Dual Decomposition

Ryan Tibshirani
Convex Optimization 10-725
Last time: coordinate descent

Consider the problem

$$\min_x f(x)$$

where $$f(x) = g(x) + \sum_{i=1}^n h_i(x_i)$$, with $$g$$ convex and differentiable and each $$h_i$$ convex. **Coordinate descent**: let $$x^{(0)} \in \mathbb{R}^n$$, and repeat

$$x_i^{(k)} = \arg\min_{x_i} f(x_1^{(k)}, \ldots, x_{i-1}^{(k)}, x_i, x_{i+1}^{(k-1)}, \ldots, x_n^{(k-1)})$$,

$$i = 1, \ldots, n$$

for $$k = 1, 2, 3, \ldots$$

- Very simple and easy to implement
- Careful implementations can achieve state-of-the-art
- Scalable, e.g., don’t need to keep full data in memory
Reminder: conjugate functions

Recall that given $f : \mathbb{R}^n \rightarrow \mathbb{R}$, the function

$$f^*(y) = \max_x y^T x - f(x)$$

is called its conjugate

- Conjugates appear frequently in dual programs, since

$$-f^*(y) = \min_x f(x) - y^T x$$

- If f is closed and convex, then $f^{**} = f$. Also,

$$x \in \partial f^*(y) \iff y \in \partial f(x) \iff x \in \arg\min_z f(z) - y^T z$$

- If f is strictly convex, then $\nabla f^*(y) = \arg\min_z f(z) - y^T z$
Today:
- Dual ascent
- Dual decomposition
- Augmented Lagrangians
- A peak at ADMM
Dual first-order methods

Even if we can’t derive dual (conjugate) in closed form, we can still use dual-based gradient or subgradient methods.

Consider the problem

\[\min_x f(x) \text{ subject to } Ax = b \]

Its dual problem is

\[\max_u -f^*(-A^T u) - b^T u \]

where \(f^* \) is conjugate of \(f \). Defining \(g(u) = -f^*(-A^T u) - b^T u \), note that

\[\partial g(u) = A\partial f^*(-A^T u) - b \]
Therefore, using what we know about conjugates

\[\partial g(u) = Ax - b \text{ where } x \in \arg\min_z f(z) + u^T Az \]

The **dual subgradient method** (for maximizing the dual objective) starts with an initial dual guess \(u^{(0)} \), and repeats for \(k = 1, 2, 3, \ldots \)

\[x^{(k)} \in \arg\min_x f(x) + (u^{(k-1)})^T Ax \]

\[u^{(k)} = u^{(k-1)} + t_k (Ax^{(k)} - b) \]

Step sizes \(t_k, k = 1, 2, 3, \ldots \), are chosen in standard ways.
Dual gradient ascent

Recall that if f is strictly convex, then f^* is differentiable, and so this becomes dual gradient ascent, which repeats for $k = 1, 2, 3, \ldots$

$$x^{(k)} = \arg\min_x f(x) + (u^{(k-1)})^T Ax$$

$$u^{(k)} = u^{(k-1)} + t_k (Ax^{(k)} - b)$$

(Difference is that each $x^{(k)}$ is unique, here.) Again, step sizes t_k, $k = 1, 2, 3, \ldots$ are chosen in standard ways

Lastly, proximal gradients and acceleration can be applied as they would usually
Curvature and conjugates

Assume that f is a closed and convex function. Then f is strongly convex with parameter $m \iff \nabla f^*$ Lipschitz with parameter $1/m$

Proof of \(\Rightarrow\): Recall, if g strongly convex with minimizer x, then

$$g(y) \geq g(x) + \frac{m}{2} \|y - x\|^2_2, \quad \text{for all } y$$

Hence defining $x_u = \nabla f^*(u)$, $x_v = \nabla f^*(v)$,

$$f(x_v) - u^T x_v \geq f(x_u) - u^T x_u + \frac{m}{2} \|x_u - x_v\|^2_2$$

$$f(x_u) - v^T x_u \geq f(x_v) - v^T x_v + \frac{m}{2} \|x_u - x_v\|^2_2$$

Adding these together, using Cauchy-Schwartz, rearranging shows that $\|x_u - x_v\|_2 \leq \|u - v\|_2/m$
Proof of “⇐”: for simplicity, call $g = f^*$ and $L = 1/m$. As ∇g is Lipschitz with constant L, so is $g_x(z) = g(z) - \nabla g(x)^T z$, hence

$$g_x(z) \leq g_x(y) + \nabla g_x(y)^T (z - y) + \frac{L}{2} \|z - y\|_2^2$$

Minimizing each side over z, and rearranging, gives

$$\frac{1}{2L} \|\nabla g(x) - \nabla g(y)\|_2^2 \leq g(y) - g(x) + \nabla g(x)^T (x - y)$$

Exchanging roles of x, y, and adding together, gives

$$\frac{1}{L} \|\nabla g(x) - \nabla g(y)\|_2^2 \leq (\nabla g(x) - \nabla g(y))^T (x - y)$$

Let $u = \nabla f(x)$, $v = \nabla g(y)$; then $x \in \partial g^*(u)$, $y \in \partial g^*(v)$, and the above reads $(x - y)^T (u - v) \geq \|u - v\|_2^2 / L$, implying the result
Convergence guarantees

The following results hold from combining the last fact with what we already know about gradient descent:\(^1\)

- If \(f \) is strongly convex with parameter \(m \), then dual gradient ascent with constant step sizes \(t_k = m \) converges at sublinear rate \(O(1/\epsilon) \)

- If \(f \) is strongly convex with parameter \(m \) and \(\nabla f \) is Lipschitz with parameter \(L \), then dual gradient ascent with step sizes \(t_k = 2/(1/m + 1/L) \) converges at linear rate \(O(\log(1/\epsilon)) \)

Note that this describes convergence in the dual. (Convergence in the primal requires more assumptions)

\(^1\)This is ignoring the role of \(A \), and thus reflects the case when the singular values of \(A \) are all close to 1. To be more precise, the step sizes here should be: \(m/\sigma_{\text{max}}(A)^2 \) (first case) and \(2/(\sigma_{\text{max}}(A)^2/m + \sigma_{\text{min}}(A)^2/L) \) (second case).
Dual decomposition

Consider

$$\min_x \sum_{i=1}^B f_i(x_i) \text{ subject to } Ax = b$$

Here $x = (x_1, \ldots, x_B) \in \mathbb{R}^n$ divides into B blocks of variables, with each $x_i \in \mathbb{R}^{n_i}$. We can also partition A accordingly

$$A = [A_1 \ldots, A_B], \text{ where } A_i \in \mathbb{R}^{m \times n_i}$$

Simple but powerful observation, in calculation of (sub)gradient, is that the minimization decomposes into B separate problems:

$$x^+ \in \arg\min_x \sum_{i=1}^B f_i(x_i) + u^T Ax$$

$$\iff x_i^+ \in \arg\min_{x_i} f_i(x_i) + u^T A_i x_i, \quad i = 1, \ldots, B$$
Dual decomposition algorithm: repeat for \(k = 1, 2, 3, \ldots \)

\[
x_i^{(k)} \in \arg\min_{x_i} f_i(x_i) + (u^{(k-1)})^T A_i x_i, \quad i = 1, \ldots, B
\]

\[
u^{(k)} = u^{(k-1)} + t_k \left(\sum_{i=1}^{B} A_i x_i^{(k)} - b \right)
\]

Can think of these steps as:

- **Broadcast**: send \(u \) to each of the \(B \) processors, each optimizes in parallel to find \(x_i \)
- **Gather**: collect \(A_i x_i \) from each processor, update the global dual variable \(u \)
Inequality constraints

Consider

$$\min_x \sum_{i=1}^B f_i(x_i) \text{ subject to } \sum_{i=1}^B A_i x_i \leq b$$

Dual decomposition, i.e., projected subgradient method:

$$x_i^{(k)} \in \arg\min_{x_i} f_i(x_i) + (u^{(k-1)})^T A_i x_i, \quad i = 1, \ldots, B$$

$$u^{(k)} = \left(u^{(k-1)} + t_k \left(\sum_{i=1}^B A_i x_i^{(k)} - b \right) \right)_+$$

where u_+ denotes the positive part of u, i.e., $(u_+)_i = \max\{0, u_i\}$, $i = 1, \ldots, m$
Price coordination interpretation (Vandenberghe):

- Have B units in a system, each unit chooses its own decision variable x_i (how to allocate its goods)
- Constraints are limits on shared resources (rows of A), each component of dual variable u_j is price of resource j
- Dual update:

$$u_j^+ = (u_j - ts_j)_+, \quad j = 1, \ldots, m$$

where $s = b - \sum_{i=1}^B A_i x_i$ are slacks

- Increase price u_j if resource j is over-utilized, $s_j < 0$
- Decrease price u_j if resource j is under-utilized, $s_j > 0$
- Never let prices get negative

Note: The context suggests the use of slacks s in the dual update formulation, which is a common approach in economic modeling to handle resource constraints.
Augmented Lagrangian method
(also known as: method of multipliers)

Dual ascent disadvantage: convergence requires strong conditions. Augmented Lagrangian method transforms the primal problem:

$$\begin{align*}
\min_x f(x) + \frac{\rho}{2} \|Ax - b\|_2^2 \\
\text{subject to } Ax = b
\end{align*}$$

where $\rho > 0$ is a parameter. Clearly equivalent to original problem. Strongly convex if A has full column rank. Dual gradient ascent:

$$\begin{align*}
x^{(k)} &= \arg\min_x f(x) + (u^{(k-1)})^T Ax + \frac{\rho}{2} \|Ax - b\|_2^2 \\
u^{(k)} &= u^{(k-1)} + \rho (Ax^{(k)} - b)
\end{align*}$$
Notice step size choice \(t_k = \rho \) in dual algorithm. Why? Since \(x^{(k)} \) minimizes \(f(x) + (u^{(k-1)})^T Ax + \frac{\rho}{2} \|Ax - b\|^2_2 \) over \(x \), we have

\[
0 \in \partial f(x^{(k)}) + A^T \left(u^{(k-1)} + \rho(Ax^{(k)} - b) \right)
= \partial f(x^{(k)}) + A^T u^{(k)}
\]

This is the **stationarity condition** for original primal problem; under mild conditions \(Ax^{(k)} - b \to 0 \) as \(k \to \infty \), so KKT conditions are satisfied in the limit and \(x^{(k)}, u^{(k)} \) converge to solutions

- **Advantage:** augmented Lagrangian gives better convergence
- **Disadvantage:** lose decomposability! (Separability is ruined)
Alternating direction method of multipliers or ADMM: try for best of both worlds. Consider the problem

$$\min_{x,z} f(x) + g(z) \quad \text{subject to} \quad Ax + Bz = c$$

As before, we augment the objective

$$\min_x f(x) + g(z) + \frac{\rho}{2} \|Ax + Bz - c\|_2^2$$

$$\text{subject to} \quad Ax + Bz = c$$

for a parameter $\rho > 0$. We define augmented Lagrangian

$$L_\rho(x, z, u) = f(x) + g(z) + u^T(Ax + Bz - c) + \frac{\rho}{2} \|Ax + Bz - c\|_2^2$$
ADMM repeats the steps, for \(k = 1, 2, 3, \ldots \)

\[
x^{(k)} = \arg\min_x L_\rho(x, z^{(k-1)}, u^{(k-1)})
\]

\[
z^{(k)} = \arg\min_z L_\rho(x^{(k)}, z, u^{(k-1)})
\]

\[
u^{(k)} = u^{(k-1)} + \rho(Ax^{(k)} + Bz^{(k)} - c)
\]

Note that the usual method of multipliers would have replaced the first two steps by a joint minimization

\[
(x^{(k)}, z^{(k)}) = \arg\min_{x, z} L_\rho(x, z, u^{(k-1)})
\]
Convergence guarantees

Under modest assumptions on f, g (these do not require A, B to be full rank), the ADMM iterates satisfy, for any $\rho > 0$:

- **Residual convergence**: $r^{(k)} = Ax^{(k)} - Bz^{(k)} - c \to 0$ as $k \to \infty$, i.e., primal iterates approach feasibility

- **Objective convergence**: $f(x^{(k)}) + g(z^{(k)}) \to f^* + g^*$, where $f^* + g^*$ is the optimal primal objective value

- **Dual convergence**: $u^{(k)} \to u^*$, where u^* is a dual solution

For details, see Boyd et al. (2010). Note that we do not generically get primal convergence, but this is true under more assumptions

Convergence rate: roughly, ADMM behaves like first-order method. Theory still being developed, see, e.g., in Hong and Luo (2012), Deng and Yin (2012), Iutzeler et al. (2014), Nishihara et al. (2015)
Scaled form: denote $w = u/\rho$, so augmented Lagrangian becomes

$$L_\rho(x, z, w) = f(x) + g(z) + \frac{\rho}{2} \|Ax + Bz - c + w\|_2^2 - \frac{\rho}{2} \|w\|_2^2$$

and ADMM updates become

$$x^{(k)} = \arg\min_x f(x) + \frac{\rho}{2} \|Ax + Bz^{(k-1)} - c + w^{(k-1)}\|_2^2$$
$$z^{(k)} = \arg\min_z g(z) + \frac{\rho}{2} \|Ax^{(k)} + Bz - c + w^{(k-1)}\|_2^2$$
$$w^{(k)} = w^{(k-1)} + Ax^{(k)} + Bz^{(k)} - c$$

Note that here kth iterate $w^{(k)}$ is just a running sum of residuals:

$$w^{(k)} = w^{(0)} + \sum_{i=1}^{k} (Ax^{(i)} + Bz^{(i)} - c)$$
Example: alternating projections

Consider finding a point in intersection of convex sets $C, D \subseteq \mathbb{R}^n$:

$$\min_x I_C(x) + I_D(x)$$

To get this into ADMM form, we express it as

$$\min_{x,z} I_C(x) + I_D(z) \text{ subject to } x - z = 0$$

Each ADMM cycle involves two projections:

$$x^{(k)} = \arg\min_x P_C(z^{(k-1)} - w^{(k-1)})$$

$$z^{(k)} = \arg\min_z P_D(x^{(k)} + w^{(k-1)})$$

$$w^{(k)} = w^{(k-1)} + x^{(k)} - z^{(k)}$$
Compare classic alternating projections algorithm (von Neumann):

\[x^{(k)} = \arg\min_x P_C(z^{(k-1)}) \]

\[z^{(k)} = \arg\min_z P_D(x^{(k)}) \]

Difference is ADMM utilizes a dual variable \(w \) to offset projections. When (say) \(C \) is a linear subspace, ADMM algorithm becomes

\[x^{(k)} = \arg\min_x P_C(z^{(k-1)}) \]

\[z^{(k)} = \arg\min_z P_D(x^{(k)} + w^{(k-1)}) \]

\[w^{(k)} = w^{(k-1)} + x^{(k)} - z^{(k)} \]

Initialized at \(z^{(0)} = y \), this is equivalent to Dykstra’s algorithm for finding the closest point in \(C \cap D \) to \(y \)
References

• L. Vandenberghe, Lecture Notes for EE 236C, UCLA, Spring 2011-2012