Please ask questions!

Lecture = 40 minutes part 1 - 5 minutes break - 35 minutes part 2

Slides: http://www.stat.cmu.edu/~ryantibs/convexopt/

Anonym feedback survey will be on black board next week. Please use it! Constructive feedback and suggestions are always welcome!

Subscribe for scribing!

My office hour is after the class.
Basic Definitions

- More and more complicated optimization problems
- Definition of LP
Simplest Optimization Problems

Goal:

- Constant function
- 1-dim linear function
- 1-dim linear function with bound constraints
Linear Programs

- n-dim linear function with m linear constraints

Inequality form:

Cost function:

Constraints:

Bounds:
Linear Programs

Inequality form using matrix notation:

Cost function:

Constraints:

Bounds:

Example:
Goal of this (…and next) lecture(s)

- To be able to solve Linear Programs

 Simplex Algorithm (Phase I and Phase II)
 (Later we will see other algorithms too)

- Understand why LP is useful

 - Motivation
 - Applications in Machine Learning

- Understand the difficulties

 - Convergence? Polynomial or Exponential many operations?
 - Will algorithms find the exact solutions, or only approximate ones?
Table of Contents

- **Motivating Examples & Applications:**
 - Pattern classification

- **Linear programs:**
 - standard form
 - canonical form

- **Solutions:**
 - Basic, Feasible, Optimal, Degenerate

- **Simplex algorithm:**
 - Phase I
 - Phase II
Linear Programs

- Motivation
- History
- Sketching LP
History

Dantzig 1947 (Simplex method)

(one of the top 10 algorithms of the twentieth century)

Motivated by World War II:

- Job scheduling (Assign 70 men to 70 jobs)
- Blending problem
 (produce a blend (30% Lead, 30% Zinc, 40% Tin) out of 9 different alloys (different mixture, different costs) such that the cost is minimal)
- Network flow optimization (Max flow min cut)
A furniture company manufactures four models of desks

Number of man hours and profit:

<table>
<thead>
<tr>
<th></th>
<th>Desk 1</th>
<th>Desk 2</th>
<th>Desk 3</th>
<th>Desk 4</th>
<th>Available hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carpentry shop hrs</td>
<td>4</td>
<td>9</td>
<td>7</td>
<td>10</td>
<td>6000</td>
</tr>
<tr>
<td>Finishing shop hrs</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>40</td>
<td>4000</td>
</tr>
<tr>
<td>Profit</td>
<td>$12</td>
<td>$20</td>
<td>$18</td>
<td>$40</td>
<td></td>
</tr>
</tbody>
</table>

Why is it called Linear Programming???
Motivation: Why Linear Programming?

- The simplest, nontrivial optimization problem

- Many complex system (objective and constraints) can be well approximated with linear equations

- Important applications

- There are efficient toolboxes that can solve LPs
Sketching Linear Programs

Example:
Simplex Algorithm

Example:

- Simplex algorithm:
 - O-A-B-C
 - O-D-C
- Interior point methods
Linear Program

Observations, Difficulties:

- Feasible set might not exist, no solution
 (Inconsistency in the constraints)
- Infinite many global optimum
 (Optimum is on an edge)
- Optimum can be $-1, 1$
 (Unbounded optimum)
High dimensional case is similar:

- faces, facets instead of edges
- cost function = hyperplane
Applications

Pattern Classification via Linear Programming
Pattern Classification via Linear Programming

More info can be found on: cgm.cs.mcgill.ca/~beezer/cs644/main.html

Goal: show how LP can be used for linear classification.

Why LP?

There are many efficient LP solver software packages
Formal goal:

Problem 1: Determine whether H and M are linearly separable

Problem 2: If H and M are linearly separable, then find a separating hyper plane
Pattern Classification via LP

Observation:

H and M are linearly separable.
Lemma 1:

H and M are linearly separable

Proof
Lemma 1:
H and M are linearly separable

Proof
Pattern Classification via LP

Proof continued
Pattern Classification via LP

Proof continued

Similarly,
Pattern Classification via LP

Proof continued
Pattern Classification via LP

We will see that the following linear problem solves Problem 1 & 2:

[Mansgarian 1995]
Theorem 1

H and M are linearly separable iff the optimal value of LP is 0.

Theorem 2

H and M are linearly separable

\(y^*, z^*, a^*, b^* \) is an optimal solution of (LP)

\[f(x) = a^T x + b^* \text{ is a separating hyperplane} \]
Proof of Theorems 1 and 2
The optimal value of (LP) is 0
Application: Breast Cancer Diagnosis

Used at the University of Wisconsin Hospital

[Mangasarian et al 1995]

1. Fluid sample from breast.
2. Placed on a glass and stained the highlight the nuclei of cells
3. Image is taken
4. 30D features: Area, Radius, perimeter, etc

Goal: Classification between benign lumps and malignant lumps

Results: 97.5% accuracy
Pattern Classification via LP

Example 1: Linearly Separable Case
Pattern Classification via LP

Example 2: Linearly nonseparable case
Linear Programs

- Standard from, Canonical form, Inequality form
- Transforming LPS
 - Pivot transformation
Linear Programs

Inequality form of LPs using matrix notation:

Standard form of LPs:

Theorem: Any LP can be rewritten to an equivalent standard LP
Transforming LPs

Theorem: Any LP can be rewritten to an equivalent standard LP

- Getting rid of inequalities (except variable bounds)
- Getting rid of equalities
Transforming LPs

- Getting rid of negative variables
- Getting rid of bounded variables
- Max to Min
- Negative b_i