Duality Uses and Correspondences

Ryan Tibshirani
Convex Optimization 10-725
Last time: KKT conditions

Recall that for the problem

\[
\begin{align*}
\min_{x} & \quad f(x) \\
\text{subject to} & \quad h_i(x) \leq 0, \; i = 1, \ldots, m \\
& \quad \ell_j(x) = 0, \; j = 1, \ldots, r
\end{align*}
\]

the KKT conditions are

- \(0 \in \partial_x \left(f(x) + \sum_{i=1}^{m} u_i h_i(x) + \sum_{j=1}^{r} v_j \ell_j(x) \right) \) (stationarity)
- \(u_i \cdot h_i(x) = 0 \) for all \(i \) (complementary slackness)
- \(h_i(x) \leq 0, \; \ell_j(x) = 0 \) for all \(i, j \) (primal feasibility)
- \(u_i \geq 0 \) for all \(i \) (dual feasibility)

Necessary for optimality under strong duality, and always sufficient.
Uses of duality

Two key uses of duality:

• For x primal feasible and u, v dual feasible,

$$f(x) - f(x^*) \leq f(x) - g(u, v)$$

Right-hand side is called duality gap. Note that a zero duality gap implies optimality. Also, the duality gap can be used as a stopping criterion in algorithms

• Under strong duality, given dual optimal u^*, v^*, any primal solution x^* solves

$$\min_x L(x, u^*, v^*)$$

(i.e., satisfies the stationarity condition). This can be used to characterize or compute primal solutions from dual solution
When is dual easier?

Key facts about primal-dual relationship (some covered here, some later):

- Dual has complementary **number of variables**: recall, number of primal constraints
- Dual involves complementary **norms**: $\| \cdot \|$ becomes $\| \cdot \|_*$
- Dual has “identical” **smoothness**: L/m (Lipschitz constant of gradient by strong convexity parameter) is unchanged between f and its conjugate f^*
- Dual can “shift” **linear transformations** between terms … this leads to key idea: dual decomposition
Solving the primal via the dual

An important consequence of stationarity: under strong duality, given a dual solution u^*, v^*, any primal solution x^* solves

$$\min_x f(x) + \sum_{i=1}^{m} u^*_i h_i(x) + \sum_{j=1}^{r} v^*_j \ell_j(x)$$

Often, solutions of this unconstrained problem can be expressed explicitly, giving an explicit characterization of primal solutions from dual solutions.

Furthermore, suppose the solution of this problem is unique; then it must be the primal solution x^*

This can be very helpful when the dual is easier to solve than the primal
For example, consider:

$$\min_x \sum_{i=1}^{n} f_i(x_i) \text{ subject to } a^T x = b$$

where each $f_i(x_i) = \frac{1}{2}c_i x_i^2$ (smooth and strictly convex). Dual function:

$$g(v) = \min_x \sum_{i=1}^{n} f_i(x_i) + v(b - a^T x)$$

$$= bv + \sum_{i=1}^{n} \min_{x_i} \{ f_i(x_i) - a_i v x_i \}$$

$$= bv - \sum_{i=1}^{n} f_i^*(a_i v),$$

where each $f_i^*(y) = \frac{1}{2c_i} y^2$, called the conjugate of f_i.
Therefore the dual problem is

$$\max_v \ b v - \sum_{i=1}^{n} f_i^*(a_i v) \iff \min_v \sum_{i=1}^{n} f_i^*(a_i v) - bv$$

This is a convex minimization problem with scalar variable—much easier to solve than primal

Given v^*, the primal solution x^* solves

$$\min_x \sum_{i=1}^{n} \left(f_i(x_i) - a_i v^* x_i \right)$$

Strict convexity of each f_i implies that this has a unique solution, namely x^*, which we compute by solving $f_i'(x_i) = a_i v^*$ for each i. This gives $x^*_i = a_i v^*/c_i$
Outline

Today:

- Dual norms
- Conjugate functions
- Dual cones
- Dual tricks and subtleties

(Note: there are many other uses of duality and relationships to duality that we could discuss, but not enough time...)

8
Dual norms

Let \(\|x\| \) be a norm, e.g.,

- \(\ell_p \) norm: \(\|x\|_p = (\sum_{i=1}^{n} |x_i|^p)^{1/p} \), for \(p \geq 1 \)
- Trace norm: \(\|X\|_{tr} = \sum_{i=1}^{r} \sigma_i(X) \)

We define its dual norm \(\|x\|_* \) as

\[
\|x\|_* = \max_{\|z\| \leq 1} z^T x
\]

Gives us the inequality \(|z^T x| \leq \|z\| \|x\|_* \) (like generalized Holder).

Back to our examples,

- \(\ell_p \) norm dual: \((\|x\|_p)_* = \|x\|_q \), where \(1/p + 1/q = 1 \)
- Trace norm dual: \((\|X\|_{tr})_* = \|X\|_{op} = \sigma_1(X) \)

Dual norm of dual norm: can show that \(\|x\|_{**} = \|x\| \)
Proof: consider the (trivial-looking) problem

$$\min_y \| y \| \quad \text{subject to} \quad y = x$$

whose optimal value is $\| x \|$. Lagrangian:

$$L(y, u) = \| y \| + u^T(x - y) = \| y \| - y^T u + x^T u$$

Using definition of $\| \cdot \|_*$,

- If $\| u \|_* > 1$, then $\min_y \{ \| y \| - y^T u \} = -\infty$
- If $\| u \|_* \leq 1$, then $\min_y \{ \| y \| - y^T u \} = 0$

Therefore Lagrange dual problem is

$$\max_u u^T x \quad \text{subject to} \quad \| u \|_* \leq 1$$

By strong duality $f^* = g^*$, i.e., $\| x \| = \| x \|^{**}$
Conjugate function

Given a function $f : \mathbb{R}^n \rightarrow \mathbb{R}$, define its conjugate $f^* : \mathbb{R}^n \rightarrow \mathbb{R}$,

$$f^*(y) = \max_x y^T x - f(x)$$

Note that f^* is always convex, since it is the pointwise maximum of convex (affine) functions in y (here f need not be convex)

For differentiable f, conjugation is called the Legendre transform
Properties:

• Fenchel’s inequality: for any x, y,

$$f(x) + f^*(y) \geq x^T y$$

• Conjugate of conjugate f^{**} satisfies $f^{**} \leq f$

• If f is closed and convex, then $f^{**} = f$

• If f is closed and convex, then for any x, y,

$$x \in \partial f^*(y) \iff y \in \partial f(x) \iff f(x) + f^*(y) = x^T y$$

• If $f(u, v) = f_1(u) + f_2(v)$, then

$$f^*(w, z) = f_1^*(w) + f_2^*(z)$$
Examples:

- Simple quadratic: let \(f(x) = \frac{1}{2} x^T Q x \), where \(Q \succ 0 \). Then \(y^T x - \frac{1}{2} x^T Q x \) is strictly concave in \(y \) and is maximized at \(y = Q^{-1} x \), so

\[
 f^*(y) = \frac{1}{2} y^T Q^{-1} y
\]

- Indicator function: if \(f(x) = I_C(x) \), then its conjugate is

\[
 f^*(y) = I^*_C(y) = \max_{x \in C} y^T x
\]

called the support function of \(C \)

- Norm: if \(f(x) = \|x\| \), then its conjugate is

\[
 f^*(y) = I_{\{z : \|z\|_* \leq 1\}}(y)
\]

where \(\| \cdot \|_* \) is the dual norm of \(\| \cdot \| \)
Example: lasso dual

Given $y \in \mathbb{R}^n$, $X \in \mathbb{R}^{n \times p}$, recall the lasso problem:

$$\min_{\beta} \frac{1}{2} \|y - X\beta\|_2^2 + \lambda \|\beta\|_1$$

Its dual function is just a constant (equal to f^*). Therefore we transform the primal to

$$\min_{\beta, z} \frac{1}{2} \|y - z\|_2^2 + \lambda \|\beta\|_1 \quad \text{subject to} \quad z = X\beta$$

so dual function is now

$$g(u) = \min_{\beta, z} \frac{1}{2} \|y - z\|_2^2 + \lambda \|\beta\|_1 + u^T(z - X\beta)$$

$$= \frac{1}{2} \|y\|_2^2 - \frac{1}{2} \|y - u\|_2^2 - I_{\{v : \|v\|_\infty \leq 1\}}(X^Tu/\lambda)$$
Therefore the lasso dual problem is

\[
\max_u \frac{1}{2} \left(\|y\|_2^2 - \|y - u\|_2^2 \right) \quad \text{subject to} \quad \|X^T u\|_\infty \leq \lambda
\]

\[
\iff \min_u \|y - u\|_2^2 \quad \text{subject to} \quad \|X^T u\|_\infty \leq \lambda
\]

Check: Slater’s condition holds, and hence so does strong duality. But note: the optimal value of the last problem is not the optimal lasso objective value.

Further, note that given the dual solution \(u \), any lasso solution \(\beta \) satisfies

\[
X \beta = y - u
\]

This is from KKT stationarity condition for \(z \) (i.e., \(z - y + \beta = 0 \)). So the lasso fit is just the dual residual.
\[C = \{ u : \|X^T u\|_{\infty} \leq \lambda \} \]

\[X\hat{\beta} \]

\[\hat{u} \]

\[(X^T)^{-1} \]

\[\mathbb{R}^n - \mathbb{R}^p \]

\[A, s_A \]

\[\{ v : \|v\|_{\infty} \leq \lambda \} \]
Conjugates and dual problems

Conjugates appear frequently in derivation of dual problems, via

\[-f^*(u) = \min_x f(x) - u^T x\]

in minimization of the Lagrangian. For example, consider

\[\min_x f(x) + g(x)\]

Equivalently: \[\min_{x,z} f(x) + g(z) \text{ subject to } x = z.\] Dual function:

\[g(u) = \min_x f(x) + g(z) + u^T (z - x) = -f^*(u) - g^*(-u)\]

Hence dual problem is

\[\max_u -f^*(u) - g^*(-u)\]
Examples of this last calculation:

- **Indicator function:**
 \[
 \text{Primal} : \min_x f(x) + I_C(x) \\
 \text{Dual} : \max_u -f^*(u) - I_C^*(-u)
 \]
 where \(I_C^*\) is the support function of \(C\)

- **Norms:** the dual of
 \[
 \text{Primal} : \min_x f(x) + \|x\| \\
 \text{Dual} : \max_u -f^*(u) \text{ subject to } \|u\|_* \leq 1
 \]
 where \(\| \cdot \|_*\) is the dual norm of \(\| \cdot \|\)
Shifting linear transformations

Dual formulations can help us by “shifting” a linear transformation between one part of the objective and another. Consider

$$\min_x f(x) + g(Ax)$$

Equivalently: $$\min_{x,z} f(x) + g(z) \text{ subject to } Ax = z$$. Like before, dual is:

$$\max_u -f^*(A^Tu) - g^*(-u)$$

Example: for a norm and its dual norm, $$\| \cdot \|, \| \cdot \|^*$$:

Primal: $$\min_x f(x) + \|Ax\|$$

Dual: $$\max_u -f(A^Tu) \text{ subject to } \|u\|^* \leq 1$$

The dual can often be a helpful transformation here
Dual cones

For a cone $K \subseteq \mathbb{R}^n$ (recall this means $x \in K$, $t \geq 0 \implies tx \in K$),

$$K^* = \{y : y^T x \geq 0 \text{ for all } x \in K\}$$

is called its dual cone. This is always a convex cone (even if K is not convex)

Notice that $y \in K^*$

\iff the halfspace $\{x : y^T x \geq 0\}$ contains K

(From B & V page 52)

Important property: if K is a closed convex cone, then $K^{**} = K$
Examples:

- Linear subspace: the dual cone of a linear subspace V is V^\perp, its orthogonal complement, e.g., $(\text{row}(A))^* = \text{null}(A)$

- Norm cone: the dual cone of the norm cone

$$K = \{(x, t) \in \mathbb{R}^{n+1} : \|x\| \leq t\}$$

is the norm cone of its dual norm

$$K^* = \{(y, s) \in \mathbb{R}^{n+1} : \|y\|_* \leq s\}$$

- Positive semidefinite cone: the convex cone \mathbb{S}^n_+ is self-dual, meaning $(\mathbb{S}^n_+)^* = \mathbb{S}^n_+$. Why? Check that

$$Y \succeq 0 \iff \text{tr}(YX) \geq 0 \text{ for all } X \succeq 0$$

by looking at the eigendecomposition of X
Dual cones and dual problems

Consider the cone constrained problem

$$\min_x f(x) \text{ subject to } Ax \in K$$

Recall that its dual problem is

$$\max_u -f^*(A^T u) - I^*_K(-u)$$

where recall $I^*_K(y) = \max_{z \in K} z^T y$, the support function of K. If K is a cone, then this is simply

$$\max_u -f^*(A^T u) \text{ subject to } u \in K^*$$

where K^* is the dual cone of K, because $I^*_K(-u) = I_{K^*}(u)$

This is quite a useful observation, because many different types of constraints can be posed as cone constraints
Dual subtleties

• Often, we will transform the dual into an equivalent problem and still call this the dual. Under strong duality, we can use solutions of the (transformed) dual problem to characterize or compute primal solutions

 Warning: the optimal value of this transformed dual problem is not necessarily the optimal primal value

• A common trick in deriving duals for unconstrained problems is to first transform the primal by adding a dummy variable and an equality constraint

 Usually there is **ambiguity** in how to do this. Different choices can lead to different dual problems!
Double dual

Consider general minimization problem with linear constraints:

\[
\min_x f(x) \\
\text{subject to} \quad Ax \leq b, \ Cx = d
\]

The Lagrangian is

\[
L(x, u, v) = f(x) + (A^T u + C^T v)^T x - b^T u - d^T v
\]

and hence the dual problem is

\[
\max_{u,v} \quad -f^*(-A^T u - C^T v) - b^T u - d^T v
\]

subject to \quad u \geq 0

Recall property: \(f^{**} = f \) if \(f \) is closed and convex. Hence in this case, we can show that the dual of the dual is the primal
Actually, the connection (between duals of duals and conjugates) runs much deeper than this, beyond linear constraints. Consider

$$\min_{x} f(x)$$
subject to $h_i(x) \leq 0, \ i = 1, \ldots, m$
$$\ell_j(x) = 0, \ j = 1, \ldots, r$$

If f and h_1, \ldots, h_m are closed and convex, and ℓ_1, \ldots, ℓ_r are affine, then the dual of the dual is the primal

This is proved by viewing the minimization problem in terms of a bifunction. In this framework, the dual function corresponds to the conjugate of this bifunction (for more, read Chapters 29 and 30 of Rockafellar)
References