Canonical Problem Forms

Ryan Tibshirani
Convex Optimization 10-725
Last time: optimization basics

- Optimization terminology (e.g., criterion, constraints, feasible points, solutions)
- Properties and first-order optimality

Equivalent transformations (e.g., partial optimization, change of variables, eliminating equality constraints)
Outline

Today:

- Linear programs
- Quadratic programs
- Semidefinite programs
- Cone programs
Linear program

A linear program or LP is an optimization problem of the form

\[
\min_x c^T x \\
\text{subject to } \begin{align*}
Dx &\leq d \\
Ax &= b
\end{align*}
\]

Observe that this is always a convex optimization problem

- First introduced by Kantorovich in the late 1930s and Dantzig in the 1940s
- Dantzig’s simplex algorithm gives a direct (noniterative) solver for LPs (later in the course we’ll see interior point methods)
- Fundamental problem in convex optimization. Many diverse applications, rich history
Example: diet problem

Find cheapest combination of foods that satisfies some nutritional requirements (useful for graduate students!)

\[
\min_x \quad c^T x
\]
subject to
\[
Dx \geq d
\]
\[
x \geq 0
\]

Interpretation:
- \(c_j\): per-unit cost of food \(j\)
- \(d_i\): minimum required intake of nutrient \(i\)
- \(D_{ij}\): content of nutrient \(i\) per unit of food \(j\)
- \(x_j\): units of food \(j\) in the diet
Example: transportation problem

Ship commodities from given sources to destinations at min cost

\[
\begin{align*}
\min_{x} & \quad \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} \\
\text{subject to} & \quad \sum_{j=1}^{n} x_{ij} \leq s_{i}, \quad i = 1, \ldots, m \\
& \quad \sum_{i=1}^{m} x_{ij} \geq d_{j}, \quad j = 1, \ldots, n, \quad x \geq 0
\end{align*}
\]

Interpretation:

- \(s_{i} \): supply at source \(i \)
- \(d_{j} \): demand at destination \(j \)
- \(c_{ij} \): per-unit shipping cost from \(i \) to \(j \)
- \(x_{ij} \): units shipped from \(i \) to \(j \)
Example: basis pursuit

Given $y \in \mathbb{R}^n$ and $X \in \mathbb{R}^{n \times p}$, where $p > n$. Suppose that we seek the sparsest solution to underdetermined linear system $X \beta = y$

Nonconvex formulation:

$$\min_{\beta} \|\beta\|_0$$

subject to $X \beta = y$

where recall $\|\beta\|_0 = \sum_{j=1}^{p} 1\{\beta_j \neq 0\}$, the ℓ_0 “norm”

The ℓ_1 approximation, often called basis pursuit:

$$\min_{\beta} \|\beta\|_1$$

subject to $X \beta = y$
Basis pursuit is a linear program. Reformulation:

\[
\begin{align*}
\min_{\beta} & \quad \|\beta\|_1 \\
\text{subject to} & \quad X\beta = y
\end{align*}
\]

\[
\begin{align*}
\iff \\
\min_{\beta, z} & \quad 1^T z \\
\text{subject to} & \quad z \geq \beta \\
& \quad z \geq -\beta \\
& \quad X\beta = y
\end{align*}
\]

(Check that this makes sense to you)
Example: Dantzig selector

Modification of previous problem, where we allow for $X\beta \approx y$ (we don’t require exact equality), the Dantzig selector:\(^1\)

$$\min_{\beta} \|\beta\|_1$$

subject to $\|X^T(y - X\beta)\|_\infty \leq \lambda$

Here $\lambda \geq 0$ is a tuning parameter

Again, this can be reformulated as a linear program (check this!)

\(^1\)Candes and Tao (2007), “The Dantzig selector: statistical estimation when p is much larger than n”
A linear program is said to be in **standard form** when it is written as

\[
\min_x c^T x
\]

subject to \(Ax = b \)

\(x \geq 0 \)

Any linear program can be rewritten in standard form (check this!)
A convex quadratic program or QP is an optimization problem of the form

$$\min_x \quad c^T x + \frac{1}{2} x^T Q x$$

subject to

$$D x \leq d$$

$$Ax = b$$

where $Q \succeq 0$, i.e., positive semidefinite

Note that this problem is not convex when $Q \not\succeq 0$

From now on, when we say quadratic program or QP, we implicitly assume that $Q \succeq 0$ (so the problem is convex)
Example: portfolio optimization

Construct a financial portfolio, trading off performance and risk:

$$\max_{x \geq 0} \mu^T x - \frac{\gamma}{2} x^T Q x$$

subject to \(1^T x = 1\)

Interpretation:

- \(\mu\): expected assets’ returns
- \(Q\): covariance matrix of assets’ returns
- \(\gamma\): risk aversion
- \(x\): portfolio holdings (percentages)
Example: support vector machines

Given $y \in \{-1, 1\}^n$, $X \in \mathbb{R}^{n \times p}$ having rows $x_1, \ldots x_n$, recall the support vector machine or SVM problem:

$$\min_{\beta, \beta_0, \xi} \quad \frac{1}{2} \|\beta\|_2^2 + C \sum_{i=1}^{n} \xi_i$$

subject to

$$\xi_i \geq 0, \quad i = 1, \ldots n$$

$$y_i(x_i^T \beta + \beta_0) \geq 1 - \xi_i, \quad i = 1, \ldots n$$

This is a quadratic program
Example: lasso

Given $y \in \mathbb{R}^n$, $X \in \mathbb{R}^{n \times p}$, recall the lasso problem:

$$\min_{\beta} \quad \|y - X\beta\|_2^2$$

subject to $\|\beta\|_1 \leq s$

Here $s \geq 0$ is a tuning parameter. Indeed, this can be reformulated as a quadratic program (check this!)

Alternative parametrization (called Lagrange, or penalized form):

$$\min_{\beta} \quad \frac{1}{2}\|y - X\beta\|_2^2 + \lambda\|\beta\|_1$$

Now $\lambda \geq 0$ is a tuning parameter. And again, this can be rewritten as a quadratic program (check this!)
A quadratic program is in **standard form** if it is written as

$$\min_{x} \quad c^T x + \frac{1}{2} x^T Q x$$

subject to

$$Ax = b$$

$$x \geq 0$$

Any quadratic program can be rewritten in standard form.
Motivation for semidefinite programs

Consider linear programming again:

$$\begin{align*}
\min_x & \quad c^T x \\
\text{subject to} & \quad Dx \leq d \\
& \quad Ax = b
\end{align*}$$

Can generalize by changing \leq to different (partial) order. Recall:

- \mathbb{S}^n is space of $n \times n$ symmetric matrices
- \mathbb{S}_+^n is the space of positive semidefinite matrices, i.e.,
 $$\mathbb{S}_+^n = \{ X \in \mathbb{S}^n : u^T X u \geq 0 \text{ for all } u \in \mathbb{R}^n \}$$
- \mathbb{S}^{++}_n is the space of positive definite matrices, i.e.,
 $$\mathbb{S}^{++}_n = \{ X \in \mathbb{S}^n : u^T X u > 0 \text{ for all } u \in \mathbb{R}^n \setminus \{0\} \}$$
Facts about S^n, S^+_n, S^{++}_n

- Basic linear algebra facts, here $\lambda(X) = (\lambda_1(X), \ldots, \lambda_n(X))$:

 $$
 X \in S^n \implies \lambda(X) \in \mathbb{R}^n \\
 X \in S^+_n \iff \lambda(X) \in \mathbb{R}^+_n \\
 X \in S^{++}_n \iff \lambda(X) \in \mathbb{R}^{++}_n
 $$

- We can define an inner product over S^n: given $X, Y \in S^n$,

 $$
 X \cdot Y = \text{tr}(XY)
 $$

- We can define a partial ordering over S^n: given $X, Y \in S^n$,

 $$
 X \succeq Y \iff X - Y \in S^+_n
 $$

Note: for $x, y \in \mathbb{R}^n$, $\text{diag}(x) \succeq \text{diag}(y) \iff x \succeq y$ (recall, the latter is interpreted elementwise)
A **semidefinite program** or SDP is an optimization problem of the form

\[
\begin{align*}
\min_{x} & \quad c^T x \\
\text{subject to} & \quad x_1 F_1 + \ldots + x_n F_n \preceq F_0 \\
& \quad Ax = b
\end{align*}
\]

Here \(F_j \in \mathbb{S}^d \), for \(j = 0, 1, \ldots n \), and \(A \in \mathbb{R}^{m \times n} \), \(c \in \mathbb{R}^n \), \(b \in \mathbb{R}^m \). Observe that this is always a convex optimization problem.

Also, any linear program is a semidefinite program (check this!)
A semidefinite program is in **standard form** if it is written as

$$\min_X \quad C \bullet X$$

subject to

$$A_i \bullet X = b_i, \quad i = 1, \ldots, m$$

$$X \succeq 0$$

Any semidefinite program can be written in standard form (for a challenge, check this!)
Example: theta function

Let \(G = (N, E) \) be an undirected graph, \(N = \{1, \ldots, n\} \), and

- \(\omega(G) \) : clique number of \(G \)
- \(\chi(G) \) : chromatic number of \(G \)

The Lovasz theta function:

\[
\vartheta(G) = \max_{X} \quad 11^T \cdot X
\]

subject to

\[
I \cdot X = 1 \\
X_{ij} = 0, (i, j) \notin E \\
X \succeq 0
\]

The Lovasz sandwich theorem: \(\omega(G) \leq \vartheta(\bar{G}) \leq \chi(G) \), where \(\bar{G} \) is the complement graph of \(G \)

\(^2\text{Lovasz (1979), “On the Shannon capacity of a graph”}\)
Example: trace norm minimization

Let $A : \mathbb{R}^{m \times n} \to \mathbb{R}^p$ be a linear map,

$$A(X) = \begin{pmatrix} A_1 \cdot X \\ \vdots \\ A_p \cdot X \end{pmatrix}$$

for $A_1, \ldots, A_p \in \mathbb{R}^{m \times n}$ (and where $A_i \cdot X = \text{tr}(A_i^T X)$). Finding lowest-rank solution to an underdetermined system, nonconvex:

$$\min_X \quad \text{rank}(X)$$

subject to $A(X) = b$

Trace norm approximation:

$$\min_X \quad \|X\|_{\text{tr}}$$

subject to $A(X) = b$

This is indeed an SDP (but harder to show, requires duality ...
A conic program is an optimization problem of the form:

$$\min_{x} \quad c^T x$$

subject to

$$Ax = b$$

$$D(x) + d \in K$$

Here:

- $c, x \in \mathbb{R}^n$, and $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$
- $D : \mathbb{R}^n \to Y$ is a linear map, $d \in Y$, for Euclidean space Y
- $K \subseteq Y$ is a closed convex cone

Both LPs and SDPs are special cases of conic programming. For LPs, $K = \mathbb{R}^n_+$; for SDPs, $K = \mathbb{S}^n_+$
Second-order cone program

A second-order cone program or SOCP is an optimization problem of the form:

\[
\begin{align*}
\min_{x} & \quad c^T x \\
\text{subject to} & \quad \|D_i x + d_i\|_2 \leq e_i^T x + f_i, \quad i = 1, \ldots, p \\
& \quad Ax = b
\end{align*}
\]

This is indeed a cone program. Why? Recall the second-order cone

\[
Q = \{(x, t) : \|x\|_2 \leq t\}
\]

So we have

\[
\|D_i x + d_i\|_2 \leq e_i^T x + f_i \iff (D_i x + d_i, e_i^T x + f_i) \in Q_i
\]

for second-order cone \(Q_i\) of appropriate dimensions. Now take

\[
K = Q_1 \times \ldots \times Q_p
\]
Observe that every LP is an SOCP. Further, every SOCP is an SDP.

Why? Turns out that

\[\|x\|_2 \leq t \iff \begin{bmatrix} tI & x \\ x^T & t \end{bmatrix} \succeq 0 \]

Hence we can write any SOCP constraint as an SDP constraint.

The above is a special case of the Schur complement theorem:

\[\begin{bmatrix} A & B \\ B^T & C \end{bmatrix} \succeq 0 \iff A - BC^{-1}B^T \succeq 0 \]

for \(A, C \) symmetric and \(C \succeq 0 \).
Hey, what about QPs?

Finally, our old friend QPs “sneak” into the hierarchy. Turns out QPs are SOCPs, which we can see by rewriting a QP as

$$\min_{x,t} \quad c^T x + t$$

subject to $$Dx \leq d, \frac{1}{2} x^T Q x \leq t$$

$$Ax = b$$

Now write $$\frac{1}{2} x^T Q x \leq t \iff \|((\frac{1}{\sqrt{2}} Q^{1/2} x, \frac{1}{2} (1 - t)))\|_2 \leq \frac{1}{2} (1 + t)$$

Take a breath (phew!). Thus we have established the hierarchy

$$\text{LPs} \subseteq \text{QPs} \subseteq \text{SOCPs} \subseteq \text{SDPs} \subseteq \text{Conic programs}$$

completing the picture we saw at the start
References and further reading

• D. Bertsimas and J. Tsitsiklis (1997), “Introduction to linear optimization,” Chapters 1, 2