Proximal Newton Method

Ryan Tibshirani
Convex Optimization 10-725/36-725

Last time: primal-dual interior-point method

Given the problem

min f(z)
subject to hi(z) <0, i=1,...m
Ax =1b

where f, h;, i =1,...m are convex and smooth, we consider the
perturbed KKT conditions

+Zquh —|—ATU—O

Uihi(l‘):—l/t, izl,...m
hi(x) <0, i=1,...m, Ax=%b

u; >0, 1=1,...m

where we have modified complementary slackness

Let's express these conditions as r(x,u,v) = 0, where

Vf(z) + Dh(z)Tu+ ATv

r(x,u,v) = —diag(u)h(z) — 1/t
Az —b
and
hl(ﬂj‘) Vhl(a:)T
h(z) = e , Dh(z) = e
hom () Vhm(z)T

In the primal-dual interior-point method, with y = (x, u,v) as the
current iterate, and Ay = (Ax, Au, Av) the update direction, we
form a Newton step for the above nonlinear system

0=r(y+ Ay) =~ r(y) + Dr(y)Ay

and solve for Ay, to get our update direction. Conclusion: similar
properties as the barrier method, but often faster

Outline

Today:

Proximal gradient recap

Proximal Newton method

Backtracking line search

Convergence analysis

Notable examples

Reminder: proximal gradient descent
Recall that proximal gradient descent operates on a problem
min g(x) + h(z)
x

where g is convex, smooth and h is convex, “simple”. We choose
initial (9 and repeat for k =1,2,3,. ..
) = prox;, (az(kfl) - thg(a:(kfl)))

where prox,(-) is the proximal operator associated with h,
.1 2
prox,(x) = argmin %Hx —z||5 + h(2)
4

o Difficulty of iterations is in applying prox, which only depends
on h (assuming that Vg is computable)

e Proximal gradient descent enjoys same convergence rate as its
fully smooth version, hence useful when prox is efficient

Recall the motivation for proximal gradient: iteratively minimize a
quadratic expansion in g, plus original A

+

1
" = argmin %Hw —tVg(z) — 2|3 + h(z)
z

1
= argmin Vg(z)T(z —) + ﬂHz — |3 + h(2)

The quadratic approximation here uses Hessian equal to (a scaled
version of) the identity 1/

A fundamental difference between gradient descent and Newton's
method was that the latter also iteratively minimized quadratic
approximations, but these used the local Hessian of the function in
question

So what happens if we replace %I in the above with V2g(z)?

Proximal Newton method

This leads us to the proximal Newton method. Now we must define
1 2
proxy(x) = argmin §||x — 2|5 + h(z)
4

where ||z||%, = 2T Hx defines a norm, given a matrix H = 0. This
is a scaled proximal mapping. With H = %I, we get back previous
definition

Starting with 2(?), we repeat for k = 1,2,3, ...

y(k) — prOXHk,1 (x(k_l) — H;_llv‘g(x(k_l)))

Here H_1 = V2g(x(k_1)), and ¢, is a step size, which we choose
by backtracking line search (as in usual Newton)

Let's check this is indeed minimizing a quadratic approximation of
g, plus h:

1
y = argmin EHx — H 'Vg(z) — 2|} + h(2)
. T 1 T
= argmin Vg(z)' (z —z) + 5(2 —z) H(z —x) + h(z)

Notes:

e When h(z) =0, we get back the usual Newton update

e For H - 0, can check that proxy/(-) retains many of the nice
properties of (unscaled) proximal mappings (Lee et al. 2012).
E.g., it is well-defined, since the minimizer is unique

e Difficulty of prox has mostly to do with h, however, now the

Hessian of ¢ also plays a role—the structure of this Hessian H
can make a difference

Backtracking line search

As with Newton's method in fully smooth problems, pure step sizes
tr=1,k=1,2,3,... need not converge. We need to apply, say,
backtracking line search. Set parameters 0 < o < 1/2,0 < 5 < 1,
and let

v =proxy(z — H 'Vg(z)) —z

be the proximal Newton direction at a given iteration. Start with
t = 1, and while

flx+tv) > f(z) + atVg(x) v + a(h(z + td) — h(z))
we shrink ¢t = St. (Here f = g+ h)

Note: this scheme is actually of a different spirit than the one we
studied for proximal gradient descent, as it avoids recomputing the
prox at each inner backtracking iteration

Wait ... does this even make sense?

Let's back up. One of the main drivers behind proximal gradient
descent is that we can transform the problem

min g(z) + h(z)

into a sequence of problems where g(z) is essentially replaced by
|b — ||2. This can be easy, but it depends on h

Now we have transformed into a sequence of problems where g(x)
is essentially replaced by b”z + 27 Ax. For dense A, this seems like

it would rarely be easy, regardless of h ... That is, evaluating the
scaled prox

arginin Vo(x)T(z —z) + %(z —2)TH(z — z) + h(z)

seems to be not an easy subproblem, for a generic Hessian H ...

10

All this is true, and the prox operator in proximal Newton is usually
extremely expensive, and one that we solve with an optimization
subroutine (e.g., for h(xz) = ||x||1, prox is standard lasso problem)

What we should hope for: the convergence rate of prox Newton, in
terms of the number of iterations (prox evaluations) needed, is like
the usual Newton method. This ends up being true

Therefore, if we have a decent inner solver for the prox step, it can
be quite efficient to use proximal Newton (e.g., this is true with ¢;
regularized generalized linear models). But in general, prox Newton
is not to be applied without care

(Well-known implementations using prox Newton: glmnet, QUIC;
more on this later)

11

Convergence analysis

Following Lee et al. (2012), assume that f = g + h, where g, h are
convex and g is twice smooth. Assume further:

e mI < V2g < LI, and V2g Lipschitz with parameter M

e proxy(-) is exactly evaluable

Theorem: Proximal Newton method with backtracking line
search satisfies converges globally. Furthermore, for all k& > kq:

M .
2 — a*lla < o [l2 D — 2|3

Recall that this is called local quadratic convergence. After some
point, to get within f(z®)) — f* < ¢, we require O(loglog(1/e))
iterations. Note: each iteration uses scaled prox evaluation!

12

Proof sketch

e To prove global convergence, they show that at any step, the
backtracking exit condition will be satisfied by

t < min{l, 2Tm(l - a)}

Use this to show that the update direction converges to zero,
which can only happen at the global minimum

e To prove local quadratic convergence, they show that for large
enough k, the pure step t = 1 eventually satisfies backtracking
exit condition. Therefore

1
lo — 22 < ﬁllf — "

< |lproxy (= — H™'Vg(z)) — proxy (z* — H'Vg(a* HH
M * |2
< Mo

13

Glmnet and QUIC

Two notable examples of proximal Newton methods:

e glmnet (Friedman et al. 2009): applies proximal Newton to ¢;
regularized generalized linear models, inner probs solved using
coordinate descent

e QUIC (Hsiesh et al. 2011): applies proximal Newton to solve
graphical lasso problem, uses factorization tricks, inner probs
use coordinate descent

Both of these implementations are very widely used for their own
purposes. At the proper scale, these are close to state-of-the-art

General note: proximal Newton method will use far less evaluations
of (gradient of) g than proximal gradient. When these evaluations
are expensive, proximal Newton can win

14

Example: lasso logistic regression

Example from Lee et al. (2012): ¢; regularized logistic regression,
FISTA (accelerated prox grad) versus spaRSA (spectral projected
gradient method) versus PN (prox Newton)

Problem with n = 5000, p = 6000, and a dense feature matrix X

10 10
= —=— FISTA =
g » —e— SpaRSA g
£ 10 —a— PN 3 £ 10
Qo Qo
Qo Qo
> >
-) “‘ﬁb‘.‘.\ >
210 20
k<t kst
[} [}
[[

0 10

0 100 200 300 400 500 0 100 200 300 400 500
Function evaluations Time (sec)

Here g and Vg require expensive exp or log evaluations; dominates
computational cost

15

Now problem with n = 542,000, p = 47,000, and sparse matrix X

10 10 4
2 —=— FISTA 2 —=— FISTA
E —e— SpaRSA E —e— SpaRSA
£ 102 —a— PN £ 107 —&— PN
Q Q
o o
Qo Qo
3 3
2] 2
210" 210
kSt k]
[5) [}
o« o«

107° 107°

0 100 200 300 400 500 0 50 100 150 200 250
Function evaluations Time (sec)

Here g and Vg require expensive exp or log evaluations, but these
make up less of total cost, since X is sparse

Inexact prox evaluations

An important note: with proximal Newton, we essentially always
perform inexact prox evaluations (not so with proximal gradient)

Example from Lee et al. (2012): graphical lasso estimation, three
stopping rules for inner optimizations. Here n = 72 and p = 1255

o

Y

—e— adaptive
—— maxlter =10
—=— exact

Relative suboptimality

0 5

10 15 20

Function evaluations

25

Relative suboptimality

o
o

3

—e—— adaptive
—— maxlter =10
—=— exact

50 100
Time (sec)

Conclusion is that 10 inner iterations is not enough to ensure fast
(quadratic convergence), but their adaptive stopping rule is

17

For usual (smooth) Newton method, inner problem is to minimize
Gr—1(z) quadratic approximation to g about 2(*~1). Stopping rules
based on

IV3r-1(2)ll2 < ml[V(D)2

for a specifically chosen “forcing” sequence m, k =1,2,3,...

For proximal Newton, Lee et al. (2012) advocate the analogy that
uses generalized gradients in place of gradients

where fi_1 = Gx_1 + h, and recall that m < V2¢g < M. Setting

{m 1Gf v (T (¥ 1)>—Gf/M((kl))H2}
LR ECEIE

they prove that inexact proximal Newton has local superlinear rate

18

Proximal quasi-Newton methods

For large problems, computing the Hessian is prohibitive. Proximal
quasi-Newton methods avoid exactly forming Hy_; = Vg(z#~1)
at each step

o Lee et al. (2012) propose iteratively updating Hy_; at each
step using BFGS-type rules. They show very strong empirical
performance, and prove local superlinear convergence

e Tseng and Yun (2009) consider smooth plus block separable
problems, and recommend approximating the Hessian in a
blockwise fashion, combined with block coordinate descent.
This can be very helpful because only small Hessians are ever
needed. They prove linear convergence

Note that quasi-Newton methods can not only be helpful when the
Hessian is expensive, but also when it is ill-conditioned: singular or
close to singular

Proximal Newton versus Tseng and Yun's method

It is interesting to compare Proximal Newton for the problem

mmin g(x) + h(x)

where h(z) = 25:1 hy(zp) separates over B blocks of coordinates,
to Tseng and Yun (2009). Their method: block proximal Newton
(they call it coordinate gradient descent, bad name!)

The distinction is: perform a quad approximation first, or second?

e Proximal Newton method replaces g(z + A) with g(z + A) =
Vg(z)TA+ FATHA, and minimizes §(z 4+ A) + h(z + A) to
find update A. Can find A with block coordinate descent

e Tseng and Yun iterate, for each block b=1,... B, replacing
smooth part with gy(z, + Ap) = Vig(z)T Ay + %AbTHbAb,
and minimize gy(xp + Ap) + hp(zp + Ap) to find update A,
for block b

20

What's wrong with projected Newton?

Suppose that h = 1¢(z), the indicator function of a convex set C.
l.e., consider the problem

min g(z) subject to C
€T

Recall that proximal gradient here reduces to projected gradient.
What about proximal Newton? Updates are

1
y = argmin + |}z — H-'Vg(a) - 2I%
zeC 2

1
= argmin Vg(z)T(z —2)+ =(z —2)TH(z — z)
zeC 2

Note when H = [this a projection of z — Vg(x) onto C, but this

is not a projection in general! In fact, it is much more complicated.

Hence, projected Newton does not generally follow from proximal
Newton ... we will cover a way to fix this during advanced topics

21

References

J. Friedman and T. Hastie and R. Tibshirani (2009),
“Regularization paths for generalized linear models via
coordinate descent”

C.J. Hsiesh and M.A. Sustik and |. Dhillon and P. Ravikumar
(2011), “Sparse inverse covariance matrix estimation using
quadratic approximation”

M. Patriksson (1998), “Cost approximation: a unified
framework of descent algorithms for nonlinear programs”

J. Lee and Y. Sun and M. Saunders (2012), “Proximal
Newton-type methods for minimizing composite functions”
P. Tseng and S. Yun (2009), “A coordinate gradient descent
method for nonsmooth separable minimization”

22

