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Last time: barrier method

Given the problem

min f(x)
T
subject to  hi(z) <0, i=1,...m
Az =10

where f, h;, i =1,...m are convex and smooth, we consider

min L(2) + 6(a)
subject to Az =10

where ¢ is the log barrier function

$la) = — 3 log(~hi(x)



In the barrier method, we solve a sequence of problems

min tf(z) + o(x)

xT

subject to Az =10

for increasing values of ¢ > 0, until m/t <e

In particular, start with t = ¢t(9) > 0, and solve the above problem
using Newton's method to produce (%) = z*(¢). Then, we iterate
fork=1,2,3,...

e Solve the barrier problem at ¢ = t(*), using Newton's method
initialized at z(*=1)| to produce z(¥) = z*(t)

e Stopif m/t <e

e Else update t*+1) =yt where pu > 1



Outline

Today:
e Motivation from perturbed KKT conditions
e Primal-dual interior-point method
e Backtracking line search
e Highlight on standard form LPs



Barrier method versus primal-dual method

We will cover the primal-dual interior-point method, which solves
basically the same problems as the barrier method. These two are
pretty similar, but have some key differences

Overview:

Both can be motivated in terms of perturbed KKT conditions

Primal-dual interior-point methods take one Newton step, and
move on (no separate inner and outer loops)

Primal-dual interior-point iterates are not necessarily feasible

Primal-dual interior-point methods can be more efficient,
since they can exhibit better than linear convergence

Primal-dual interior-point methods are less intuitive ...



Back to perturbed KKT conditions

The barrier method iterates at any particular barrier method ¢ can
be seen as solving a perturbed version of the KKT conditions

+ZuNh )+ ATv =0

uihi(:c):—l/t, i=1,...m
hi(z) <0, i=1,...m, Ax=hb

uiZO, i=1,...m

Only difference between these and actual KKT conditions for our
original problem is in the second condition: these are replaced by

uihi(l'):(), i:1,...m

i.e., complementary slackness, in actual KKT conditions



We didn’t cover this, but Newton updates for log barrier problem
can be seen as Newton step for solving these nonlinear equations,
after eliminating u (i.e., taking u = —1/(th;(z)), i =1,...m)

Primal-dual interior-point updates are also motivated by a Newton
step for solving these nonlinear equations, but without eliminating
u. Write it concisely as r(z,u,v) = 0, where

Vf(z)+ Dh(z)Tu+ ATv

r(z,u,v) = —diag(u)h(z) — 1/t
Ax—b
and
hi(x) Vhi (x)T
h(zx) = , Dh(z) =

hom () Vh;,;(':c)T



This is a nonlinear equation is (z,u,v), and hard to solve; so let's
linearize, and approximately solve

Let y = (x,u,v) be the current iterate, and Ay = (Ax, Au, Av)
be the update direction. Define

Tqual = Vf(z) + Dh(z)Tu + AT
Tcent = —dlag(u)h(x) - 1/t

Tprim = Az — b
the dual, central, and primal residuals at current y = (z, u, v)
Now we make our first-order approximation

0=r(y+Ay) = r(y) + Dr(y)Ay

and we want to solve for Ay in the above



l.e., we solve

V2f(x) + S0 u;V2hi(x)  Dh(z)t AT Az

—diag(u)Dh(x) —diag(h(z)) 0 Au
A 0 0 Av

Tdual

= - Tcent

Tprim

Solution Ay = (Ax, Au, Av) is our primal-dual update direction

Note that the update directions for the primal and dual variables
are inexorably linked together

(Also, these are different updates than those from barrier method)



Surrogate duality gap

Unlike barrier methods, the iterates from primal-dual interior-point
method are not necessarily feasible

For barrier method, we have simple duality gap: m/t, since we set
u; = —1/(thi(x)), i = 1,...m and saw this was dual feasible

For primal-dual interior-point method, we construct a surrogate
duality gap:

n=—h(z)Tu=— Zulhz(x)
i=1

This would be a bonafide duality gap if we had feasible points (i.e.,
if 7prim = 0 and 7qua; = 0), but we don't, so it's not

What value of parameter t does this correspond to in perturbed
KKT conditions? This is t = n/m
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Primal-dual interior-point method

Putting it all together, we now have our primal-dual interior-point

method. Start with a strictly feasible point 2(?) and 4(9) > 0, v(0).

Define 79 = —h(z(9)T40). Then for a barrier parameter ;1 > 1,
we repeat for k=1,2,3...
e Define t = pm/n*—1)
e Compute primal-dual update direction Ay
e Determine step size s
Update y®*) = ¢*=1) 1 5. Ay
Compute n*) = —h (2, Ty *)
Stop if %) < ¢ and ([rprimll3 + lraual3)/2 < e

Note the stopping criterion checks both the surrogate duality gap,

and (approximate) primal and dual feasibility
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Backtracking line search

At each step, we need to make sure that we settle on an update
yt =y +sAy, ie.,

T =z+4sAz, um=u+sAu, vT =v+sAv
that maintains h;(x) <0, u; >0,i=1,...m

A multi-stage backtracking line search for this purpose: start with
largest step size Spmax < 1 that makes u + sAu > 0:

Smax = Iin {1, min{—u; /Au; : Au; < 0}}

Then, with parameters o, 8 € (0, 1), we set s = 0.9981max, and
e Update s = s, until hy(z") <0,i=1,...m

e Update s = (s, until
|’T(x+7u+7v+)u2 < (1 - as)Hr(m,u, U)H2
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Highlight: standard form LP

Recall the standard form LP:

min L

T

subject to Az =10
x>0

forc e R™", A € R™*" pc R™. lts dual is:

max blw

u,v

subject to ATv+u=c
u>0

(This is not a bad thing to memorize)
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Some history

Dantzig (1940s): the simplex method, still today is one of the
most well-known /well-studied algorithms for LPs

Klee and Minty (1972): pathological LP with n variables and
2n constraints, simplex method takes 2" iterations to solve
Khachiyan (1979): polynomial-time algorithm for LPs, based
on ellipsoid method of Nemirovski and Yudin (1976). Strong
in theory, weak in practice

Karmarkar (1984): interior-point polynomial-time method for
LPs. Fairly efficient (US Patent 4,744,026, expired in 2006)

Renegar (1988): Newton-based interior-point algorithm for
LP. Best known theoretical complexity to date

Modern state-of-the-art LP solvers typically use both simplex
and interior-point methods
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KKT conditions for standard form LP

The points z* and (u*,v*) are respectively primal and dual optimal
LP solutions if and only if they solve:

ATy +u=c
ziu; =0,1=1,...,n
Axr =b
z,u >0

(Neat fact: the simplex method maintains the first three conditions
and aims for the fourth one ... interior-point methods maintain the
first and last two, and aim for the second)
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The perturbed KKT conditions for standard form LP are hence:

ATv+u=c
xou; =1/t i=1,...,n
Ax=b
z,u >0

Let's work through the barrier method, and the primal-dual interior
point method, to get a sense of these two

Barrier method (after elim u): Primal-dual method:
0 = rpe(z,v) 0 = rpa(z,u,v)
[ ATy +diag(z) L -1/t —c ATy +u—c
- Az —b = | diag(z)u—1/t
Az —b
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Barrier method: 0 = 7, (y + Ay) ~ . (y) + Dric(y)Ay, ie., we

solve ) It A
—diag(z)™=/t T
o AT (8 Y ey

and take a step y™ = y + sAy (with line search for s > 0), and
iterate until convergence. Then update t = ut

Primal-dual method: 0 = rpq(y + Ay) = rpa(y) + Drpa(y) Ay,
i.e., we solve

0 I AT Az
diag(u) diag(x) O Au | = —rpa(x,u,v)
A 0 0 Av

and take a step y™ = y + sAy (with line search for s > 0), but
only once. Then update t = put
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Example: barrier versus primal-dual

Example from B & V 11.3.2 and 11.7.4: standard LP with n = 50
variables and m = 100 equality constraints

Barrier method uses various values of i, primal-dual method uses
u=10. Both use o =0.01, 5=10.5

10% 10
10% 0
1 10°
R 10" 10-2
; 10 =101 j_ 10~
s 1074 10 10"
: 1078
109 =50 =150 =2 114 10-1
0 20 10 60 80 5 10 15 20 25 5 10 15 20 25 30
Newton iterations iteration number iteration number
Barrier duality gap ~ Primal-dual surrogate Primal-dual feasibility
duality gap £ap, Tfeas =

(Ipriml|3 + llraual|3) /2

Can see that primal-dual is faster to converge to high accuracy
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Now a sequence of problems with n = 2m, and n growing. Barrier
method uses p = 100, runs just two outer loops (decreases duality
gap by 104); primal-dual method uses 1+ = 10, stops when duality

gap and feasibility gap are at most 10~®
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Barrier method Primal-dual method

Primal-dual method require only slightly more iterations, despite
the fact that they it is producing higher accuracy solutions
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