER Vol. 3) 2301 126373 346881 99.88 5421.03
k1a (Han et al. 1998) 2340 21839 349792 99.32 5466.51
k1b (Han et al. 1998) 2340 21839 349792 99.32 5466.51
la12 (TREC, TREC-5) 6279 31472 939407 99.52 14679.25
la1 (TREC, TREC-5) 3204 31472 484024 99.52 7563.88
la2 (TREC, TREC-5) 3075 31472 455383 99.53 7116.38
mm 2521 126373 490062 99.85 7658.23
new3 (TREC, TREC-5/6) 9558 83487 2295120 99.71 35862.26
ohscal (Hersh et al. 1994) 11162 11465 674365 99.47 10537.97
re0 (Lewis 1997) 1504 2886 77808 98.21 1216.76
re1 (Lewis 1997) 1657 3758 87328 98.60 1365.51
reviews (TREC, TIPSTER Vol. 3) 4069 126373 781635 99.85 12214.06
sports (TREC, TIPSTER Vol. 3) 8580 126373 1107980 99.90 17313.20
tr11 414 6429 116613 95.62 1823.09
tr12 313 5804 85640 95.29 1339.13
tr23 204 5832 78609 93.39 1229.28
tr31 (TREC, TREC-5/6) 927 10128 248903 97.35 3890.12
tr41 (TREC, TREC-5/6) 878 7454 171509 97.38 2680.84
tr45 690 8261 193605 96.60 3026.09
wap (Han et al. 1998) 1560 8460 220482 98.33 3446.04

ng20 (Mitchell 1999) 18618 25440 318811 99.93 8073.45
jsm2008 (Maitra and Ramler 2010) 2107 3762 84201 98.94 1572.95

waveform (Frank and Asuncion 2010) 5000 21 104828 0.16 1640.18

Table 1: The CLUTO, 20 Newsgroups, 2008 Joint Statistical Meetings, and Waveform data
sets and their characteristics: number of rows (NR), number of columns (NC), number of non-
zero entries (NNz), sparsity (in percent) and necessary memory to store the corresponding R
object (in KiB).

4.2. Setup

We evaluate the methods1 cluto, genetic, gmeans, and pclust both for runtime and cluster
performance, by grouping each dataset into k = 2, . . . , 10 clusters. In addition we test the
runtime impact of the supported matrix formats (dense, simple triplet matrix, and dgTMa-
trix). Each combination (solver, format, dataset, number of clusters) investigated is run 10
times to reduce the effects of random initializations.

The individual methods are called using default settings subject to following modifications to
allow better comparison between the methods and their corresponding criterion values and
runtimes.

cluto: Use direct k-way clustering as the method for finding the clusters. Set the seed

1We do not include kmndirs due to memory and stability issues.
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of the random number generator to seed <- as.integer(runif(1) * 2147483647)).
Implemented by setting the control argument of the skmeans function to list(control
= c("-clmethod=direct", sprintf("-seed=%s", seed)).

gmeans: For the initialization method randomly pick vectors as prototypes, and set the num-
ber of first variations to 10, via control = list(control = "-i c -f 10").

pclust: Set the number of fixed-point runs to be performed to 12, via control = list(nruns

= 12).

In addition for cluto and gmeans we write out the datasets to disk before actually calling
the methods (and only provide pointers to the position via the ifile argument) to factor out
the overhead induced by their I/O file interfaces.

The experiment is conducted on a quad-core Intel Xeon CPU running at 2.33 GHz equipped
with 16 GB RAM.

4.3. Results

To assess (average) clustering performance, we compare the median objective values obtained
in the 10 repeated runs for each combination of settings. We take the R-based solvers (genetic
and pclust) using the simple triplet matrix format (results do not change significantly using
other formats), and the external solvers (cluto and gmeans), and for each combination of
dataset and number of clusters, rank the solvers according to the criterion value achieved
(the lower the rank the better). In the case of ties, corresponding ranks are replaced by their
minimum. This gives the cross-tabulation of solvers and ranks as shown in Table 2 with
corresponding average ranks

cluto genetic gmeans pclust

1.341564 2.267490 3.522634 2.711934

This shows that cluto finds the best solutions, with the R-based genetic and fixed-point
solvers in second and third place, respectively. To assess the amount by which cluto performs
better, we compute the average relative differences of the criterion values obtained by the
respective solvers to the ones obtained by CLUTO:

genetic gmeans pclust

0.000958808 0.004689899 0.001442029

This shows that all solvers perform reasonably well, with the R-based solvers rather close to
CLUTO’s performance.

1 2 3 4

cluto 188 34 14 7
genetic 30 122 87 4
gmeans 25 11 19 188
pclust 27 59 114 43

Table 2: Cross-tabulation of solvers and (minimal) ranks of median objective values obtained
in 10 repeated runs for each combination of dataset and number of clusters.
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To assess (average) clustering performance, we compare the median runtimes values obtained
in the 10 repeated runs for each combination of settings. First, we again take the R-based
solvers using the simple triplet matrix format, and the external solvers. Results can rather
conveniently be summarized by fitting a linear model of the log runtime on the number of
clusters and the solver employed, which yields coefficients

(Intercept) clusters solvergenetic solvergmeans solverpclust

-0.5991801 0.1124755 3.3022608 -0.1410903 2.6198475

(using the CLUTO log runtime as a baseline) with an R2 of 66.65 %. Thus, on average the
pclust and genetic solvers run about exp(2.62) ≈ 14 and exp(3.3) ≈ 27 times slower than
CLUTO. To compare, direct computation of the average relative difference of the run times
obtained by the respective solvers and the ones obtained by CLUTO gives

genetic gmeans pclust

28.314724217 -0.009789253 13.732001857

This may seem rather disappointing, in particular given that profiling shows that about 80 %
of the runtime of the R-based solvers is actually consumed in C code for computing cross-
similarities and grouped averages. However, this C code actually spends considerable time
validating the arguments passed from R (a somewhat general issue when writing “hybrid”
code which moves back and forth between R and C), providing functionality which is reusable
rather than optimized for a specific task. Specifically, substantial run-time improvements
would be possible by storing the data matrix optimized for row or column access (for more
efficiently computing dissimilarities and grouped averages, respectively), or both accesses.
We also need to take into account that the amount of computations actually performed
may vary significantly between the solvers (as employed). In particular, gmeans and pclust

implement the same fixed-point algorithm, but the results for the former are for a single
run with randomly picked vectors as initial prototypes (and with first variation chains of
maximal length 10), whereas results for the latter are the best of 12 such runs (with no
first variations). Similarly, comparing the run times of the pclust and genetic solvers and
realizing that performing mutation and selection is very cheap, we see that with the chosen
defaults (population sizes and mutation rates), the latter performs about twice as many
fixed-point iterations as the former. See Section 3.2 for comments on the lack of available
algorithmic details for the cluto solver: the documentation would seem to imply that each run
performs at most 100 refinement iterations, where we found that e.g., pclust (as employed)
performed substantially more fixed-point iterations.

The preceding discussion explains why gmeans runs the fastest, but gives the worst perfor-
mance. It might also be taken to suggest attempting to modify the defaults of the R-based
solvers so that substantially fewer iterations are performed to obtain results of “similar” qual-
ity (criterion value). We think differently: after all, the real task is to optimize the criterion
function, so in principle we should use available resources at our discretion to find the best
approximate solutions we can obtain within the resource constraints.

For the R-based solvers, we can also investigate the impact of using different storage formats
for the data matrix. Figure 2 shows the median log runtimes using pclust. Not surprisingly,
using dense matrices performs worst (but quite interestingly, best for the waveform data set,
which is“very dense”). Due to memory limitations, results for dense matrices are only available



18 Spherical k-Means Clustering

clusters

lo
g(

ru
nt

im
e)

0
2
4
6

2 4 6 8 10

cacmcisi classic

2 4 6 8 10

cranmed fbis

2 4 6 8 10

hitech jsm2008

k1a k1b la1 la12 la2

0
2
4
6

mm
0
2
4
6

new3 ng20 ohscal re0 re1 reviews

sports tr11 tr12 tr23 tr31

0
2
4
6

tr41
0
2
4
6

tr45

2 4 6 8 10

wap waveform
dense
dgTMatrix
simple_triplet_matrix

Figure 2: Median log run-times for method pclust.

for the “small” datasets. Using simple triplet matrices clearly performs best. We observe a
rather non-linear growth pattern for the dgTMatrix format. Results using the genetic solver,
or dgCMatrix instead of dgTMatrix are equivalent. Due to this pattern, fitting linear models
of log runtime on the number of clusters and the solver and formats employed yields rather
low R2 values (in the 30 % range). Instead, directly computing the average relative differences
of the run times obtained by using the dgTMatrix and dense formats and the ones using the
simple triplet matrix format gives

dgTMatrix dense

1.589124 12.343601

which under-estimates the speedups observed for larger numbers of clusters: using e.g., only
the results for k > 6 gives the following average relative differences:

dgTMatrix dense

2.290238 13.157902

Finally, we investigate the extent to which the best solutions obtained can further be improved
by suitable chains of first variation moves. We use maximal chain lengths of 1 (v_lih), 10
(v_lihc_10), and 25 (v_lihc_25) (alternatively, one might consider lengths corresponding to
fractions of the number of points to be clustered). Average relative improvements achieved
for the respective criterion values are shown in Table 3 with the fractions of results for which
improvements occurred listed in Table 4. Remember that gmeans was run with the number
of first variations set to 10: nevertheless, single element move improvements were possible
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Solver v_lih v_lihc_10 v_lihc_25

cluto 3.883046E-06 7.779577E-06 1.121617E-05
genetic 1.090766E-04 1.169718E-04 1.284170E-04
gmeans 3.714942E-06 2.427019E-05 4.285163E-05
pclust 5.206787E-04 5.741406E-04 5.914045E-04

Table 3: Average relative improvements achieved for the respective criterion values.

Solver v_lih v_lihc_10 v_lihc_25

cluto 0.4074074 0.5231481 0.5370370
genetic 0.8935185 0.9027778 0.9027778
gmeans 0.5138889 0.6064815 0.6342593
pclust 0.9444444 0.9444444 0.9444444

Table 4: Fractions of results for which improvements occurred.

for about half of the results. For cluto, results are comparable to those for gmeans; hence,
one might suspect that cluto also attempts local improvements. The results of the R-based
solvers can “typically” be improved (note that whereas the fractions may remain the same,
the amount of improvement still grows with the lengths of the chains employed). The success
rates seem to indicate that one should always try to improve obtained solutions using chains
with lengths not below 10.

5. Conclusion

Spherical k-means clustering is a central technique for addressing current data analysis chal-
lenges, especially in the context of large collections of text documents. Solving spherical
k-means clustering problems corresponds to finding optimal group memberships employing
the cosine dissimilarity measure.

We presented a computational environment with R-based implementations of a fixed-point
and a genetic algorithm, and interfaces to two well-known external solvers (CLUTO and
Gmeans). The infrastructure is highly extensible, with support for arbitrary sparse matrix
formats, and allows the customization of initialization and local improvement strategies.

A large scale benchmark experiment analyzing the performance and efficiency of the available
solvers showed that all four presented approaches scale well and can be used for realistic
data sets with acceptable clustering performance. The external solvers Gmeans and CLUTO
are both very fast, with CLUTO typically providing better solutions. The genetic algorithm
finds excellent solutions but has the longest runtime, whereas the fixed-point algorithm is a
very good all-round approach. In general we recommend to use local improvements to further
optimize computed cluster assignments, which in our benchmark experiment worked best with
chains of length at least 10.
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