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Genetic epidemiological methodologies, such as linkage analysis, often require
accurate estimates of allele frequencies. When studies involve multiple sub-popu-
lations with different evolutionary histories, accurate estimates can be difficult
to obtain because the number of subjects per sub-population tends to be limited.
Given allele counts for a collection of loci and sub-populations, we propose a
Bayesian hierarchical model that extends existing empirical Bayesian approaches
by allowing for explicit inclusion of prior information about both allele frequen-
cies and inter-population divergence. We describe how such information can be
derived from published data and then incorporated into the model via prior dis-
tributions for model parameters. By analysis of simulated data, we highlight how
the hierarchical model, as implemented in the publicly available program AllDist,
combines prior information with the observed data to refine allele frequency
estimates. Genet. Epidemiol. 20:17–33, 2001.© 2001 Wiley-Liss, Inc.
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INTRODUCTION

Many genetic epidemiological analyses are quite sensitive to estimates of allele
frequencies. One of the best examples is linkage analysis involving ambiguous iden-
tity-by-descent (IBD) status. In this instance, IBD must be inferred as a function of
population allele frequencies, with the probability of IBD increasing with the rarity
of shared alleles [Weeks and Lange, 1988; Risch, 1990; Kruglyak et al., 1996]. Clearly,
underestimation of allele frequencies can lead to false linkage, whereas overestima-
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tion can lead to reduced power. Although recent work underscores the severity of
this problem for affected relative-pair methods without genotyped parents [Ott, 1992;
Friemer et al., 1993; Tores et al., 1996], it remains pertinent to linkage analyses of
extended pedigrees [Risch and Giuffra, 1992].

An important trend in linkage analysis of complex diseases is the conglomera-
tion of families of different ethnic origins, thereby presumably increasing the power
to detect liability genes of subtle effect. Often such studies use pooled allele fre-
quencies for inference, ignoring sub-population heterogeneity and implicitly assum-
ing sub-population heterogeneity is negligible. This assumption, although harmless
if true, may seriously compromise inference regarding linkage when it is false.

When pedigrees are drawn from heterogeneous sub-populations, the ideal link-
age analyses employ sub-population-specific allele frequency estimates. However,
such estimates can be error-prone when only a small number of independent subjects
are drawn from each sub-population. Fortunately, this problem has a solution that
involves “shrinking” the error-prone sub-population estimates toward some common
value. Such solutions have already been implemented in the field of genetic epide-
miology in the context of forensic inference from genetic markers [Devlin et al.,
1991; Lange, 1995].

Most relevant to our discussion of linkage analysis is Lange’s [1995] empirical
Bayes estimator for allele distributions. Although his approach is developed rigor-
ously in the sequel, in which it forms the nucleus for our model, it can be para-
phrased as follows. First, estimate the degree of allele frequency heterogeneity for a
locus of interest. Then shrink sub-population-specific allele frequencies toward their
pooled estimates as a function of the estimated sub-population heterogeneity: when
heterogeneity is large, shrinkage is relatively small and vice versa.

Our goal is to refine Lange’s empirical Bayes model for allele frequency data
by using Bayesian hierarchical methods. By re-casting the problem, we take advan-
tage of several sources of information not incorporated into the empirical Bayes analy-
sis. For instance, multiple loci are assessed for most modern epidemiological analyses,
especially linkage analysis. These loci all share a common population history caus-
ing the degree of sub-population heterogeneity across loci to be similar. Therefore,
to estimate sub-population heterogeneity, our model “borrows strength” across loci,
allowing the estimated heterogeneity at each locus to be informed by all other loci.
Moreover, the model allows for explicit inclusion of prior information about both
allele frequencies and inter-population divergence. These extensions produce more
accurate estimates of sub-population-specific allele frequencies. In this article, we
first describe the model, establish notation, and provide an explanation of the model
structures. We then discuss prior distributions, propose an approximation to the model
that reduces computational burden, and address issues concerning underdispersed
data. Finally, we give an example of the proposed methods and a discussion. The
methods we develop for Bayesian estimation of allele frequencies are implemented
in the publicity available software AllDist.

MODEL SPECIFICATION

In this section, we describe and motivate a Bayesian hierarchical model that
incorporates prior information for each marker, estimates the level of heterogeneity
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among the allele distributions of the sub-populations, and shrinks the allele frequency
estimates accordingly toward both the pooled and prior frequencies. The model has
four stages: the first stage is the multinomial likelihood model for allele counts, strati-
fied by sub-population (allele count stage); the second stage provides a model for
the variability of allele frequencies across sub-populations (sub-structure stage); the
third stage allows for the input of information about allele frequencies obtained from
prior studies (allele count prior stage); and the final stage quantifies prior evidence
about the level of heterogeneity among the sub-populations under study (dispersion
prior stage).

The data consist of allele counts for L loci and S sub-populations. Let l = 1,...,L
index loci, s = 1,...,S index sub-populations, a = 1,...,Ml index alleles at the lth locus,
and Xasl be the allele count and Xsl be the vector of allele counts for a sub-population
at a given locus.

Allele Count Stage

For s = 1,...,S and l = 1,...,L, we assume that the allele counts Xsl are distributed
Mult(nsl;psl), independently with probabilities psl = (p1sl,...,pMlsl). Assuming the allele
distribution is multinomial for each sub-population implies Hardy-Weinberg equilib-
rium within sub-populations. This is a standard assumption for population genetic
models.

Substructure Stage

For s = 1,...,S and i = 1,...,L, we assume that psl are independent random vectors
with a locus-specific Dirichlet distribution. The Dirichlet parameters al = (a1l,...,aMll)
are the key to inferences concerning allele frequencies psl. These parameters are the
expected values of pasl times a simple function of the variability among populations.
Let a.l = ΣMl

a=1 aal. Then, aal/a.l is the expected value of pasl and a.l quantifies the
dispersion of psl about its mean, with larger values of a.l implying smaller disper-
sion. The dispersion parameter can be expressed as a function of the standardized
measure of inter-populational variability of allele frequencies ql (or Fst [Wright, 1951],
namely a.l = (1 – ql)/ql.

The allele count and sub-structure stages together form the likelihood for the
data Xsl. Combining these two modeling stages yields the marginal distribution of
Xsl, which is the compound multinomial or Dirichlet multinomial distribution with
parameter al [Johnson et al., 1997]. Introduced by Mosimann [1962], it is the multi-
variate generalization of the beta-binomial distribution [Skellam, 1948]. Although
the Dirichlet model does not provide a perfect fit to evolutionary theory, it induces
correlation among alleles within a sub-population matching that predicted by the
theory [Jiang and Cockerham, 1987].

The final two stages define the prior distribution for the parameters of the com-
pound multinomial likelihood model.

Allele Count Prior

With a transformation of variables, the prior information for al can be modeled
more easily. For a = 1,...,Ml – 1, let yal = log(aal/aMll) and let bl = log(a.l). By invok-
ing the “logit” transformation, we can separate the cell frequencies al/a.l of the
Dirichlet distribution from the dispersion parameter a.l. This separation has two ad-
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vantages: the components have different dependence structures across sub-popula-
tions; and the re-parameterization improves the validity of the normal approximation
we will use to implement the theory in AllDist. It is natural to assume that yl and bl

are independent a priori for each l. With this assumption, the prior for (yl,bl) splits
into two independent parts:

1. Independently for each l we assume that yl ≡ (y1l,...,yMl–1,l) has a multivari-
ate normal distribution. The mean ml is a Ml – 1 dimensional vector and the
covariance tl

–1 is a (Ml – 1) × (Ml – 1) matrix. Both are derived from the
prior observations.

2. We assume that bl is distributed normally with mean mb and variance tb
–1,

independently for each l.

Dispersion Prior

To complete the model, we suppose that mb is distributed normally with mean d
and variance e–1, and that tb is distributed Gamma with shape parameter a and scale
parameter b. The parameters d, e, a, b are known as hyperparameters because they
come from external information independent from the study’s data and are not esti-
mated by the model. This final stage has two purposes: it allows input of prior infor-
mation about dispersion and encourages shrinkage of the individual bl toward a
common mean value for the entire set of loci. The amount of shrinkage depends on
the prior and the data. Ultimately, however, the procedure estimates distinct values
of bl for each locus.

Table I gives a guide to the various transformations of the Dirichlet parameters
al that we will utilize. To summarize, a larger value of the dispersion parameter, a.l,
means less dispersion among sub-populations. The ql parameterization is useful be-
cause it is well known in the population genetics literature. The transformations bl

and yal are necessary because estimates of these quantities are more nearly normally
distributed than the corresponding un-transformed quantities. Ultimately results about
these transformations of al are back-transformed to the original scale for inference.

Empirical Bayes Estimation

Lange’s [1995] empirical Bayes method treats the allele count and sub-structure
stages as a complete model for allele frequencies. Independently for each locus, the
compound-multinomial likelihood function is used to estimate al. The analysis then
proceeds (locus by locus) to obtain the posterior distribution of the cell frequencies for
each sub-population. The allele frequencies are estimated using the posterior mean,

TABLE I. Useful Transformations of the Dirichlet Parameters a l

Parameter Function Meaning

a.l Sa aal Dispersion parameter
ql 1/(1 + a.l) Wright’s Fst

bl loge(a.l) Transformed dispersion parameter
ψal loge(aal/aMll) Logit of expected allele frequencies
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Because the relative magnitudes of the components of al are reflective of the cor-
responding magnitudes of the marginal allele frequencies, larger values of a.l shrink
the sub-population estimates more closely toward the marginal frequencies. This
behavior is sensible as a large a.l suggests very little divergence among sub-popu-
lations.

Bayesian Estimation

Our proposed model essentially inherits the empirical Bayes structure, but adds
two important features: locus-to-locus dependence in the degree to which the sub-
populations differ in allele frequencies is modeled directly, and prior information
about allele frequencies for each locus is incorporated. This additional structure is
built into the allele count and dispersion priors. The log-odds vectors of expected
allele frequencies, yl, are treated separately for each locus, with the goal of shrink-
ing the estimated cell frequencies towards the marginal distribution of the population
and toward the prior distribution for that locus. If the observed frequency for an
allele in a particular sub-population is zero, which will be common when the number
of sampled individuals is small, the estimated frequency of that allele is not forced to
be zero. This helps to estimate frequencies of rare alleles, which may not be present
in all sub-populations when sample sizes are limited.

The logarithms of the dispersion parameters bl are assumed to be a sample from
a common distribution across loci. This allows distinct parameters at different loci
while promoting shrinkage across loci toward a common value. The coherence of
values is expected because the loci share a common population history. Despite their
shared history, distinct processes and rates of mutation promote inter-locus variabil-
ity [Chakraborty and Jin, 1992]. Our structure directly accounts for both features of
the data. The prior structure incorporated in the dispersion prior stage allows this
shrinkage to be a function of the observed data.

PRIOR DISTRIBUTIONS

To implement the model, fixed values for δ, e, a, and b from the dispersion
prior stage and for ml and tl from the allele count prior stage are required. Judicious
choice for these values incorporates the information from prior studies while ensur-
ing that the priors do not dominate the results for the current study. In this section,
we outline a procedure for determining values for these hyperparameters based on
prior information coming from the literature and reference databases of allele fre-
quencies (e.g., CEPH).

Deriving Values for d, e, a, b

A plausible prior for bl follows from basic reasoning. This prior is initially for-
mulated for the transformation ql because it is for this parameterization that histori-
cal records are available. Presumably, interest lies in sub-populations with ql ranging
between 0.003 and 0.03. For smaller values, there is little concern about heterogene-
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ity in allele frequencies, and for larger values it may not be appropriate to pool
populations in a common genetic analysis. This information can be utilized to choose
δ, e, a, and b. A reasonable specification of the hyperparameters given ql between
0.003 and 0.03 is δ = 4.5, e = 2.0, a = 18, b = 6. Using these parameters, a prior
distribution for bl is induced that transforms to a prior distribution for ql with median
approximately 0.01, first quartile equal to 0.007, third quartile equal to 0.016, and
Pr(q > 0.03) approximately 0.05. Although the investigator can input other param-
eter choices in AllDist, our specification is consistent with reasoning developed here,
and it provides enough prior variance to allow the data to update the distribution.

Deriving Values for the Vectors ml and the Matrices tl

A prior for allele frequencies requires a prior for yl in terms of parameters ml

and tl for the allele distribution. The information for specifying the prior distribution
comes from one or more allele frequency distributions observed from prior studies.
To translate these “prior data” into a prior distribution, we use the properties of the
compound multinomial distribution.

Procedure 1: Single-Reference Population

For each locus, assume a vector of allele counts is available from only one
reference population. Let Yl = (Y1l,...,YMll) be the allele counts and nl = SMl

a=1Yal. Our
goal is to use Yl to determine values for the hyperparameters ml and tl, assuming that
Yl follows a compound-multinomial distribution with parameter al. To do so, we
assume a fixed value for a.l = ebl because inference about this dispersion parameter
with data from only a single population is impossible. From the prior described pre-
viously, a sensible choice is the transformed mean of the prior distribution of bl, e

4.5.
We use the sampling distribution of the prior data Yl to form the prior for our current
data analysis. See Appendix A for details on how this translates into numerical val-
ues for ml and tl. From the form of the covariance matrix described therein, it can be
deduced that the prior information cannot exert excessive influence on the Bayesian
estimation procedure regardless of the size of the sample nl. Prior samples with more
than nl = 500 alleles have essentially the same influence as a sample of size 500.

Procedure 2: Multiple-Reference Populations

In principle, when allele counts from multiple populations are available, the
structure of the hierarchical model could be used to find the maximum likelihood
estimate (MLE) of the underlying compound multinomial distribution. However, be-
cause of occasional difficulties associated with calculating the MLE for the com-
pound multinomial model, we have not introduced this additional structure in AllDist.
Instead, if multiple populations are available a priori, AllDist requires that only the
marginal allele counts be used. This is equivalent to treating the multiple samples as
a single population, where the calculation of ml and tl follows as in the single-popu-
lation procedure.

When data are unavailable for a particular locus, we suggest setting ml to a
vector of zeroes (corresponding to equal cell frequencies) and tl to a small number
times the identity matrix. This allows the frequencies for that locus to be entirely
determined by the data. If one or more alleles has a frequency of zero in the prior
data, we suggest augmenting the counts of all alleles for that locus by a small value



A Bayesian Model for Allele Frequencies 23

(commonly 0.5) called a flattening constant [Schafer, 1997]. The effect is to shrink
the parameter estimates slightly toward a uniform distribution on the allele frequen-
cies, while eliminating computational difficulties associated with the zero count.

INFERENCE

To improve computational efficiency, we introduce a simplification and an ap-
proximation to our model. The simplification uses the fact that the allele count and
sub-structure stages imply that for each s and l, Xsl given al follows a compound
multinomial distribution with parameter al. The approximation replaces the assumed
model with an asymptotically normal version [Daniels and Kass, 1997] that allows
calculation of some model features in closed form and greatly facilitates simulation
from the joint posterior of the model parameters.

The approximation treats the MLE â l as the data. Based on the asymptotic prop-
erties of MLEs, â l is distributed multivariate normal with mean al and variance equal
to the observed Fisher information matrix. The latter quantity I al(â l) is the matrix
with (a,s) entry –!2/!aa!aslog Ll (al) where Ll (a l) is the compound multinomial
likelihood function. Because the revised model has a hierarchical normal structure,
Gibbs or successive substitution sampling from the joint posterior distribution of
parameters can be used to calculate characteristics of the model [Geman and Geman,
1984; Schervish, 1995; Gelman et al., 1995; Gilks et al., 1996]. Such calculations
yield the posterior means of the vectors (yl, bl), which can be back-transformed to
obtain estimates of al. Finally, the allele frequencies are estimated using equation
(1). It should be clear at this point that the Bayesian estimation procedure differs
from the empirical Bayesian procedure only in how it estimates al. Given an esti-
mate of these quantities, both procedures estimate the sub-population-specific allele
frequencies by the same process.

UNDERDISPERSED DATA

For some loci, a.l is likely to be very large, suggesting homogeneity across sub-
populations or very little divergence. For these loci, divergence may not be statisti-
cally detectable either because it does not exist or because small effects may be
obscured by sampling error. When this occurs, the marginal distribution of Xsl will
correspond to a degenerate compound multinomial distribution because observations
appear to come from a common multinomial distribution. In this case, a proper MLE
for the compound multinomial distribution does not exist: the MLE for a.l is infinite,
and estimation is impossible. Fortunately, there is a simple patch. We assume the
parameter ql takes on some baseline value, say qB = 0.001, which corresponds to
large a.l. This value yields a proper compound-multinomial distribution close to a
simple multinomial distribution, eliminating computational difficulties caused by
underdispersion. Under these conditions, a closed form solution exists for estimation
of al (see Appendix C).

The only shortcoming of this approach is that the information about heteroge-
neity contained in the underdispersed loci is not utilized when making inferences
about the other loci. That is, the estimates of all parameters relating to heterogeneity
are driven only by the loci for which the heterogeneity is observable. Because the
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bias errs on the side of less shrinkage, thereby retaining more of the sub-population
data structure, we believe it is the most sensible approach to the problem.

Finally, we offer a suggestion for the choice of the baseline value qB. The pri-
mary issue is that it be chosen small enough to be beyond the range of values where
the practitioner desires to discriminate between divergence and homogeneity while,
at the same time, not so extreme as to allow the estimates of the underdispersed data
to introduce numerical problems. Our experience indicates that values of qB in the
range 0.001–0.003 are sufficient to satisfy both of these concerns. In our implemen-
tation, AllDist determines the data are underdispersed based on the behavior of the
mode-finding algorithm we used to fit the model (see Appendix C).

SIMULATIONS

To highlight the distinctions between the Bayesian hierarchical model and other
estimation methods, we performed a set of simple simulations. We simulated the
assessment of 200 loci, each with the same fundamental allele frequency distribution
(0.05, 0.1, 0.2, 0.3, 0.2, 0.1, 0.05). This probability distribution over alleles is com-
parable in heterozygosity to STR loci commonly used for linkage analysis. To intro-
duce sub-population heterogeneity at each locus, we sampled from this distribution
to produce six new probability distributions, representing sub-populations, with dis-
persion parameter a. = (1 – q)/q. Finally, from each of the (200 × 6) sub-population
allele distributions, we sampled N subjects (corresponding to 2N sampled alleles).
We performed this simulation independently for all six combinations of the values of
q = 0.003, 0.017 and 0.030 and N = 15 and 30.

The hierarchical model was fit to the six simulated data sets using the program
AllDist. For illustrative purposes, we describe in detail the analysis of a single data
set, beginning with the necessary inputs to the program. We first specify the number
of loci (L = 200), the number of sub-populations (S = 6), and the number of alleles at
each locus (Ml = 7 for every locus in this example), and then supply the simulated
sample allele count for each cell in this (L stacked tables of dimension S × Ml). For
each of the 200 loci, we also need to specify prior counts for each of the alleles at
that locus. In practice, this quantity is derived from an external source such as CEPH.
In this simulation, the prior distribution for each locus is the same, namely allele
counts of (10, 20, 40, 60, 40, 20, 10) from an assessment of 100 individuals. Follow-
ing the previous discussion of prior distributions, we then specify values for the
hyperparameters of δ = 4.5, e = 2.0, a = 18, and b = 6. Values of the hyperparameters
ml and tl

 are automatically determined by AllDist using the procedure outlined in
Appendix A. Finally, we specify a baseline value qB = 0.001, a burn-in period for the
Markov chain of 500 iterations, and a number of iterations on which to base infer-
ences of 2,000.

The fundamental output of the program is the estimated frequencies for each
allele in each sub-population at each locus. Table II traces the transformation of prior
counts into posterior frequency estimates for a single locus. AllDist begins with the
(6 × 7) table of allele counts for the locus. The information provided by these counts
is augmented by the prior allele counts for that locus via the allele count prior. Addi-
tional input about sub-population heterogeneity is provided by the dispersion prior
stage and the dispersion information at the other observed loci. The net result is an
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estimate of the Dirichlet parameter al for this locus, which immediately provides
posterior frequency estimates for each allele in each sub-population by Equation (1).

The simulated data were also analyzed with three other estimation procedures:
pooled allele frequencies (i.e., marginal frequencies, ignoring sub-population dis-
tinctions), observed frequencies (gene counting for each sub-population), and the
empirical Bayes model (shrinking observed sub-population frequencies toward the
marginal frequencies for that locus by an amount that depends only on the data for
that locus). The results from these four procedures were compared by a discrepancy
statistic 1 200 6 7 2

1 1 1 ˆ[(200 6 7) ( ) ]−
= = =× × −l s a asl aslp pΣ Σ Σ ½. For this root mean squared error

statistic, smaller values indicates more accurate estimates.
Table III summarizes the simulation results. Before comparing the performance

of the estimation methods to one another (the rows of the table), it is instructive to note
how the performance of each method varies with q and N (the columns of the table).
As expected, for fixed N, the pooled, empirical Bayes and Bayes frequency estimates
perform more effectively as q decreases. This is owing to the fact that smaller values
of q imply less divergence among sub-populations, a feature exploited by pooling across
sub-populations. On the other hand, the performance of the observed frequency esti-
mates is entirely independent of q because these estimates make no use of the relation-
ships between sub-populations at the same locus. Not surprisingly, however, the estimates
do depend heavily on N, with better accuracy as N increases.

TABLE II. Details of Estimation for a Single Locus

S A1 A2 A3 A4 A5 A6 A7

1 3 2 12 10 2 1 0      Observed counts
6 2 2 7 8 8 2 1

10 20 40 60 40 20 10         Prior counts

4.792 13.645 23.010 29.947 18.225 8.720 6.232                â l

1 0.058 0.116 0.260 0.297 0.150 0.072 0.046 Posterior frequencies
6 0.050 0.116 0.223 0.282 0.195 0.080 0.054

The column “S” labels sub-populations (1 and 6 are depicted), and the columns A1–A7 refer to differ-
ent alleles.

TABLE III. Simulation Results Comparing Four Estimation Methods By Root Mean Squared
Error From True Allele Frequencies

Simulation Pooled Observed Empirical Bayes Bayes

q = 0.003
N = 15 0.031 0.063 0.031 0.028
N = 30 0.025 0.044 0.024 0.023

q = 0.017

N = 15 0.048 0.063 0.044 0.040

N = 30 0.045 0.043 0.035 0.033

q = 0.030

N = 15 0.059 0.062 0.048 0.045

N = 30 0.056 0.043 0.038 0.036
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Comparisons within the rows of the table indicate that the Bayesian hierarchical
model yields more accurate allele frequency estimates than the other methods over
the range of q and N examined. More specifically, the empirical Bayesian and hierar-
chical Bayesian methods achieve similar advantages over the other estimation meth-
ods, especially in the presence of substantial divergence. This is owing to the fact
that both of these methods provide moderate shrinkage toward marginal frequencies,
as opposed to the extreme behavior of observed frequencies (no shrinkage) and pooled
frequencies (total shrinkage). For each combination of N and q, we also see that the
Bayesian estimates offer a slight but systematic improvement over the empirical Baye-
sian estimates because of the more efficient use of both the data and prior informa-
tion. As an overall assessment, we see that the greatest power of the Bayesian approach
versus the usual observed frequencies is realized when limited data are available (N
small) and population divergence is minimal (q small).

One of the reasons that the Bayesian approach is consistently superior to the
empirical Bayes analysis is that estimates of divergence across sub-populations are
highly variable when they are based on individual loci, as is the case for the empiri-
cal Bayes analysis. The fully Bayesian divergence estimates are more accurate and
less variable because they are based on the data from all loci, as well as the prior
information. These improved divergence estimates facilitate a more unified degree
of shrinkage, which is less affected by sampling variability at each locus.

Figure 1 graphically displays the performance of the Bayesian estimates com-
pared to the observed frequencies. Figure 1 top and bottom each shows the follow-
ing: for a single allele, we calculate the standardized residual (p̂ – p)/[p(1 – p)]1/2 for
each of the six sub-populations where p̂ is an estimated frequency and p is the true
frequency for each sub-population. We plot these residuals for p̂ calculated from the
Bayesian procedure and the observed frequencies. Figure 1 (top) shows an example,
taken from the data with q = 0.003 and N = 15, for which the Bayesian procedure is
clearly superior to observed frequencies. Figure 1 (bottom), taken from the data with
q = 0.030 and N = 30, shows that occasionally the Bayesian estimates offer no im-
provement over the observed frequencies. In accordance with the numerical results
of Table III, the plots for most alleles are more similar to Fig. 1 (top).

Remark: For reference, random samples from European countries yield esti-
mates of q for STR loci slightly smaller than 0.003 [Chakraborty et al., 1999, and
references therein]. Using evolutionary simulations [see Lam et al., 2000] and the
above allele distribution, we obtain divergence of slightly less than 0.03 for seven
sub-populations given the following conditions: each sub-population was founded
by 1,000 individuals drawn at random from the same founder population; sub-popu-
lations remain isolated for 100 generations; individuals mate at random within sub-
population; and the population grows exponentially to a final size of 50,000. Analyses
based on these evolutionary simulations yield results and conclusions similar to those
we report here.

DISCUSSION

The Bayesian hierarchical model presented herein provides an answer to the
vexing problem of how to avoid biasing the analyses depending on samples from
multiple sub-populations when sample sizes are too small to provide reliable sub-
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population-specific frequency estimates. The answer is appropriate “shrinkage” of
sub-population-specific allele frequency distributions toward the distribution obtained
by pooling sub-populations and toward published prior distributions. Appropriate
shrinkage for a given locus is determined by the joint behavior of all examined loci,
prior information on the amount of sub-population divergence, and the variability
inherent in the prior distributions of allele frequencies.

Who should care about refined estimates of sub-population-specific allele fre-
quencies? Although such estimates are important for many real-world problems, such
as forensic inference from DNA [Roeder, 1994; Roeder et al., 1998], we target link-
age analyses that draw families from different sub-populations. As described previ-
ously, the ideal linkage analysis uses sub-population-specific allele frequencies, yet
many investigators use estimates derived from the pooled population. There are ac-

Fig. 1. Plot of standardized residuals comparing the Bayesian estimates to the observed frequencies.
Top: An example of an allele for which the Bayesian frequency estimates (x) are superior to observed
frequencies (o) for all sub-populations. Bottom: shows that, on occasion, the Bayesian estimates offer
no improvement to observed frequencies. The results for most alleles are closer to those at top, consis-
tent with the fact that the Bayesian procedure has lower mean squared error than using observed fre-
quencies.
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tually arguments for both approaches, as revealed by our simulations (Table III).
With larger samples and non-negligible sub-population sub-structure, the observed
sub-population frequencies are closer to their true values than are pooled frequen-
cies, whereas the opposite occurs for smaller samples from more homogeneous
sub-populations. These results are simple to understand from the perspective of
shrinkage estimators. There are two sources of variability to consider: sampling
variance and population sub-structure. Although population sub-structure does not
depend on sample size (N), sampling variance does. For small N, sampling vari-
ance often will dominate population divergence and therefore a single pooled esti-
mate will be closer, on average, to each sub-population’s allele frequency distribution
because it is an (unadaptive) shrinkage estimator. As N increases, however, the
converse must occur.

A Bayesian hierarchical model is a natural way to navigate this cross-current. It
adaptively shrinks sub-population-specific allele distributions, with the amount of
shrinkage depending on the data and the strength of prior studies. If samples from
each sub-population are large relative to the amount of sub-population sub-structure,
shrinkage will be minimal. On the other hand, when only limited data are available,
the shrinkage is more formidable. The net result is that the Bayesian procedure auto-
matically yields the most efficient estimation, moderating the degree of shrinkage in
a manner consistent with characteristics of the available data.

Surprisingly, despite the oft-documented sensitivity of linkage analysis to esti-
mated allele frequencies, especially affected relative pair analysis, we are unaware
of any linkage studies using adaptive shrinkage estimators. We suspect two impedi-
ments have contributed to this result: limited software to obtain such estimates and
the fact that linkage software often cannot automatically accommodate such a proce-
dure. Regarding the former impediment, we implemented both the Bayesian and em-
pirical Bayes estimators in a C program, AllDist, which has structure and format
requirements similar to programs such as GeneHunter [Kruglyak et al., 1996]. AllDist
also provides estimates of dispersion for each locus.

Regarding the latter impediment, combining sub-population-specific results for
standard linkage methods is trivial because one simply adds the LOD scores. Com-
bining the results from non-parametric analyses such as the NPL scores for
GeneHunter is not much more challenging. In fact, we provide a program to com-
bine GeneHunter results over sub-populations at our URL listed below.

Our method makes explicit use of estimated allele distributions, derived from
prior population studies, to refine estimates for the current set of sub-populations.
Ideally, the prior and data distributions would be derived from the same population
or, at the least, from closely related populations. Because of the limited availability
of publicly available databases (e.g., http://watson.hgen.pitt.edu/AlleleFreq.html), this
feature may be less valuable than it could be. Our hope is that data from many
laboratories, as well as independent analyses from the same laboratory, will soon be
placed on the Web. In addition, other prior information could be quite useful for
other aspects of linkage analysis, such as estimated recombination fractions. Publi-
cation of these data would help refine linkage analyses for the entire research com-
munity at little cost to individual researchers.
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APPENDIX A: PRIOR DISTRIBUTIONS

To derive values for the vectors ml and the matrices tl, which describe the prior
for yl, we first derive a prior for al, given a.l and then back-transform. We utilize an
estimate of al, (a.lYl)/nl, as the mean of the prior for al. Similarly, the covariance
matrix of the prior for al is derived from the covariance of its estimator. Note that
var(Yl) = H(nl + a.l)/(1 + a.l), where H is the covariance matrix of a multinomial
random vector of sample size nl with cell frequencies al/a.l [Johnson et al., 1997].
Consequently, a natural choice for the covariance of the prior for al is
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where Ĥ is the multinomial covariance defined above but with the population cell
frequencies al/a.l replaced with the sample cell frequencies Yl/nl. Formally we can
think of building the prior in two stages. Start with an implicit diffuse prior regard-
ing the distribution of al, which does not favor any particular distribution. Then, the
prior data, described under the Prior Distribution section, is used to update the dif-
fuse prior to obtain a “pre-experiment” posterior distribution. This posterior then
becomes the prior for the experiment of interest, estimating the allele frequencies for
locus l and subpopulation s. To translate these results into values for ml and tl, we
apply first-order approximations based on the transformation that maps the vector al

to yl:
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where Dl is a matrix with (a, s) entry !gal/!as evaluated at the estimate for al and gl

= (g1l,...,gMll) is the transformation that maps al to (yl, bl). Note that the value for ml

does not depend on the fixed value of a.l.
To motivate the procedure just described for obtaining hyperpriors from the

sampled allele frequencies, it is illustrative to show a fundamental link between the
Bayesian and frequentist perspectives. Let Θ be a p-dimensional parameter and let
Θ̂n be a maximum likelihood estimator of Θ based on Xn, a random vector of n
observations with some conditional distribution given Θ. Finally, let I( Θ̂n) be the (p
× p) observed Fisher information matrix based on Xn. Then, under fairly general
regularity conditions, the following two statements are true:

1. Frequentist asymptotic normality of the MLE: The conditional distribution of
Θ̂n given Θ converges to N [Θ, I –1(Θ̂n)]

2. Bayesian asymptotic normality of the posterior distribution: The conditional
distribution of Θ given Xn converges to N [(Θ̂n, I

–1 (Θ̂n)]
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In other words, the asymptotic distribution of I–1/2(Θˆ
n) (Θ – Θˆ

n) is p-dimensional
standard normal regardless of whether we are treating Θ or Θˆ

n as a random vari-
able. In our implementation (AllDist), this result allows us to use the asymptotic
covariance of a function of Yl given al as a covariance for al when al is considered
random.

APPENDIX B: INFERENCE

The approximate Bayesian model treats â l as the data. For superior finite sample
properties, the approximate distribution for â l can be translated directly into an ap-
proximate distribution for (ŷ l, b̂ l) through the delta method:

{ }1 1ˆ ˆˆ ˆ( , ) | ( , ) ~ ( , ) , [ ( , )] .
l

T T T T
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Hence, the revised model has the following stages:

Substructure and Allele Count Stages

Independently for l = 1,...,L
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Allele Count Prior

Independently for l = 1,...,L
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and 0 is a vector of length Ml – 1 of zeros.

Dispersion Prior

Independently, mb|δ, e ~ N1(δ, e–1) and tb |a,b ~ Γ(a,b). Notice that the allele
count and sub-structure stages have been collapsed to form the first stage, whereas
the stages describing the prior input are identical to the original model. The model
results in the following full conditional distributions, where the term rest to the right
of a conditioning bar denotes all parameters in the model except those to the left of
the bar. With these conditional distributions, the Gibbs or successive substitution
sampling can be used to estimate the parameters of the Bayesian model.
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1. Independently for l = 1...,L
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APPENDIX C: UNDERDISPERSION

Insofar as we are aware, there is no known verifiable condition for determining
whether data are underdispersed for fitting a compound-multinomial model. We base
our determination of underdispersion on the behavior of a modified Powell hybrid
mode-finding algorithm [Powell, 1977]. Levin and Reeds [1977] show that, for ev-
ery fixed vector of cell frequencies, the compound-multinomial likelihood function
is a unimodal function of the dispersion parameter, where the mode may be +∞. A
sensible initial parameter value of al for the optimization outline is the vector of
marginal frequencies times a relatively small value of a.l. The algorithm then
progresses in a neighborhood of the marginal frequency “ridge,” the major steps
being taken to adjust the dispersion parameter. The practical import is that if the
algorithm drives the dispersion parameter toward +∞, the data are extremely likely
to be underdispersed. Alternatively, when a finite MLE exists, it is located quickly.
Based on this behavior, our determination of underdispersion proceeds by picking a
baseline dispersion parameter defined by aB = (1 – qB)/qB and starting the algorithm
as described. If the algorithm moves beyond aB from an initial staring value, we
repeat the algorithm at 10 different starting values. We declare underdispersion if the
algorithm attempts to move beyond aB from all 10 of the additional trials.

When a proper MLE cannot be found, it is necessary to reduce the dimension of
the problem to obtain numerical stability. Fixing a.l = aB, we find the MLE for yl

and the corresponding asymptotic covariance matrix Gl = Iyl
–1(ŷ l). With a.l fixed at

aB, the model becomes considerably simpler and the stages of the model reduce as
follows:

Sub-structure and Allele Count Stages

Independently for l = 1,...,L,

1
ˆ | ~ ( , ).

l

T T T
MN −l l l lGψ ψ ψ

Allele Count Prior

Independently for l = 1,...,L, 
1

1| , ~ ( , ).
l

T
MN −

−l l l l lψ µ τ µ τ Inferences are based on
a single full conditional distribution that can be computed analytically.

Independently for l = 1,...,L
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Using the posterior mean of yl along with the baseline dispersion aB, we then
solve for al and proceed using (1) to estimate the allele frequencies for each sub-
population.

This treatment of underdispersion has considerable justification provided that
aB is chosen sensibly. Although the estimate of al is clearly sensitive to the choice of
aB, this sensitivity is not transferred to the estimate of yl because the latter is not a
function of the dispersion parameter. Based on the likelihood surface, a.l is clearly
very large, suggesting the sub-populations have not diverged at locus l. Arbitrarily
setting a.l to a large value has little impact on the resulting inferences.
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