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The observation that haplotypes from a particular region of the genome differ between affected and unaffected
individuals or between chromosomes transmitted to affected individuals versus those not transmitted is sound
evidence for a disease-liability mutation in the region. Tests for differentiation of haplotype distributions often take
the form of either Pearson’s x2 statistic or tests based on the similarity among haplotypes in the different populations.
In this article, we show that many measures of haplotype similarity can be expressed in the same quadratic form,
and we give the general form of the variance. As we describe, these methods can be applied to either phase-known
or phase-unknown data. We investigate the performance of Pearson’s x2 statistic and haplotype similarity tests
through use of evolutionary simulations. We show that both approaches can be powerful, but under quite different
conditions. Moreover, we show that the power of both approaches can be enhanced by clustering rare haplotypes
from the distributions before performing a test.

Introduction

Mutations inducing simple genetic diseases are often
found in tight linkage disequilibrium with alleles sur-
rounding them (de la Chapelle and Wright 1998; Jorde
2000). When they are, various analyses have shown that
disease alleles could be fine-mapped (McPeek and Strahs
1999) and even detected (Houwen et al. 1994) by sta-
tistical analysis of unusual haplotype sharing. For com-
plex disorders, however, we expect much more etiologic
heterogeneity, even within the same population. Nev-
ertheless, on the basis of theory and practice (Puffen-
berger et al. 1994; Feder et al. 1996), we expect to find
disproportionately large clusters of affected individuals
sharing common haplotypes in the region flanking some
diseases mutations, especially for mutations of recent
origin (Fan and Lange 1998).

When the genealogical relationships among a sample
are known, simulation (Houwen et al. 1994) or ap-
proximation (Durham and Feingold 1997; Service et al.
1999) methods can be used to measure the expected
amount of haplotype sharing within a particular region.
In many instances, however, the genealogy of the sample
will not be known. Instead, one might look for a sample
of unaffected individuals to contrast their degree of hap-
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lotype sharing with that from the sample of affected
individuals.

Several statistical procedures have been proposed
that are based on searching for excess similarity among
haplotypes from affected individuals. Unlike the usual
comparisons of allele or haplotype frequencies, these
statistics are based on pairwise comparisons of all hap-
lotypes in a sample of affected individuals. The initial
concept was put forth by van der Meulen and te Meer-
man (1997), for analysis of excess matching of case
haplotypes in a case-control and family-based samples.
Bourgain et al. (2000, 2001) developed a more rig-
orous basis for the concept and extended these ideas
to family-based studies, showing how such an ap-
proach would have proven useful for the study of celiac
disease. In a parallel development, Grant et al. (1999)
proposed a computationally intensive test statistic that
searched for clusters of chromosomal segments ex-
hibiting excess matching. This method was tailored
to genome mismatch scanning (Cheung and Nelson
1998), a promising technique that is not yet feasible
on a large scale. Devlin et al. (2000) developed a sim-
ilar approach, relying on measurement of a dense set
of genetic markers rather than genome mismatch scan-
ning. Both of these methods have the advantage of not
requiring a control sample but the disadvantage of
requiring demanding laboratory procedures.

Recognizing that neither genome mismatch scanning
nor a very dense set of genetic markers is likely to be
feasible in the near future, Tzeng et al. (in press) ex-
tended the basic ideas of haplotype matching to a more
practical level, which required a far cruder level of ge-
notyping but reincorporated controls into the study de-
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sign. They also showed how the matching statistic could
be adjusted for population substructure, by using the
concept of “genomic control” introduced by Devlin and
Roeder (1999). Still, Tzeng et al.’s (in press) approach,
as well as most others described previously, requires the
input of haplotype data; in most case-control studies,
however, haplotypes often can only be inferred with
probability from data on multilocus genotypes.

In the present study, we develop a class of haplotype-
sharing models applicable to multilocus genotype data.
These models share many of the features developed by
Tzeng et al. (in press) and other methods in the liter-
ature, but in a more general framework. The classic
competitor to these haplotype-sharing models is Pear-
son’s x2 statistic, a goodness-of-fit (GOF) test. Surpris-
ingly, insofar as we are aware, the performance of these
sharing statistics, relative to that of GOF statistics, is
not well known. Therefore, we also evaluate the per-
formance of these statistics, by simulation. We show
that the power of both GOF and sharing statistics can
be strikingly different, depending on evolutionary his-
tory, and that neither is uniformly most powerful.

Methods

We first develop several measures of haplotype similarity
suitable for a case-control sample of haplotypes with
known phase, and we then extend them to account for
phase uncertainty.

Analysis of Haplotype Data

Consider a region of interest from which n haplotypes
are samples from affected individuals (case haplotypes)
and m haplotypes are sampled from unaffected individ-
uals (control haplotypes). Let Hi denote the ith sampled
haplotype, and assume that there are R distinct haplo-
types in the population. Let for a casep p Pr (H p l)al i

haplotype, and , andi p 1, … ,n l p 1, … ,R p pul

for a control haplotype. A GOF test withPr (H p l)i

df offers one possible test to determine whetherR � 1
these haplotype distributions, andP p (p , … ,p )a a1 aR

, differ.P p (p , … ,p )u u1 uR

Alternatively, statistics based on pairwise comparisons
between haplotypes can reveal unusual clustering of sim-
ilar haplotypes in the affected versus unaffected individ-
uals, essentially using only 1 df. For instance, to measure
the degree of matching within a sample, suppose we draw
two case haplotypes at random. The chance that they will
have the same version of the haplotype is (analogous2� pall

to the homozygosity). If a mutation leading to increased
risk of disease occurred in the population, it is likely to
be embedded within a relatively common haplotype. Fur-

thermore, if a cluster of case haplotypes traces back to
this common ancestor, then a sample of affected individ-
uals will likely have a higher frequency of matching hap-
lotypes, relative to the controls, and excess matching can
be measured by the difference in the matching indexes
(Van der Meulen and Te Meerman 1997). This measure,
which Tzeng et al. (in press) call the “matching measure,”
tends to be large if substantial clusters of case haplotypes
derive from one (or, at most, several) common ancestor(s),
such as would be anticipated under the alternative hy-
pothesis of association.

Statistics based on the sum of all pairwise comparisons
between sampled haplotypes take the general form of a
U statistic (Lee 1990):

n2
U p K(H ,H ) ,� i jn(n � 1) !i j

where is a symmetric kernel function of someK(H ,H )i j

feature in the comparison of the ith and jth haplotypes.
By defining to be 1 if the haplotypes match andK(H ,H )i j

0 otherwise, we obtain the matching measure. It should
be clear that the matching measure cannot be optimal
for all evolutionary or practical scenarios. For example,
because it treats each haplotype as a distinct category,
as does GOF, information about clustering of similar but
nonidentical haplotypes is not assimilated. There are al-
ternative ways to measure similarity of haplotypes. Sta-
tistics that are sensitive to haplotypes that nearly match,
as well as those that match at every measured marker,
can be obtained by defining to be the lengthK(H ,H )i j

spanned by the longest continuous interval of matching
alleles or the number of alleles in common between hap-
lotypes i and j in the region. We call the former “length
measure” and the latter “counting measure.” The length
measure is quite similar to the maximum identity length
contrast statistic (Bourgain et al. 2000) and forms the
basis for other related statistics (MacLean et al. 2000;
Qian and Thomas 2001; Thomas et al. 2001). All three
haplotype similarity measures estimate quantities that
can be expressed in a quadratic form, , where istPAP A
a symmetric matrix containing the entries defined by the
U-statistic kernel.

Each of these measures has notable strengths and
weaknesses. With a dense grid of markers in a narrowly
defined haplotype, the matching measure has the simple
interpretation of comparing the level of excess sharing,
ideally identity-by-descent (IBD) sharing, between cases
and controls. It is not robust to genotyping errors, miss-
ing data, and recent marker mutations, however, and it
can be sensitive to the length of the haplotypes under
investigation, which is often an arbitrarily chosen value.
The length measure captures partial sharing due to re-
combinations in the ancestral haplotype, and it is fairly
robust to the length of the haplotype under investigation.
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It is, however, nonrobust to genotyping errors, missing
data, and recent mutations. In contrast to the other mea-
sures, the counting measure is robust to genotyping er-
rors, missing data, and recent mutations. In addition,
it can be thought of as a compromise of between the
matching and length measures. The counting measure
possesses an unexpected and convenient statistical fea-
ture: this statistic can be computed directly from mul-
tilocus genotype data (appendix A). Consequently, ge-
notype data are essentially as informative as haplotype
data for this measure.

If haplotype samples are available, p̂ p 1/n # (No.al

is the maximum-likelihoodof case haplotypes of type l)
estimator (MLE) for the haplotype frequencies in af-
fected individuals, and can be defined analogouslyp̂ul

for the unaffected individuals. An estimator of PtAP that
is essentially equivalent to the U statistic estimator can
be obtained by simply substituting the MLE for P.P̂

The plug-in MLE estimator conveniently extends when
genotypes, rather than haplotypes, are measured, or
when there are missing data.

In summary, a test statistic for association can be
based on the difference in haplotype similarities between
cases and controls, properly normalized:

Dt tˆ ˆ ˆ ˆD p P A P � P A P , T p ,a a u u ˆj( )P

where , under the assumption of no2j (P) p Var (D)
population substructure or cryptic relatedness. A for-
mula for the exact variance is derived by Tzeng et al.
(in press); the expression for this variance is given in
appendix B. In practice, , obtained from the pooledP̂

sample of case and control haplotypes, is substituted for
P in . Provided P is bounded away from singularitiesj(P)
in the limiting distribution, T is approximately distrib-
uted as a standard normal. Each of these measures is
likely to outperform the other and the GOF test, under
certain evolutionary models. Which measure to use de-
pends upon the nature of the genetic markers and the
history of the population under investigation.

Analysis of Genotypic Data

From genotype data, haplotype frequencies P can be
estimated by maximum likelihood—for example, using
algorithms such as the EM. For typical sample sizes, the
measurement error in these estimates is primarily due to
sampling error rather than to haplotype phase uncer-
tainty (Fallin and Schork 2000; Gabriel et al. 2002). For
this reason, we develop a test based on the estimated
haplotype frequencies, with minor adjustments to ac-
count for haplotype uncertainty.

Although there is likely to be a limited set of haplo-

types in the population (Gabriel et al. 2002), phase un-
certainty can make it appear that there are many more,
on the basis of an examination of multilocus genotypes.
Many of the estimated haplotype frequencies are likely
to be small, and the rare ones are likely to have arisen
from genotyping errors, missing data, and recent marker
mutations. Therefore, it seems good practice to prune
the list of potential haplotypes back to an intermediate
number of relatively common haplotypes before com-
puting the test statistic. In addition, simulations (not
presented) show that is poorly estimated by ˆj(P) j(P)
unless the rare haplotypes are removed from the field of
potential types. Although pruning can be especially im-
portant when analyzing multilocus genotype data, it can
also be important for the analysis of data on unambig-
uous haplotypes.

To prune the list, first order the haplotypes by their
relative frequencies. On the basis of the haplotype fre-
quencies, choose , the number of common categories∗R
to be retained. We see two natural choices, which we will
call the “pooling” and “clustering” methods. With the
pooling method, define categories 1 through to be the∗R

most common types in the combined case/control sam-∗R
ple, and then pool all other types into the cat-∗(R � 1)
egory. With the clustering method, again define categories
1 through by the most common types; among the∗ ∗R R

to R remaining types, however, add any that∗(R � 1)
differ from the common types by a one-step mutation to
that category; if more than one category differs by a one-
step mutation, assign the rare type in question to the most
common of those in the equivalence category. Finally, pool
all other types into the category. For both meth-∗(R � 1)
ods, add the relative frequencies of all those types assigned
to a category to obtain the new vector of relative fre-
quencies. Because the “other” category is meaningless
when discussing haplotype similarity, we discard this cat-
egory for all haplotype similarity tests.

When haplotype phase is unknown, 2Var (D) � j (P)
and the inequality is typically strict. However, there is
one surprising exception to this rule. For the counting
measure, D can be computed directly from multilocus
genotype data and, hence, . Otherwise,2Var (D) p j (P)
the test statistic T must be adjusted to account for the
extra variance due to phase uncertainty.

To compute the test statistic, the following steps are
required:

1. Obtain haplotype frequencies , , and , forˆ ˆ ˆP P Pa u

the pooled and unpooled data, using any haplotype
algorithm.

2. Prune the list of potential haplotypes and update
, , and to reflect the relative haplotype fre-ˆ ˆ ˆP P Pa u

quencies of the pruned list for the pooled and un-
pooled samples.

3. Compute Tobs (using appendix B) and ∗p p 1 �
, the tail of the standard normal distribution.F(T )obs
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For the counting measure, is the actual P value,∗p
and for the other measures it is a lower bound on
the P value. (If is not small, there is no reason∗p
to proceed to the next step; the results are not
significant.)

4. For the matching and length measures perform a
bootstrap experiment, randomly drawing n “case”
haplotypes and m “control” haplotypes with prob-
ability determined by the pooled . Computeˆ ˆP Pb

and T for each of B bootstrap samples. Obtain an
empirical P value from the bootstrap experiment.
Note that, for the matching and length measures,
the empirical P value will be somewhat larger than

. This is to be expected, because of the variance∗p
inequality. It is also worth noting that, for small
samples, one should obtain an empirical P value
via the bootstrap for the counting measure.

Production of Simulated Data

Data were obtained using the methods and program
described by Lam et al. (2000). The evolutionary program
mimicked features of natural populations to the extent
possible, by using direct simulation methods. In the sim-
ulations, diploid individuals paired at random in their
generation, mated, and produced a random number of
children. Recombination followed the Haldane model.
Each population was founded by 1,000 individuals and
remained at that size for 50 generations. This initializa-
tion, together with small population growth in early gen-
erations, generated random linkage disequilibrium among
alleles on normal chromosomes. After 50 generations, a
disease mutation was introduced on one chromosome,
and the population grew exponentially for 200 genera-
tions to a final size of 50,000 individuals. Twelve STR
markers were simulated, covering a 1.2-Mb critical re-
gion, with spacings of 0.11 Mb between markers. The
disease mutation was located between markers 6 and 7.
Alleles at each locus were simulated to mimic STRs with
a mutation rate of 0.001. The average heterozygosity
across STR markers was 0.80. To illustrate the effect of
the number of markers, we analyzed haplotypes with the
following subsets of markers included: 1, 3, 5, 7, 9, and
11; 3, 5, 7, and 9; and 3, 5, and 7, which yields 0.22 Mb
between markers.

The simulation program produced populations from
which samples of haplotypes with or without a disease
mutation could be drawn. To mimic a complex disease
of heterogeneous origin, we generated samples of case
and control individuals by drawing haplotypes in the
following way: for each affected individual, with prob-
ability 0.2, draw a haplotype bearing a mutation—
otherwise, draw a “normal” chromosome; for each un-
affected individual, draw two normal haplotypes. Con-

sequently, in a sample of 100 affected individuals, only
40 of the 200 haplotypes will bear a mutation.

Results

We examine 18 populations that could be classified into
two types: 9 populations in which the disease mutation
occurred on a haplotype that is common in the popula-
tion, and 9 for which the disease mutation occurs on a
rare haplotype. This fundamental distinction—derivation
from a rare or common haplotype—will be key to un-
derstanding the performance of the GOF versus sharing
methods. From each population, 200 samples consisting
of 100 affected and 100 unaffected individuals are gen-
erated, and these data are analyzed using GOF, matching,
length, and counting statistics.

Each population has a large number of haplotypes
(∼26 types for the three-marker system and 43 for the
six-marker system). Figure 1 shows the distribution of
haplotypes among cases and controls for four popula-
tions. As is often observed in natural populations, a few
haplotypes dominate. Because the sample size is mod-
erate relative to the dimension of the problem, the GOF
statistic does not achieve its asymptotic limiting distri-
butions. We performed permutation tests to obtain ac-
curate P values. When case and control haplotypes are
drawn from the same population, the size of all four
tests is close to the nominal 0.05 level for both kinds
of populations (table 1).

Our initial power analyses assume that haplotype
phases are known. For the data generated from popu-
lations in which the mutation occurred on a common
haplotype, all three similarity statistics perform far bet-
ter than the GOF test (fig. 2A). The maximum power
differential is 63%. These nine populations roughly con-
stitute three conditions, and the labels (1–9) are assigned
to emphasize a gradient of performance (1–3 p excel-
lent, 4–6 p good, and 7–9 p moderate). The six-
marker system achieved somewhat more power than the
three-marker system (fig. 2A vs. 2B). Results for the
four-marker system followed the same pattern, with
power intermediate to the six- and three-marker sys-
tems. For these simulations, which have no missing data
or genotype errors and in which all populations are
generated by identical evolutionary forces, the three
haplotype similarity statistics performed equivalently.
These results are not likely to hold in general. To eval-
uate power for the case of unknown haplotype phase,
we obtain the maximum likelihood estimate of haplo-
type frequencies through use of the EM algorithm. From
these simulations and by using the bootstrap to obtain
exact P values, the same, general pattern of results is
obtained; however, there is a slight drop in power when
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Figure 1 Distribution of haplotypes in affected (top) and unaffected (bottom) individuals for four populations. In populations I and II,
the disease mutation occurred on a common background; in population III, it occurred on a haplotype so rare that it was not sampled in our
simulation of the controls; and in population IV, it occurred on a haplotype that is rare in the normal population. In these bar plots, haplotypes
that differ by a single mutation tend to appear adjacent to one another.

genotypes rather than haplotypes are analyzed (fig. 2C
vs. 2B).

In summary, when the mutation occurs on a common
haplotype, the similarity measures produce superior
power compared with GOF, yet there is a clear gradient
of performance (fig. 2). Examination of the haplotype
distributions bearing mutated and normal alleles (e.g.,
fig. 1) suggests the gradient can be explained by two
features: (1) although all samples from affected indi-
viduals have a dominant haplotype that bears the mu-
tation, the relative frequency of this haplotype is much
greater in the populations producing high power (1–3)
than it is in the populations producing moderate power
(7–9); and (2) the distribution of normal haplotypes also
exhibits greater entropy in the populations producing
high power. Populations 4–6, which produce interme-
diate power, are intermediate in both of these defining
characteristics. The haplotype distributions for popu-
lation 1 and 8 (fig. 1, panels I and II) are good examples
for these contrasting features.

When the mutation occurs on a rare haplotype, the
power differential switches. The haplotype similarity
statistics have low power, whereas the GOF test has
high power. Of the nine populations (10–18) investi-
gated using the three-marker haplotypes, four exhibited
no power for any of the haplotype similarity measures

(fig. 2D). The haplotype distributions for populations
10 and 14 (fig. 1, panels III and IV) are good examples
illustrating haplotype similarity measures that have no
and low power, respectively. In population 10, for ex-
ample, the case samples have greater entropy than the
control samples; therefore, the haplotype similarity test
statistics are negative, and one-sided tests cannot be
powerful. In contrast, the greater power for population
14 results because the case sample has slightly less en-
tropy than the control sample (fig. 1, panel IV).

To determine a rule for dimension reduction (DR) we
used the same set of simulations and investigated the
power for rules that chose such that ,∗ ˆR p � cpl max

, for , 1/6, 1/5, 1/4, or 1/3. Using∗l p 1, … ,R c p 1/10
three-marker genotype data, we record which c pro-
duces the greatest power for each population. When
this experiment is performed for both the rare (1–9) and
the common (10–18) populations, the performance of
DR seems to depend on the nature of the haplotype
distribution, and no definitive rule for choosing ∗R
emerges. For some populations, the power of the hap-
lotype similarity tests is essentially constant for a large
range of values of . Nevertheless, by ranking the per-∗R
formance of each rule across conditions, we determined
that the cutoff with tends to be more reliablec p 0.2
in improving the power of both the GOF test and the
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Table 1

Type I Error Rates

TESTS

TYPE I ERROR RATE

Haplotypes Genotypes

Six-Marker Three-Marker Three-Marker Three-Marker (DR)

Common:
Length .051 .050 .048 .049
Counting .049 .050 .049 .049
Matching .049 .050 .048 .050

2x .052 .050 .051 .050
Rare:

Length .049 .050 .051 .050
Counting .049 .050 .051 .048
Matching .047 .049 .050 .047

2x .049 .050 .049 .048

NOTE.—Analyses were for four different tests, four different marker configurations
(DR p dimension reduction), and two population scenarios—namely, disease mutation
on common or rare haplotypes. Each entry is based on 1,000 experiments.

haplotype similarity tests, across both rare and common
populations.

For the three-marker haplotypes, the clustering and
pooling DR methods perform fairly similarly. For the
six-marker haplotypes, however, the pooling method
appears to break down (data not shown), because, in
this situation, only a very few haplotypes are relatively
common, and it is difficult to determine how to best
pool the data. For this reason, we recommend using the
clustering method of DR in practice.

Our investigations of DR, using populations 1–18
and the clustering DR rule with , suggest thatc p 0.2
clustering rare haplotypes from the distribution im-
proves power in many instances and rarely decreases
power by more than a negligible amount (table 2). Not
surprisingly, the DR had the biggest impact on the GOF
tests, because it reduces the df of the tests, and it had
less of an effect on the power of haplotype similarity
tests, because they are 1-df tests. For those populations
in which the mutation occurs on a rare haplotype, even
when DR induces a substantial increase in power for a
haplotype similarity test (e.g., population 18, matching
statistic), it is not sufficient to overcome the power ad-
vantage of GOF. DR improves the reliability of hap-
lotype similarity tests, especially when the number of
potential haplotypes is very large, by increasing the ac-
curacy of the estimated denominator of the test, .ˆj(P)

To explore the impact of incomplete penetrance, we
also generated control samples that included 5% dis-
eased haplotypes. Incomplete penetrance reduces the
power of the tests, but the size of the tests is unchanged
(data not shown).

Discussion

The search for disease mutations can sometimes be en-
hanced by the analysis of data on haplotypes. For ex-
ample, in a sample of affected individuals and their par-
ents, the fact that the distributions of transmitted and
untransmitted haplotypes are distinctly different for a par-
ticular genomic region is strong evidence that a disease
mutation lies in that region (Jorde 2000). A similar con-
clusion holds when the haplotype distribution differs be-
tween affected and unaffected individuals, under the as-
sumption of population homogeneity. There are many
ways to contrast haplotype distributions, especially for a
sample of affected and unaffected individuals. In our read-
ing of the literature, two common approaches emerge:
GOF tests, such as a Pearson x2 statistic; and contrasts
of various measures of haplotype similarity. Surprisingly,
insofar as we are aware, there is little in the literature to
differentiate between these two approaches.

In this article, we unify some of these measures of
haplotype similarity, showing that they can be cast in
the same quadratic form. Although such analyses are
simplest when haplotype phase is known, unphased
multilocus genotypes present no particular problem. Us-
ing this quadratic form, we investigate the power of
haplotype-sharing measures and GOF for case-control
sampling and two distinct settings: when the disease
mutation arose on a haplotype that is common in the
population (common case), and when the disease mu-
tation arose on a rare haplotype (rare case).

We find that haplotype similarity measures have sub-
stantially higher power for data from the common case.
In contrast, GOF tests have substantially higher power
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Figure 2 Performance of GOF and similarity statistics, in terms of power. The dotted, dashed, dot-dashed, and solid lines display the
matching, count, length, and GOF statistics, respectively. The results represent nine separate populations (X-axis) ordered by power, which are
connected to facilitate visualization. For panels A–C, the disease mutation occurred on a common background; for panel D, the disease mutation
occurred on a rare background. Tests are performed using six-marker haplotypes (A), three-marker haplotypes (B and D) and three-marker
genotypes (C).

for data from the rare case. This power advantage for
GOF in the rare case occurs because there are very dif-
ferent haplotypes with elevated frequency in the affected
versus unaffected individuals. Oversampling of affected
individuals elevates the frequency of the rare haplotype
at the expense of more common haplotypes not bearing
disease alleles. Haplotype similarity measures, being 1-
df tests, cannot detect this type of signal, because they
do not keep track of which categories are relatively com-
mon and rare. It is implicitly presumed that the cases
and controls share common haplotypes. To a first order
of approximation, the haplotype similarity measures are
comparing the entropy of the case and the control hap-
lotype distributions. Under this scenario, the entropy
can be quite similar for these distributions, or even
greater, in the case distribution. This leads to a test with
essentially no power.

According to evolutionary and statistical theory, a
disease mutation is more likely to occur on a common
haplotype, which in turn leads to a haplotype similarity
statistic with good power. Such an event cannot be guar-
anteed a priori, however. For this reason, we recom-
mend applying both GOF and one or more of the hap-
lotype similarity tests. In addition, we recommend using

the clustering DR method with cutoff value 0.2pmax or
some other theoretically derived value, regardless of
which test is used.

Tests for differentiation between haplotype distribu-
tions do not always fall into the neat categories of GOF
and similarity tests; however, one can usually point to
basic features of the tests that make them most like one
group. For example, tests that contrast haplotype fre-
quency distributions, by use of likelihood ratio, score,
or permutation tests (e.g., Fallin and Schork 2000; Cul-
verhouse et al. 2001), and tests that contrast transmitted
and nontransmitted haplotype distributions (e.g., Clay-
ton 1999) can be grouped into the GOF category. We
expect those tests to perform well when a disease mu-
tation falls on a rare haplotype, which is then elevated
in frequency by the oversampling of affected individu-
als. When all possible pairwise comparisons of haplo-
types are made, the goal is typically to assess and con-
trast haplotype similarity (e.g., tests based on the length
of shared chromosomal segments [Van der Meulen and
Te Meerman 1997; Bourgain et al. 2000; Qian and Tho-
mas 2001; Thomas et al. 2001]). Our results suggest
that these tests will perform well when the disease mu-
tation falls on a common haplotype.
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Table 2

Power of Tests with Full and Reduced Dimensions

POPULATIONa

POWER OF TEST

Length Counting Matching 2x

Full Reduced Full Reduced Full Reduced Full Reduced

Common:
1 .65 .64 .61 .65 .60 .65 .31 .55
2 .44 .46 .45 .45 .59 .57 .24 .38
3 .30 .32 .37 .33 .51 .50 .21 .23
4 .48 .49 .52 .50 .49 .51 .05 .15
5 .46 .49 .47 .48 .42 .45 .13 .25
6 .21 .31 .37 .37 .29 .31 .12 .20
7 .43 .49 .39 .49 .24 .39 .26 .39
8 .13 .13 .15 .14 .21 .26 .15 .23
9 .10 .15 .13 .17 .11 .15 .27 .35

Rare:
10 .01 .01 .00 .01 .00 .00 .99 1.00
11 .00 .00 .00 .00 .00 .00 .99 1.00
12 .01 .01 .00 .01 .00 .01 .99 1.00
13 .00 .02 .00 .02 .01 .05 .91 .99
14 .23 .27 .19 .23 .01 .03 .78 .91
15 .31 .23 .21 .19 .05 .09 .64 .95
16 .20 .17 .15 .17 .19 .19 .42 .57
17 .15 .15 .14 .15 .05 .15 .53 .76
18 .30 .51 .50 .49 .16 .53 .49 .77

NOTE.—The tests are applied to three-marker genotype data.
a The 18 populations are classified by origin of disease haplotype (common or rare).

Some tests, however, are more difficult to categorize.
For example, Service et al. (1999) introduce a test that
contrasts the distribution of haplotypes in affected in-
dividuals versus that expected on the basis of the gene-
alogy of the sample descended from a common ancestral
haplotype. If the identity of the ancestral haplotype were
known, then the method would seem closest to GOF and
would have optimal power if the ancestral haplotype
were rare. Because the ancestral haplotype is unknown,
however, Service et al. (1999) consider each kind of hap-
lotype as a possible ancestral and obtain the likelihood
of the data as a weighted sum over distinct haplotypes.
In that case, the method resembles a test of haplotype
similarity, in that the power may be optimized if the
ancestral haplotype were common.

The distinction is more than academic. For example,
using a population isolate from Costa Rica, Ophoff et
al. (2002) present a genomewide linkage disequilibrium
analysis to map alleles affecting liability to bipolar dis-
order. For analyses based on haplotypes, they choose
the methods of Service et al. (1999). Their results point
to several regions of the genome as potentially harbor-
ing alleles affecting liability, especially 8p. Still, it would
be useful to know under what evolutionary scenarios
the methods of Service et al. (1999) are optimal. If our
conjecture about the properties of Service et al.’s (1999)
methods is correct, a genomewide analysis based on

GOF with the DR described herein might identify ad-
ditional loci.

A common concern for case-control studies is con-
founding of disease status with genetic information be-
cause of population substructure (Devlin et al. 2001a,
2001b). Similarity and GOF tests using haplotype data
from case-control studies are susceptible to confound-
ing, just as single-locus studies are. When a large num-
ber of regions are haplotyped, however, there are ways
of overcoming the confounding by use of genomic con-
trol (Devlin and Roeder 1999) or structured analysis
(Pritchard et al. 2000). For example, by using arguments
similar to those of Devlin and Roeder (1999), Tzeng et
al. (in press) show that, when phase is assumed to be
known, the variance inflation due to confounding is
approximately constant across the genome; specifically

, where t is not a function of the region,2 2Var (T ) ≈ t jk k

k. This convenient form follows because, across the ge-
nome, an individual has a common evolutionary and
demographic history (in expectation, and under the as-
sumption of no evolutionary selection). As a result, t

can be estimated, provided many regions are sampled.
Tzeng et al. (in press) also introduce a false-discov-
ery–rate procedure to determine which regions show
significant association.

If only multilocus genotypes are available, the vari-
ance of Tk is inflated over , because of phase uncer-2jk
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tainty as well as various evolutionary processes. Pro-
vided the sample size is not small, for the matching and
length measures, a GC analysis can be performed under
the assumption that , where incorpo-2 2 2˜ ˜Var (T ) ≈ t j tk k

rates all sources of the extra multinomial variance. Un-
der this assumption, which appears to hold in our sim-
ulations (data not shown), there is no need to perform
the bootstrap procedure. In the genomic control setting,
the extra variability, formerly captured by the bootstrap
experiment, is included in the estimate of the inflation

factor . In the same vein, we are currently considering2t̃

how to compensate for population structure for GOF
tests by using either GC or structured analysis.
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Appendix A

Counting Measure

We show that the numerator (D) of the test statistic for the counting measure can be computed directly from
genotype data. This result does not apply to the other two measures.

Let be the haplotype counts of haplotype , and . Let ˆX {b b … b } b � {1,2, … ,L } P p{b b …b } 1 2 J j j1 2 J

, and . Let be the genotype counts of ge-ˆ ˆ ˆ ˆ(p , … ,p , … ,p ) p p X /n Y{11…1} {b b …b } {L L …L } {b b …b } {b b …b } {b B #b B #…#b B }1 2 J 1 2 J 1 2 J 1 2 J 1 1 2 2 J J

notype .{b B # b B # … # b B }1 1 2 2 J J

Theorem 1. For A defined by the counting measure,

1 2 2 2lˆ ˆ …P AP p X � X � � X , (A1)� � � � � �{b b …b } {b b …b } {b b …b }2 [ 1 2 J 1 2 J 1 2 J ]( ) ( ) ( )n b b ,…,b b b ,b ,…,b b b ,…,b1 2 J 2 1 3 J J 1 J�1

…where X , X , and X depend only on genotype counts Ys . (A2)� � �{b b …b } {b b …b } {b b …b }1 2 J 1 2 J 1 2 J
b ,…,b b ,b ,…,b b ,…,b2 J 1 3 J 1 J�1

Proof:
We need to show that equation (A1) and statement (A2) are true.
For equation (A1): The right hand side (RHS) of (A1) implies that, for an arbitrary haplotype pair {b b … b }1 2 J

and , the number of alleles that these two haplotypes share in common determines the number of times{B B … B }1 2 J

that and show up in the same summation square . For example, haplotype2X X (� X ){b b …b } {B B …B } {b b …b }b s1 2 J 1 2 J 1 2 Jj

and haplotype have two alleles in common. Hence, and meet twice, at and2{136} {146} X X (� X ){136} {146} 1b b }b ,b 2 32 3

. Rewrite the RHS as sums of product ; the coefficient of is2(� X ) X # X X # X{b b 6} {b b …b } {B B …B } {b b …b } {B B …B }b ,b 1 2 1 2 J 1 2 J 1 2 J 1 2 J1 2

the number of times that and meet in the same summation square multiplied by2X X (� X ){b b …b } {B B …B } {b b …b }b s1 2 J 1 2 J 1 2 Jj

two. In other words, the coefficient is 2 times the number of alleles shared in common by haplotype {b b … b }1 2 J

and haplotype . Consequently, RHS equals LHS by the design of the matrix A.{B B … B }1 2 J

For statement (A2): Each haplotype count (X) can be calculated as the sum of the corresponding genotype counts
(Y). These genotypes can be classified into three types: (i) homozygous genotypes, (ii) singly-heterozygous genotypes,
and (iii) all other genotypes. Here we use as an example to illustrate:J p 3

X p 2Y � Y � Y � Y � w # Y ,{b b b } {b b #b b #b b } {b B #b b #b b } {b b #b B #b b } {b b #b b #b B } i {b B #b B #b B }1 2 3 1 1 2 2 3 3 1 1 2 2 3 3 1 1 2 2 3 3 1 1 2 2 3 3 1 1 2 2 3 3\\ \
homozygous singly heterozygous other

where wi will be defined shortly. For homozygous and singly heterozygous genotypes, we can reconstruct the
corresponding haplotype pairs without ambiguity and hence count haplotype directly. For the “other” part, more
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haplotype pairs are possible. Assume in the data that each type of haplotype pair has frequency w1, w2, w3, and
w4, respectively; then we have

X p w # Y ,{b b b /B B B } 1 {b B #b B #b B }1 2 3 1 2 3 1 1 2 2 3 3

X p w # Y ,{B b b /b B B } 2 {b B #b B #b B }1 2 3 1 2 3 1 1 2 2 3 3

X p w # Y , and{b B b /B b B } 3 {b B #b B #b B }1 2 3 1 2 3 1 1 2 2 3 3

X p w # Y .{b b B /B B b } 4 {b B #b B #b B }1 2 3 1 2 3 1 1 2 2 3 3

From genotype data, although we do not know the values of wi, we know . On the other hand,� w p 1ii

for X , X p X{b b b /B B B } {b b b } {B B B }1 2 3 1 2 3 1 2 3 1 2 3

for X , X p X{B b b /b B B } {B b b } {b B B }1 2 3 1 2 3 1 2 3 1 2 3

for X , X p X{b B b /B b B } {b B b } {B b B }1 2 3 1 2 3 1 2 3 1 2 3

for X , X p X .{b b B /B B b } {b b B } {B B b }1 2 3 1 2 3 1 2 3 1 2 3

Thus, we have

X p X p X� � �{b b b } {b b b } {b b b }1 2 3 1 2 3 1 2 3
b ,b b ,b b ,b2 3 1 3 1 2

p X � X � X � X{b b b /B B B } {B b b /b B B } {b B b /B b B } {b b B /B B b }1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

p Y{b B #b B #b B } .1 1 2 2 3 3

By the same manner, we have statement (A2).

Appendix B

Variance of D

Assume is distributed multinomial and is distributed multinomial . We compute 2ˆ ˆnP (n; P ) mP (m; P ) j (P)a a u u

the variance of under the null hypothesis .l lˆ ˆ ˆ ˆD p P AP � P AP P p P { Pa a u u a u

Define , where is the diagonal matrix of , is the diagonall (2)S p 1/n [Diag(P) � PP ] Diag(P) (p , … ,p ) Diag [P ]n 1 R

matrix of and .2 2 (2)l 2 2 2(p , … ,p ) P p (p ,p , … ,p )1 R 1 2 R

Let , , , and . Define as A with thel (2) 2 (2) l 2 2 2A p [a ] (dA) p (a ,a , … ,a ) A p [a ] (dA ) p (a ,a , … ,a ) (d0A)ij 11 22 RR ij 11 22 RR

diagonal elements zeroed out, matrix with the lth-row and the lth-column deleted,A p (d0A)�l

a a … a11 22 RR 
a a … a11 22 RRB p ,_ _ _ 
a a … a 11 22 RR

and .lE p (a p ,a p , … ,a p )11 1 22 2 RR R
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Now equalslˆ ˆVar (P AP )a a

R(n � 1)(n � 2)(n � 3) (n � 1)(n � 2)l l 2ˆ ˆ( )Var P AP p # [P AP] � # 2 # sum of all elements of p a # A�[ ]a a l ll �l3 3 {n n lp1

�4 # sum of off � diagonal elements of Diag(P) A Diag(P) A Diag(P)[ ]
(2)�4 # tr (d0A) Diag(P) B Diag(P )[ ]

l l (2) l (2) (2)�2 # P (dA)(dA) P � 4 # P A P }
(n � 1) l l l l (2){ }� # 4 # E AP � P (dA)(dA) P � 2 # P A P3n

1 (2) l l 2( )� # (dA ) P � tr AS �P AP .[ ]n3n

Using the same general form, is obtained; then .l 2 l lˆ ˆ ˆ ˆ ˆ ˆVar (P AP ) j (P) p Var (P AP ) � Var (P AP )u u a a u u
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