16.1 Penalty Methods

16.1.1 Problem Setup

Many times we have the constrained optimization problem (P):

$$\min_{x \in S} f(x)$$

where $f : \mathbb{R}^n \rightarrow \mathbb{R}$ is continuous and S is a constraint set in \mathbb{R}^n.

We introduce the Penalty program, $(P(c))$, the unconstrained problem:

$$\min_{x \in \mathbb{R}^n} f(x) + cp(x)$$

where $c > 0$ and $p : \mathbb{R}^n \rightarrow \mathbb{R}$ is the penalty function where $p(x) \geq 0 \ \forall \ x \in \mathbb{R}^n$, and $p(x) = 0$ iff $x \in S$.

Intuitively, the penalty term is used to give a high cost for violation of the constraints.
16.1.2 Inequality and Equality Constraints

For example, if we are given a set of inequality constraints (i.e. \(S = \{ x : g_i(x) \leq 0, i = 1, 2, \ldots, m \} \)), a useful penalty function could be \(p(x) = \frac{1}{2} \sum_{i=1}^{m} (\max[0, g_i(x)])^2 \). That is, if we satisfy the constraint, we don’t take any penalty. Otherwise we take a squared penalty. Depending on \(c \), we weight this penalty in \((P(c))\), for equality constraints we can rewrite them as inequality constraints and use them as above. That is, rewrite \(h_j(x) = 0 \) as two inequality constraints, \(h_j(x) \leq 0 \) and \(-h_j(x) \leq 0 \).

For large \(c \), the minimum point of a problem \((P(c))\) is in a region where the penalty \(p \) is small. In fact, we will prove below that as \(c \to \infty \), the solution of the penalty problem \((P(c))\) will converge to a solution of the constrained problem \((P)\).

16.2 Penalty Method Lemmas

Let \(0 < c_1 < c_2 < \ldots < c_k < c_{k+1} < \ldots \to \infty \) be our penalty parameter. Let \(q(c, k) := f(x) + cp(x) \) be our penalty program. Also, let \(x_k = \arg\min_x q(c_k, x) = \arg\min_x f(x) + c_k p(x) \).

With this notation, we will prove the following for penalty lemmas:

1. \(q(c_k, x_k) \leq q(c_{k+1}, x_{k+1}) \)
2. \(p(x_k) \geq p(x_{k+1}) \)
3. \(f(x_k) \leq f(x_{k+1}) \)
4. \(f(x^*) \geq q(c_k, x_k) \geq f(x_k) \)

Below, we provide proofs of each of the above lemmas.

Lemma 16.1 \(q(c_k, x_k) \leq q(c_{k+1}, x_{k+1}) \)

Proof:

\[
q(c_{k+1}, x_{k+1}) = f(x_{k+1}) + c_{k+1}p(x_{k+1}) \\
\geq f(x_{k+1}) + c_k p(x_{k+1}) \\
\geq f(x_k) + c_k p(x_{k+1})
\]

\((\because c_{k+1} > c_k > 0) \)
\((\because x_k \text{ is the minimizer of } q(c_k, x)) \)

\[\therefore q(c_{k+1}, x_{k+1}) \geq q(c_k, x_k) \]

\((\because q(c, x_{k+1} = f(x_k) + c_k p(x_{k+1})) \)

Lemma 16.2 \(p(x_k) \geq p(x_{k+1}) \)

Proof:

\[
f(x_k) + c_k p(x_k) \leq f(x_{k+1}) + c_k p(x_{k+1}) \quad (\because x_k \text{ is the minimizer of } q(c_k, x)) \quad (16.1)\\
f(x_{k+1}) + c_{k+1} p(x_{k+1}) \leq f(x_k) + c_{k+1} p(x_k) \quad (\because x_{k+1} \text{ is the minimizer of } q(c_{k+1}, x)) \quad (16.2)
\]
Adding Equation 16.1 and Equation 16.2 together, we get
\[c_k p(x_k) + c_{k+1} p(x_{k+1}) \leq c_k p(x_{k+1}) + c_{k+1} p(x_k) \]
\[\Rightarrow (c_{k+1} - c_k) p(x_{k+1}) \leq (c_{k+1} - c_k) p(x) \]
\[\therefore p(x_{k+1}) \leq p(x) \quad (\because c_{k+1} > c_k \Rightarrow c_{k+1} - c_k > 0) \]

\[\text{Lemma 16.3} \quad f(x_k) \leq f(x_{k+1}) \]

Proof:
\[f(x_{k+1}) + c_k p(x_{k+1}) \geq f(x_k) + c_k p(x_k) \quad (\because x_k \text{ is the minimizer of } q(c_k, x)) \]
\[\geq f(x_k) + c_k p(x_{k+1}) \quad (\because \text{Lemma 16.2}) \]
\[\therefore f(x_{k+1}) \geq f(x_k) \]

\[\text{Lemma 16.4} \quad \text{Let } x^* \text{ be the optimal value of our original constrained problem } (P) \text{ with constraint set } S. \text{ Then, } f(x^*) \geq q(c_{k+1}, x_{k+1}) \geq f(x_k) \forall k. \]

Proof:
\[f(x^*) = f(x^*) + c_k p(x^*) \quad (\because x^* \in S \Rightarrow p(x^*) = 0) \]
\[\geq f(x_k) + c_k p(x_k) \geq f(x_k) \quad (\because x_k \text{ is the minimizer of } q(c_k, x), \text{ and } c_k > 0, p(x_k) \geq 0) \]
\[\therefore f(x^*) \geq q(c_{k+1}, x_{k+1}) \geq f(x_k) \forall k \]

16.3 Convergence of the Penalty Method

Using the lemmas developed in Section 16.2, we prove the Penalty convergence theorem.

\[\text{Theorem 16.5} \quad \text{Suppose } f, g, p \text{ are continuous functions. Let } x_k = \arg \min_x f(x) + c_k p(x) \text{ for a penalty function } p(x) \text{ as defined in subsection 16.1.1. Let } 0 < c_1 < c_2 < \ldots < c_k < c_{k+1} < \ldots \to \infty. \text{ Let } \bar{x} \text{ be an arbitrary limit point of } \{x_k\}_{k=1}^{\infty}. \]

Then, \(\bar{x} \) solves \((P)\) where \((P)\) is the original constrained problem \(\min_x f(x) \text{ s.t. } g(x) \leq 0. \)

Proof: The limit point is defined as \(\bar{x} = \lim_{k \to \infty} x_k. \)
Since \(f \) is given as continuous, then \(\lim_{k \to \infty} f(x_k) = f(\bar{x}) \). We then get,

\[
q^* := \lim_{x \to \infty} q(c_k, x_k) \leq f(x^*) \quad (\because \text{Lemma 16.4})
\]
\[
\Rightarrow q^* = \lim_{x \to \infty} f(x) + \lim_{x \to \infty} c_k p(x_k) \leq f(x^*)
\]
\[
\Rightarrow q^* = f(\bar{x}) + \lim_{x \to \infty} c_k p(x_k) \leq f(x^*)
\]
\[
\Rightarrow q^* - f(\bar{x}) = \lim_{x \to \infty} c_k p(x_k) \leq f(x^*)
\]

Since \(q^* - f(\bar{x}) \) and \(f(x^*) \) are finite which means \(\lim_{x \to \infty} c_k p(x_k) \) has to be a finite quantity. Since we know that \(c_k \to \infty, p(x_k) \to 0 \). This means that \(p(\bar{x}) = 0 \), which from the definition of \(p \) tells us that \(\bar{x} \in S \) where \(S \) is our constraint set.

\[\boxed{\text{16.4 Frequently used penalty functions}}\]

1. **Polynomial penalty:** \(p(x) = \sum_{i=1}^{m} [\max\{0, g_i(x)\}]^q, q \geq 1 \)

 (a) Linear penalty: \((q = 1) : p(x) = \sum_{i=1}^{m} [\max\{0, g_i(x)\}] \)

 (b) Quadratic penalty: \((q = 2) : p(x) = \sum_{i=1}^{m} [\max\{0, g_i(x)\}] \)

 For example, if we define \(g_i^+(x) = \max\{0, g_i(x)\} \), then \(g^+(x) = [g_1^+(x), ..., g_m^+(x)]^T \). The penalty function \(P(x) = g^+(x)^T g^+(x) \), or \(P(x) = g^+(x)^T \Gamma g^+(x) \) where \(\Gamma > 0 \)

2. **Penalty for problem with equality and inequality constraints**

\[
P : \min f(x)
\]
\[
\text{s.t.} \quad g(x) \leq 0
\]
\[
\quad h(x) = 0
\]
\[
\quad x \in \mathbb{R}^n
\]

Need penalty function: \(p(x) = 0 \) if \(g(x) \leq 0 \) AND \(h(x) = 0 \)
\[
\quad p(x) > 0 \text{ if } g(x) > 0 \text{ OR } h(x) \neq 0
\]

We can use: \(p(x) = \sum_{i=1}^{m} [\max\{0, g_i(x)\}]^q + \sum_{i=1}^{k} |h_i(x)|^q, q \geq 1 \)

\[\boxed{\text{16.5 Derivative of the penalty function}}\]

Suppose we use \(P(x) = \gamma(g^+(x)) \), where \(g^+(x) \) is as defined previously. An example of \(\gamma(x) \) is \(\gamma(x) = y^T y \). The difficulty arises when we try to take the derivative of \(P(x) \), as the max function \(g^+(x) \) is not differentiable. But we will see that if we choose \(\gamma(x) \) appropriately, we can make \(P(x) \) differentiable.

\[
\frac{\partial P(x)}{\partial x} = \sum_{i=1}^{m} \frac{\partial \gamma(g^+(x))}{\partial g_i^+(x)} \frac{\partial g_i^+(x)}{\partial x}
\]
\[
\frac{\partial g^+(x)}{\partial x} = \begin{cases}
\frac{\partial g_i(x)}{\partial x} & \text{if } g_i(x) \geq 0 \\
0 & \text{if } g_i(x) < 0
\end{cases}
\]
But $\frac{\partial g^+(x)}{\partial x}$ may not be continuous at 0. However, if we choose γ such that $\frac{\partial \gamma (g^+(x))}{\partial y_i} = 0$ whenever $g_i(x) = 0$, then it won’t matter if $\frac{\partial g^+(x)}{\partial x}$ is discontinuous, because it will be multiplied by 0. One such $\gamma(x)$ is $\sum_{i=1}^{m} [g_i^+(x)]^q, q \geq 1$

16.6 KKT in penalty methods

As before, we have:

1. Penalty program: $x_k = \arg \min_x f(x) + c_k P(x)$
2. Penalty function: $P(x) = \gamma(g^+(x))$
3. Derivatives: $\nabla P(x) = \sum_{i=1}^{m} \frac{\partial \gamma (g^+(x))}{\partial g_i^+(x)} \frac{\partial g^+(x)}{\partial x}$

The 1st order condition in local minimum tells us:

$$0 = \nabla f(x_k) + c_k \nabla P(x_k) = \nabla f(x_k) + \sum_{i=1}^{m} u_{i,k} \nabla g_i(x_k) \text{ where } u_{i,k} = c_k \frac{\partial \gamma (g^+(x_k))}{\partial (g_i^+(x_k))}$$

$$0 = \nabla f(x_k) + (u_k)^T \nabla g(x_k)$$

u_k now looks like a Lagrange multiplier. Indeed, under some mild conditions, as $x_k \to x^* \implies u_k \to u^*$, where u^* is the Lagrange multiplier at the optimum.