Duality in General Programs

Lecturer: Ryan Tibshirani
Convex Optimization 10-725/36-725
Last time: duality in linear programs

Given \(c \in \mathbb{R}^n, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m, G \in \mathbb{R}^{r \times n}, h \in \mathbb{R}^r:\)

\[
\begin{align*}
\text{min} & \quad c^T x \\
\text{subject to} & \quad Ax = b \\
& \quad Gx \leq h
\end{align*}
\]

Primal LP

\[
\begin{align*}
\text{max} & \quad -b^T u - h^T v \\
\text{subject to} & \quad -A^T u - G^T v = c \\
& \quad v \geq 0
\end{align*}
\]

Dual LP

Explanation: for any \(u \) and \(v \geq 0 \), and \(x \) primal feasible,

\[
\begin{align*}
\begin{array}{c}
\begin{align*}
& u^T (Ax - b) + v^T (Gx - h) \leq 0, \quad \text{i.e.,} \\
& (-A^T u - G^T v)^T x \geq -b^T u - h^T v
\end{align*}
\end{array}
\end{align*}
\]

So if \(c = -A^T u - G^T v \), we get a bound on primal optimal value
Explanation # 2: for any u and $v \geq 0$, and x primal feasible

\[c^T x \geq c^T x + u^T(Ax - b) + v^T(Gx - h) := L(x, u, v) \]

So if C denotes primal feasible set, f^* primal optimal value, then for any u and $v \geq 0$,

\[f^* \geq \min_{x \in C} L(x, u, v) \geq \min_x L(x, u, v) := g(u, v) \]

In other words, $g(u, v)$ is a lower bound on f^* for any u and $v \geq 0$. Note that

\[g(u, v) = \begin{cases} -b^T u - h^T v & \text{if } c = -A^T u - G^T v \\ -\infty & \text{otherwise} \end{cases} \]

This second explanation reproduces the same dual, but is actually completely general and applies to arbitrary optimization problems (even nonconvex ones)
Outline

Today:

- Lagrange dual function
- Langrange dual problem
- Weak and strong duality
- Examples
- Preview of duality uses
Consider general minimization problem

\[\min_{x} f(x) \]

subject to \(h_i(x) \leq 0, \ i = 1, \ldots, m \)
\[\ell_j(x) = 0, \ j = 1, \ldots, r \]

Need not be convex, but of course we will pay special attention to convex case

We define the **Lagrangian** as

\[L(x, u, v) = f(x) + \sum_{i=1}^{m} u_i h_i(x) + \sum_{j=1}^{r} v_j \ell_j(x) \]

New variables \(u \in \mathbb{R}^m, v \in \mathbb{R}^r \), with \(u \geq 0 \) (implicitly, we define \(L(x, u, v) = -\infty \) for \(u < 0 \))
Important property: for any $u \geq 0$ and v,

$$f(x) \geq L(x, u, v) \quad \text{at each feasible } x$$

Why? For feasible x,

$$L(x, u, v) = f(x) + \sum_{i=1}^{m} u_i h_i(x) + \sum_{j=1}^{r} v_j \ell_j(x) \leq f(x)$$

- Solid line is f
- Dashed line is h, hence feasible set $\approx [-0.46, 0.46]$
- Each dotted line shows $L(x, u, v)$ for different choices of $u \geq 0$ and v

(From B & V page 217)
Lagrange dual function

Let C denote primal feasible set, f^* denote primal optimal value. Minimizing $L(x, u, v)$ over all x gives a lower bound:

$$f^* \geq \min_{x \in C} L(x, u, v) \geq \min_x L(x, u, v) := g(u, v)$$

We call $g(u, v)$ the Lagrange dual function, and it gives a lower bound on f^* for any $u \geq 0$ and v, called dual feasible u, v

- Dashed horizontal line is f^*
- Dual variable λ is (our u)
- Solid line shows $g(\lambda)$

(From B & V page 217)
Example: quadratic program

Consider quadratic program:

$$\min_x \quad \frac{1}{2} x^T Q x + c^T x$$

subject to \(Ax = b, \ x \geq 0 \)

where \(Q \succ 0 \). Lagrangian:

$$L(x, u, v) = \frac{1}{2} x^T Q x + c^T x - u^T x + v^T (Ax - b)$$

Lagrange dual function:

$$g(u, v) = \min_x L(x, u, v) = -\frac{1}{2} (c-u+A^T v)^T Q^{-1} (c-u+A^T v) - b^T v$$

For any \(u \geq 0 \) and any \(v \), this is lower a bound on primal optimal value \(f^* \)
Same problem

\[
\begin{align*}
\min_x & \quad \frac{1}{2} x^T Q x + c^T x \\
\text{subject to} & \quad A x = b, \ x \geq 0
\end{align*}
\]

but now \(Q \succeq 0 \). Lagrangian:

\[
L(x, u, v) = \frac{1}{2} x^T Q x + c^T x - u^T x + v^T (A x - b)
\]

Lagrange dual function:

\[
g(u, v) = \begin{cases}
-\frac{1}{2} (c - u + A^T v)^T Q^+ (c - u + A^T v) - b^T v \\
-\infty
\end{cases}
\]

if \(c - u + A^T v \perp \text{null}(Q) \)

otherwise

where \(Q^+ \) denotes generalized inverse of \(Q \). For any \(u \geq 0, v, \) and \(c - u + A^T v \perp \text{null}(Q) \), \(g(u, v) \) is a nontrivial lower bound on \(f^* \)
Example: quadratic program in 2D

We choose $f(x)$ to be quadratic in 2 variables, subject to $x \geq 0$. Dual function $g(u)$ is also quadratic in 2 variables, also subject to $u \geq 0$.

Dual function $g(u)$ provides a bound on f^* for every $u \geq 0$.

Largest bound this gives us: turns out to be exactly f^* ... coincidence?

More on this later, via KKT conditions.
Lagrange dual problem

Given primal problem

\[
\begin{align*}
\min_{x} & \quad f(x) \\
\text{subject to} & \quad h_i(x) \leq 0, \ i = 1, \ldots, m \\
& \quad \ell_j(x) = 0, \ j = 1, \ldots, r
\end{align*}
\]

Our constructed dual function \(g(u, v) \) satisfies \(f^* \geq g(u, v) \) for all \(u \geq 0 \) and \(v \). Hence best lower bound is given by maximizing \(g(u, v) \) over all dual feasible \(u, v \), yielding Lagrange dual problem:

\[
\max_{u,v} \quad g(u, v)
\]

subject to \(u \geq 0 \)

Key property, called weak duality: if dual optimal value is \(g^* \), then

\[
f^* \geq g^*
\]

Note that this always holds (even if primal problem is nonconvex)
Another key property: the dual problem is a **convex optimization** problem (as written, it is a concave maximization problem)

Again, this is always true (even when primal problem is not convex)

By definition:

\[
g(u, v) = \min_x \left\{ f(x) + \sum_{i=1}^{m} u_i h_i(x) + \sum_{j=1}^{r} v_j \ell_j(x) \right\}
\]

\[
= - \max_x \left\{ - f(x) - \sum_{i=1}^{m} u_i h_i(x) - \sum_{j=1}^{r} v_j \ell_j(x) \right\}
\]

pointwise maximum of convex functions in \((u, v)\)

i.e., \(g\) is concave in \((u, v)\), and \(u \geq 0\) is a convex constraint, hence dual problem is a concave maximization problem
Example: nonconvex quartic minimization

Define \(f(x) = x^4 - 50x^2 + 100x \) (nonconvex), minimize subject to constraint \(x \geq -4.5 \)

Dual function \(g \) can be derived explicitly, via closed-form equation for roots of a cubic equation
Form of g is rather complicated:

$$g(u) = \min_{i=1,2,3} \left\{ F_i^4(u) - 50F_i^2(u) + 100F_i(u) \right\},$$

where for $i = 1, 2, 3$,

$$F_i(u) = \frac{-a_i}{12 \cdot 2^{1/3}} \left(\frac{1}{\left(432(100-u) - \left(432^2(100-u)^2 - 4 \cdot 1200^3 \right)^{1/2} \right)^{1/3}} \right)$$

and $a_1 = 1, a_2 = (-1 + i\sqrt{3})/2, a_3 = (-1 - i\sqrt{3})/2$

Without the context of duality it would be difficult to tell whether or not g is concave ... but we know it must be!
Strong duality

Recall that we always have $f^* \geq g^*$ (weak duality). On the other hand, in some problems we have observed that actually

$$f^* = g^*$$

which is called strong duality

Slater’s condition: if the primal is a convex problem (i.e., f and $h_1, \ldots h_m$ are convex, $\ell_1, \ldots \ell_r$ are affine), and there exists at least one strictly feasible $x \in \mathbb{R}^n$, meaning

$$h_1(x) < 0, \ldots h_m(x) < 0 \quad \text{and} \quad \ell_1(x) = 0, \ldots \ell_r(x) = 0$$

then strong duality holds

This is a pretty weak condition. An important refinement: strict inequalities only need to hold over functions h_i that are not affine
For linear programs:

- Easy to check that the dual of the dual LP is the primal LP
- Refined version of Slater's condition: strong duality holds for an LP if it is feasible
- Apply same logic to its dual LP: strong duality holds if it is feasible
- Hence strong duality holds for LPs, except when both primal and dual are infeasible

(In other words, we nearly always have strong duality for LPs)
Example: support vector machine dual

Given $y \in \{-1, 1\}^n$, $X \in \mathbb{R}^{n \times p}$, rows x_1, \ldots, x_n, recall the support vector machine problem:

$$
\min_{\beta, \beta_0, \xi} \quad \frac{1}{2} \|\beta\|_2^2 + C \sum_{i=1}^{n} \xi_i
$$

subject to $\xi_i \geq 0$, $i = 1, \ldots, n$

$$
y_i(x_i^T \beta + \beta_0) \geq 1 - \xi_i, \quad i = 1, \ldots, n
$$

Introducing dual variables $v, w \geq 0$, we form the Lagrangian:

$$
L(\beta, \beta_0, \xi, v, w) = \frac{1}{2} \|\beta\|_2^2 + C \sum_{i=1}^{n} \xi_i - \sum_{i=1}^{n} v_i \xi_i + \\
\sum_{i=1}^{n} w_i \left(1 - \xi_i - y_i(x_i^T \beta + \beta_0)\right)
$$
Minimizing over β, β_0, ξ gives Lagrange dual function:

$$
g(v, w) = \begin{cases}
-\frac{1}{2}w^T\tilde{X}\tilde{X}^Tw + 1^Tw & \text{if } w = C1 - v, w^Ty = 0 \\
-\infty & \text{otherwise}
\end{cases}
$$

where $\tilde{X} = \text{diag}(y)X$. Thus SVM dual problem, eliminating slack variable v, becomes

$$\max_w -\frac{1}{2}w^T\tilde{X}\tilde{X}^Tw + 1^Tw$$

subject to $0 \leq w \leq C1, w^Ty = 0$

Check: Slater’s condition is satisfied, and we have strong duality. Further, from study of SVMs, might recall that at optimality

$$\beta = \tilde{X}^Tw$$

This is not a coincidence, as we’ll later via the KKT conditions
Duality gap

Given primal feasible x and dual feasible u, v, the quantity

$$f(x) - g(u, v)$$

is called the duality gap between x and u, v. Note that

$$f(x) - f^* \leq f(x) - g(u, v)$$

so if the duality gap is zero, then x is primal optimal (and similarly, u, v are dual optimal).

From an algorithmic viewpoint, provides a stopping criterion: if $f(x) - g(u, v) \leq \epsilon$, then we are guaranteed that $f(x) - f^* \leq \epsilon$

Very useful, especially in conjunction with iterative methods ... more dual uses in coming lectures.
References