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Last time: barrier method

Given the problem

min
x

f(x)

subject to hi(x) ≤ 0, i = 1, . . .m

Ax = b

where f , hi, i = 1, . . .m are convex and smooth, we consider

min
x

tf(x) + φ(x)

subject to Ax = b

where φ is the log barrier function

φ(x) = −
m∑

i=1

log(−hi(x))
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In the barrier method, we solve a sequence of problems

min
x

tf(x) + φ(x)

subject to Ax = b

for increasing values of t > 0, until m/t ≤ ε

In particular, start with t = t(0) > 0, and solve the above problem
using Newton’s method to produce x(0) = x?(t). Then, we iterate
for k = 1, 2, 3, . . .

• Solve the barrier problem at t = t(k), using Newton’s method
initialized at x(k−1), to produce x(k) = x?(t)

• Stop if m/t ≤ ε
• Else update t(k+1) = µt, where µ > 1
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Outline

Today:

• Motivation from perturbed KKT conditions

• Primal-dual interior-point method

• Backtracking line search

• Highlight on standard form LPs
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Barrier method versus primal-dual method

We will cover the primal-dual interior-point method, which solves
basically the same problems as the barrier method. These two are
pretty similar, but have some key differences

Overview:

• Both can be motivated in terms of perturbed KKT conditions

• Primal-dual interior-point methods take one Newton step, and
move on (no separate inner and outer loops)

• Primal-dual interior-point iterates are not necessarily feasible

• Primal-dual interior-point methods can be more efficient,
since they can exhibit better than linear convergence

• Primal-dual interior-point methods are less intuitive ...
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Back to perturbed KKT conditions

The barrier method iterates at any particular barrier method t can
be seen as solving a perturbed version of the KKT conditions

∇f(x) +

m∑

i=1

ui∇hi(x) +AT v = 0

uihi(x) = −1/t, i = 1, . . .m

hi(x) ≤ 0, i = 1, . . .m, Ax = b

ui ≥ 0, i = 1, . . .m

Only difference between these and actual KKT conditions for our
original problem is in the second condition: these are replaced by

uihi(x) = 0, i = 1, . . .m

i.e., complementary slackness, in actual KKT conditions
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We didn’t cover this, but Newton updates for log barrier problem
can be seen as Newton step for solving these nonlinear equations,
after eliminating u (i.e., taking u = −1/(thi(x)), i = 1, . . .m)

Primal-dual interior-point updates are also motivated by a Newton
step for solving these nonlinear equations, but without eliminating
u. Write it concisely as r(x, u, v) = 0, where

r(x, u, v) =



∇f(x) +Dh(x)Tu+AT v
−diag(u)h(x)− 1/t

Ax− b




and

h(x) =




h1(x)
. . .

hm(x)


 , Dh(x) =



∇h1(x)T

. . .
∇hm(x)T



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This is a nonlinear equation is (x, u, v), and hard to solve; so let’s
linearize, and approximately solve

Let y = (x, u, v) be the current iterate, and ∆y = (∆x,∆u,∆v)
be the update direction. Define

rdual = ∇f(x) +Dh(x)Tu+AT v

rcent = −diag(u)h(x)− 1/t

rprim = Ax− b

the dual, central, and primal residuals at current y = (x, u, v)

Now we make our first-order approximation

0 = r(y + ∆y) ≈ r(y) +Dr(y)∆y

and we want to solve for ∆y in the above
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I.e., we solve



∇2f(x) +

∑m
i=1 ui∇2hi(x) Dh(x)T AT

−diag(u)Dh(x) −diag(h(x)) 0
A 0 0






∆x
∆u
∆v




= −




rdual
rcent
rprim




Solution ∆y = (∆x,∆u,∆v) is our primal-dual update direction

Note that the update directions for the primal and dual variables
are inexorably linked together

(Also, these are different updates than those from barrier method)
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Surrogate duality gap

Unlike barrier methods, the iterates from primal-dual interior-point
method are not necessarily feasible

For barrier method, we have simple duality gap: m/t, since we set
ui = −1/(thi(x)), i = 1, . . .m and saw this was dual feasible

For primal-dual interior-point method, we construct a surrogate
duality gap:

η = −h(x)Tu = −
m∑

i=1

uihi(x)

This would be a bonafide duality gap if we had feasible points (i.e.,
if rprim = 0 and rdual = 0), but we don’t, so it’s not

What value of parameter t does this correspond to in perturbed
KKT conditions? This is t = η/m
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Primal-dual interior-point method

Putting it all together, we now have our primal-dual interior-point
method. Start with a strictly feasible point x(0) and u(0) > 0, v(0).
Define η(0) = −h(x(0))Tu(0). Then for a barrier parameter µ > 1,
we repeat for k = 1, 2, 3 . . .

• Define t = µm/η(k−1)

• Compute primal-dual update direction ∆y

• Determine step size s

• Update y(k) = y(k−1) + s ·∆y
• Compute η(k) = −h(x(k))Tu(k)

• Stop if η(k) ≤ ε and (‖rprim‖22 + ‖rdual‖22)1/2 ≤ ε

Note the stopping criterion checks both the surrogate duality gap,
and (approximate) primal and dual feasibility
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Backtracking line search

At each step, we need to make sure that we settle on an update
y+ = y + s∆y, i.e.,

x+ = x+ s∆x, u+ = u+ s∆u, v+ = v + s∆v

that maintains hi(x) < 0, ui > 0, i = 1, . . .m

A multi-stage backtracking line search for this purpose: start with
largest step size smax ≤ 1 that makes u+ s∆u ≥ 0:

smax = min
{

1, min{−ui/∆ui : ∆ui < 0}
}

Then, with parameters α, β ∈ (0, 1), we set s = 0.99smax, and

• Update s = βs, until hi(x
+) < 0, i = 1, . . .m

• Update s = βs, until
‖r(x+, u+, v+)‖2 ≤ (1− αs)‖r(x, u, v)‖2
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Highlight: standard form LP

Recall the standard form LP:

min
x

cTx

subject to Ax = b

x ≥ 0

for c ∈ Rn, A ∈ Rm×n, b ∈ Rm. Its dual is:

max
u,v

bT v

subject to AT v + u = c

u ≥ 0

(This is not a bad thing to memorize)
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Some history

• Dantzig (1940s): the simplex method, still today is one of the
most well-known/well-studied algorithms for LPs

• Klee and Minty (1972): pathological LP with n variables and
2n constraints, simplex method takes 2n iterations to solve

• Khachiyan (1979): polynomial-time algorithm for LPs, based
on ellipsoid method of Nemirovski and Yudin (1976). Strong
in theory, weak in practice

• Karmarkar (1984): interior-point polynomial-time method for
LPs. Fairly efficient (US Patent 4,744,026, expired in 2006)

• Renegar (1988): Newton-based interior-point algorithm for
LP. Best known theoretical complexity to date

• Modern state-of-the-art LP solvers typically use both simplex
and interior-point methods
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KKT conditions for standard form LP

The points x? and (u?, v?) are respectively primal and dual optimal
LP solutions if and only if they solve:

AT v + u = c

xiui = 0, i = 1, . . . , n

Ax = b

x, u ≥ 0

(Neat fact: the simplex method maintains the first three conditions
and aims for the fourth one ... interior-point methods maintain the
first and last two, and aim for the second)
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The perturbed KKT conditions for standard form LP are hence:

AT v + u = c

xiui = 1/t, i = 1, . . . , n

Ax = b

x, u ≥ 0

Let’s work through the barrier method, and the primal-dual interior
point method, to get a sense of these two

Barrier method (after elim u):

0 = rbr(x, v)

=

(
AT v + diag(x)−1 · 1/t− c

Ax− b

)

Primal-dual method:

0 = rpd(x, u, v)

=




AT v + u− c
diag(x)u− 1/t

Ax− b



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Barrier method: 0 = rbr(y + ∆y) ≈ rbr(y) +Drbr(y)∆y, i.e., we
solve [

−diag(x)−2/t AT

A 0

](
∆x
∆v

)
= −rbr(x, v)

and take a step y+ = y + s∆y (with line search for s > 0), and
iterate until convergence. Then update t = µt

Primal-dual method: 0 = rpd(y + ∆y) ≈ rpd(y) +Drpd(y)∆y,
i.e., we solve




0 I AT

diag(u) diag(x) 0
A 0 0






∆x
∆u
∆v


 = −rpd(x, u, v)

and take a step y+ = y + s∆y (with line search for s > 0), but
only once. Then update t = µt
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Example: barrier versus primal-dual

Example from B & V 11.3.2 and 11.7.4: standard LP with n = 50
variables and m = 100 equality constraints

Barrier method uses various values of µ, primal-dual method uses
µ = 10. Both use α = 0.01, β = 0.5

572 11 Interior-point methods

Newton iterations

d
u
al

it
y

ga
p

µ = 2µ = 50 µ = 150

0 20 40 60 80

10−6

10−4

10−2

100

102

Figure 11.4 Progress of barrier method for a small LP, showing duality
gap versus cumulative number of Newton steps. Three plots are shown,
corresponding to three values of the parameter µ: 2, 50, and 150. In each
case, we have approximately linear convergence of duality gap.

Newton’s method is λ(x)2/2 ≤ 10−5, where λ(x) is the Newton decrement of the
function tcT x + φ(x).

The progress of the barrier method, for three values of the parameter µ, is
shown in figure 11.4. The vertical axis shows the duality gap on a log scale. The
horizontal axis shows the cumulative total number of inner iterations, i.e., Newton
steps, which is the natural measure of computational effort. Each of the plots has
a staircase shape, with each stair associated with one outer iteration. The width of
each stair tread (i.e., horizontal portion) is the number of Newton steps required
for that outer iteration. The height of each stair riser (i.e., the vertical portion) is
exactly equal to (a factor of) µ, since the duality gap is reduced by the factor µ at
the end of each outer iteration.

The plots illustrate several typical features of the barrier method. First of all,
the method works very well, with approximately linear convergence of the duality
gap. This is a consequence of the approximately constant number of Newton steps
required to re-center, for each value of µ. For µ = 50 and µ = 150, the barrier
method solves the problem with a total number of Newton steps between 35 and 40.

The plots in figure 11.4 clearly show the trade-off in the choice of µ. For µ = 2,
the treads are short; the number of Newton steps required to re-center is around 2
or 3. But the risers are also short, since the duality gap reduction per outer iteration
is only a factor of 2. At the other extreme, when µ = 150, the treads are longer,
typically around 7 Newton steps, but the risers are also much larger, since the
duality gap is reduced by the factor 150 in each outer iteration.

The trade-off in choice of µ is further examined in figure 11.5. We use the
barrier method to solve the LP, terminating when the duality gap is smaller than
10−3, for 25 values of µ between 1.2 and 200. The plot shows the total number
of Newton steps required to solve the problem, as a function of the parameter µ.
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Figure 11.21 Progress of the primal-dual interior-point method for an LP,
showing surrogate duality gap η̂ and the norm of the primal and dual resid-
uals, versus iteration number. The residual converges rapidly to zero within
24 iterations; the surrogate gap also converges to a very small number in
about 28 iterations. The primal-dual interior-point method converges faster
than the barrier method, especially if high accuracy is required.

iteration number

η̂

0 5 10 15 20 25
10−10

10−8

10−6

10−4

10−2

100

102

iteration number

r f
e
a
s

0 5 10 15 20 25
10−15

10−10

10−5

100

105

Figure 11.22 Progress of primal-dual interior-point method for a GP, show-
ing surrogate duality gap η̂ and the norm of the primal and dual residuals
versus iteration number.
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Figure 11.21 Progress of the primal-dual interior-point method for an LP,
showing surrogate duality gap η̂ and the norm of the primal and dual resid-
uals, versus iteration number. The residual converges rapidly to zero within
24 iterations; the surrogate gap also converges to a very small number in
about 28 iterations. The primal-dual interior-point method converges faster
than the barrier method, especially if high accuracy is required.
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Figure 11.22 Progress of primal-dual interior-point method for a GP, show-
ing surrogate duality gap η̂ and the norm of the primal and dual residuals
versus iteration number.

Barrier duality gap Primal-dual surrogate
duality gap

Primal-dual feasibility
gap, rfeas =

(‖rprim‖22 + ‖rdual‖22)1/2

Can see that primal-dual is faster to converge to high accuracy
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Now a sequence of problems with n = 2m, and n growing. Barrier
method uses µ = 100, runs just two outer loops (decreases duality
gap by 104); primal-dual method uses µ = 10, stops when duality
gap and feasibility gap are at most 10−8
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Figure 11.7 Progress of barrier method for three randomly generated stan-
dard form LPs of different dimensions, showing duality gap versus cumula-
tive number of Newton steps. The number of variables in each problem is
n = 2m. Here too we see approximately linear convergence of the duality
gap, with a slight increase in the number of Newton steps required for the
larger problems.
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Figure 11.8 Average number of Newton steps required to solve 100 randomly
generated LPs of different dimensions, with n = 2m. Error bars show stan-
dard deviation, around the average value, for each value of m. The growth
in the number of Newton steps required, as the problem dimensions range
over a 100:1 ratio, is very small.

11.8 Implementation 615
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Figure 11.23 Number of iterations required to solve randomly generated
standard LPs of different dimensions, with n = 2m. Error bars show stan-
dard deviation, around the average value, for 100 instances of each dimen-
sion. The growth in the number of iterations required, as the problem di-
mensions range over a 100:1 ratio, is approximately logarithmic.

A family of LPs

Here we examine the performance of the primal-dual method as a function of
the problem dimensions, for the same family of standard form LPs considered
in §11.3.2. We use the primal-dual interior-point method to solve the same 2000
instances, which consist of 100 instances for each value of m. The primal-dual
algorithm is started at x(0) = 1, λ(0) = 1, ν(0) = 0, and terminated using tolerance
ϵ = 10−8. Figure 11.23 shows the average, and standard deviation, of the number
of iterations required versus m. The number of iterations ranges from 15 to 35,
and grows approximately as the logarithm of m. Comparing with the results for
the barrier method shown in figure 11.8, we see that the number of iterations in
the primal-dual method is only slightly higher, despite the fact that we start at
infeasible starting points, and solve the problem to a much higher accuracy.

11.8 Implementation

The main effort in the barrier method is computing the Newton step for the cen-
tering problem, which consists of solving sets of linear equations of the form

[
H AT

A 0

] [
∆xnt

νnt

]
= −

[
g
0

]
, (11.60)

where

H = t∇2f0(x) +

m∑

i=1

1

fi(x)2
∇fi(x)∇fi(x)T +

m∑

i=1

1

−fi(x)
∇2fi(x)

Barrier method Primal-dual method

Primal-dual method require only slightly more iterations, despite
the fact that they it is producing higher accuracy solutions
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